
DeepSmartFuzzer: Reward Guided Test Generation For Deep Learning

Samet Demir1 , Hasan Ferit Eniser2∗ , Alper Sen1

1Department of Computer Engineering, Boğaziçi University, Turkey
2Max Planck Institute for Software Systems, Germany

samet.demir1@boun.edu.tr, hfeniser@mpi-sws.org, alper.sen@boun.edu.tr

Abstract
Testing Deep Neural Network (DNN) models has
become more important than ever with the increas-
ing usage of DNN models in safety-critical do-
mains such as autonomous cars. Traditionally,
DNN testing relies on the performance on a ded-
icated subset of the available data, namely test
set. However, DNNs require more thorough test-
ing approaches to exercise corner-case behaviors.
Coverage-guided fuzzing (CGF) which is a com-
mon practice in software testing aims to produce
new test inputs by mutating existing ones to achieve
high coverage on a test adequacy criterion. CGF
has been an effective method for finding error in-
ducing inputs by satisfying a well-established cri-
terion. In this paper, we propose a novel CGF al-
gorithm for structural testing of DNNs. The pro-
posed algorithm employs Monte Carlo Tree Search
to drive the coverage-guided search. In our eval-
uation, we show that the inputs generated by our
method result in higher coverage than the inputs
produced by the previously introduced CGF tech-
niques on various criteria in a fixed amount of time.

1 Introduction
Given enough amount of data and processing power, training
a Deep Neural Network (DNN) is the most popular way for
dealing with many hard computational problems such as im-
age classification [Cireşan et al., 2012], natural language pro-
cessing [Sutskever et al., 2014] and speech recognition [Hin-
ton et al., 2012]. Impressive achievements in such tasks
raised expectations for deploying DNNs in real-world appli-
cations, including the ones in safety-critical domains.

Despite the remarkable achievements, recent works
[Szegedy et al., 2013; Goodfellow et al., 2015] have demon-
strated that DNNs are vulnerable to small perturbations on
seed inputs, also called adversarial attacks. Considering the

∗Most of the work was done when the author was in Boğaziçi Uni.
Copyright c© 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

catastrophic results that can emerge from erroneous behav-
iors in safety-critical systems, DNNs must be characterized
by a high degree of dependability before being deployed in
safety-critical systems.

Testing is the primary practice for analyzing and evaluat-
ing the quality of a software system [Ammann and Offutt,
2016]. It helps in reducing the risk by finding and eliminat-
ing erroneous behaviors before deployment of the systems.
One of the most fundamental testing concepts is defining a
coverage criterion for a given test set, also called a test ade-
quacy criterion. A coverage criterion measures how much of
the system structures are exercised (covered) when test inputs
are provided. Having a test set that satisfies a coverage cri-
terion provides a degree of dependability to the system under
test.

Recent research in DNN testing introduces new DNN-
specific coverage criteria such as neuron coverage [Pei et al.,
2017] and its variants [Ma et al., 2018], MC/DC-inspired cri-
terion [Sun et al., 2018b] or other criteria such as surprise ad-
equacy [Kim et al., 2019] and DeepImportance [Gerasimou et
al., 2020]. Previous works [Pei et al., 2017; Ma et al., 2018;
Kim et al., 2019], and future studies on coverage criteria for
DNNs could be useful for exposing defects in DNNs, find-
ing adversarial examples, or forming diverse test sets. On the
other hand, satisfying a coverage criterion or at least achiev-
ing a high coverage measurement can be difficult without a
structured methodology. Existing works [Xie et al., 2018;
Odena and Goodfellow, 2018] leverage coverage guided
fuzzing (CGF) to achieve high coverage for a given criterion.
However, both of these works apply mutations on inputs ran-
domly. Therefore, their effectiveness is limited, as shown in
our experiments.

In this work, we introduce DeepSmartFuzzer, a novel CGF,
for achieving high coverage in DNNs for existing coverage
criteria in the literature. Our ultimate goal is to help practi-
tioners extend their test sets with new inputs so that new be-
haviours are covered. To that end, we leverage Monte Carlo
Tree Search (MCTS) [Chaslot et al., 2008], a search algo-
rithm for decision processes. In our method, MCTS is used
to determine a series of mutations that would result in the best
coverage increase for a given input.

Contributions of this work are as follows:

• We introduce DeepSmartFuzzer, a novel Coverage
Guided Fuzzing (CGF) technique for testing DNNs.
DeepSmartFuzzer is applicable to all existing coverage
metrics.

• We show the effectiveness of our method for many pop-
ular coverage criteria and for many DNNs with different
complexities.

• We compare the effectiveness our method with existing
CGF methods.

2 Related Work
Recently, several DNN testing techniques have been devel-
oped in the literature. Among these techniques, there exist
works developing coverage criteria for DNNs. For exam-
ple, DeepXplore [Pei et al., 2017] proposed neuron coverage
(analogous to statement coverage in software). DeepGauge
[Ma et al., 2018] proposed a set of fine-grained test coverage
criteria. Kim et al. [2019] proposed surprise adequacy crite-
ria based on a measure of surprise caused by the inputs and
Gerasimou et al. [2020] presented a metric for composing a
semantically diverse test set. Sun et al. [2018a] proposed the
first concolic testing approach for DNNs.

We now discuss studies that are close to ours. TensorFuzz
[Odena and Goodfellow, 2018] proposed the first CGF for
neural networks that aims to increase a novel coverage met-
ric. DeepHunter [Xie et al., 2018] is another work explor-
ing CGF for DNNs by leveraging techniques from software
fuzzing, such as power scheduling. Our work is different
from TensorFuzz and DeepHunter where random mutations
are applied on inputs whereas we employ Monte Carlo Tree
Search (MCTS) for applying mutations on inputs. Also, we
apply mutations on a small subset of features of a given input,
whereas they apply mutations on all features of a given input.
DeepSmartFuzzer is also similar to [Wicker et al., 2018] in
that both works employ Monte Carlo Tree Search. However,
the objective in [Wicker et al., 2018] is to find the nearest
adversarial example, whereas our objective is to increase the
value of a given coverage criterion.

Szegedy et al. [2013] first discovered the vulnerability of
DNNs to adversarial attacks. Since then, numerous white-
box and black-box adversarial attacks have been proposed.
The most popular attacks include FGSM [Goodfellow et al.,
2015], JSMA [Papernot et al., 2016], PGD [Madry et al.,
2017], and C&W [Carlini and Wagner, 2017].

3 Background
Coverage Criterion in Software A coverage criterion par-
titions the input space into equivalence classes [Ammann and
Offutt, 2016] and it is measured by dividing the number of
equivalence classes that are sampled by at least one input in
the test set to the number of all equivalence classes in the test
set. For example, statement coverage in software measures
the percentage of the statements in the program that are exe-
cuted with the given set of test inputs.

Coverage Guided Fuzzing Coverage Guided Fuzzing
(CGF) performs systematic mutations on inputs and produces
new test inputs to increase the number of covered cases for a
target coverage metric. A typical CGF process starts with se-
lecting a seed input from the seed pool, then continues with
mutating the selected seed a certain number of times. After
that, the program under test is run with the mutated seed. If
a mutated seed creates an increase in the number of covered
cases, CGF keeps the mutated seed in the seed pool.
Monte Carlo Tree Search (MCTS) Monte Carlo Tree
Search [Chaslot et al., 2008] is a search algorithm for deci-
sion processes such as game play. It represents games as trees
where each node has children for each possible action to be
taken. Each node of the game tree represents a particular state
in the game. On taking an action, one makes a transition from
a node to one of its children. MCTS algorithm aims to find
the most promising action in an arbitrary state of a game. In
other words, given an initial state, the objective is to find the
best sequence of actions to win the game.

MCTS process can be broken down into the following four
steps: Selection: Starting from the root node R, successively
select child nodes according to their potentials until a leaf
node L is reached. The potential of each child node is cal-
culated by using UCT (Upper Confidence Bound applied to
Trees) [Kocsis and Szepesvári, 2006; Chaslot et al., 2008].

UCT is defined as v + e×
√

lnN
n where v refers to the value

of the node, n is the visit count of the node, and N is the visit
count for the parent of the node. e is a hyperparameter deter-
mining exploration-exploitation trade-off. Expansion: Un-
less L is a terminal node (i.e. win/loss/draw), create at least
one child node C (i.e. any valid action from node L) and take
one of them. Simulation: play the game from node C by
picking moves randomly until reaching a terminal condition.
Backpropagation: propagate back the result of the play to
update values associated with the nodes on the path from C
to R. The path containing the nodes with the highest values
in each layer would be the optimal strategy in the game.

4 Method: DeepSmartFuzzer
Let T = {[X1, X2, ...], [Y1, Y2, ...]} be a test set where
(Xi, Yi) is an input-output pair of the ith test sample. Let
I be a set of inputs called a batch. Let I ′, I ′′, ..., I (n) be a
sequence of mutated batches of the original batch I such that:

I IM(r′,m′)−−−−−−−→ I ′ IM(r′′,m′′)−−−−−−−−→ I ′′... IM(r(n),m(n))−−−−−−−−→ I (n) (1)

where IM(r(n),m(n)) is the nth input mutation, r(n) and m(n)

are the region and mutation indexes, respectively. Also, let
Ibest ∈ {I ′, I ′′, ...} be the best batch that creates the greatest
amount of coverage increase.

4.1 Overview
DeepSmartFuzzer is an MCTS-based coverage-guided fuzzer
for DNNs. It can be classified as a grey-box testing method
since it uses coverage information which is related to the
internal states of a DNN model. Our method generates in-
puts that increase the current level of coverage formed by

Figure 1: Workflow of DeepSmartFuzzer for an iteration

the initial test set. The core idea of our approach is to em-
ploy reward-guided exploration and exploitation in order to
achieve high coverage scores. The workflow of the proposed
method is illustrated in Figure 1. It is composed of an input
chooser, a coverage criterion, an input mutator, and a muta-
tion selector, which is the essential part.

For each iteration, the input chooser chooses a batch, which
is a set of inputs I. Then, the mutation selector determines
the mutation (r′,m′) to be applied to the inputs. Note that,
applying one kind of mutation to all input features may be
too coarse because, for a given mutation, a subset of input
features may increase coverage while others may decrease
coverage. Our fuzzer takes a finer approach and applies mu-
tations to a subset of input features (i.e. regions) at each step.
The input mutator takes the selected batch I and the selected
mutation (r′,m′), where the selected mutation is applied to
the selected batch of inputs such that the mutated inputs I ′

are formed (I IM(r′,m′)−−−−−−−→ I ′). The mutated inputs are then
given to the coverage criterion to calculate the coverage of the
mutated inputs together with the test set. The coverage and
mutated inputs are given to the mutation selector such that it
could use the coverage and continue working with I ′ so that

new mutated inputs I ′′ are generated (I ′ IM(r′′,m′′)−−−−−−−−→ I ′′).
This process continues until a termination condition such as
exploration limit or mutation limit is reached. The best set of
mutated inputs Ibest is stored and updated in the meantime.
If there is an increase in coverage because of the mutated in-
puts Ibest, they are added to the test set. This concludes the
iteration for the batch I. We continue iterating with different
batches until a termination condition such as a target num-
ber of new inputs or timeout is reached. Now, we detail each
component.

4.2 Input Chooser
We use two types of input choosers for selecting inputs.
These are random input chooser and clustered random input
chooser. The random input chooser randomly samples a batch
of inputs using the uniform random distribution. The clus-
tered random input chooser samples similar inputs together.
It applies an off-the-shelf clustering algorithm. After clus-

tering, it selects a random cluster using the uniform random
distribution. Finally, it samples a random batch of inputs from
the selected cluster. We use sampling without replacement to
avoid same inputs in a batch since we apply the same muta-
tions to all inputs in the batch. In this work, we use k-means
clustering as the clustering algorithm.

4.3 Mutation Selector
The mutation selector takes a batch of inputs and sequentially
selects parameters region index r and mutation index m. The
selected mutations are sequentially applied to the selected re-
gions by the input mutator and a sequence of mutated batches
I ′, I ′′, ..., I (n-1), I (n) is generated. Note that I (n) contains all
the mutations up to that point. This formulation of the prob-
lem has a sequential nature. Therefore, we decided to model
the problem as a game, which consists of a sequence of ac-
tions and rewards related to the actions. We use a two-player
game model since two selections (one for region and one for
mutation) are made for each mutation.

Formulating the mutation selection as a two-player game
Our proposed mutation selector is a two-player game such
that Player I selects the region to be mutated, and Player II
selects the mutation to be made on the chosen region. Since
regions and mutations are enumerated, these are just integer
selection problems. The game continues as Players I and II
play iteratively so that multiple mutations could be applied
on top of each other and a sequence of mutated batches is
generated as described above. Region selection and mutation
selection are considered as separate actions. We call a tuple
of actions taken by Players I and II together as a complete
action (r,m).

Reward A naive reward for our problem is the coverage
increase for each action. We use this reward to guide the
search for mutations. In this study, the coverage increase cor-
responds to the difference between the coverage for the cur-
rent test set and the coverage obtained by adding a new batch
to the test set. Overall, the purpose of the mutation selector is
to find the best sequence of mutations that could result in the
greatest amount of coverage increase.

End of the game In order to avoid creating unrealistic in-
puts and consequently human intervention to eliminate un-
realistic inputs, we put constraints on mutations. Generally,
Lp norms are used for this purpose. These are defined as
||X ′

i − Xi||p < ε where X ′
i is the mutated input such that

the distance between mutated inputs and original inputs are
limited. In general form, let d(X ′

i, Xi) be a distance metric,
the game is over when d(X ′

i, Xi) < ε constraint is violated,
where d and ε are hyperparameters.

Searching We use Monte Carlo Tree Search (MCTS) in or-
der to exploit rewards and guide the search for mutations to-
wards rewarded mutations. For this purpose, MCTS searches
the game tree for the best mutations. The nodes in our game
tree correspond to region and mutation selections. We con-
tinuously update the batch of inputs Ibest that creates the best
coverage increase so that the batch is added to the test set
when MCTS is finished.

4.4 Input Mutator
The input mutator mutates the input according to the re-
gion index and mutation index selected by the muta-
tion selector. The availability of so many mutations
potentially makes the job of mutation selector harder.

1

0 10 20 31

10

20

31

2 3

4 5 6

7 8 9

Figure 2: Regions

Therefore, we come up with a
general input mutator for images.
It divides an image into local re-
gions and provides general image
mutations as mutation options for
each region. These general mu-
tations include, but are not lim-
ited to, brightness change, con-
trast change, and blur. When a
region r and a mutation m are
selected, it applies the selected
mutation to the selected region.
The number of regions and the set
of available mutations for regions

are hyperparameters for the input mutator. With appropri-
ate settings, we can obtain either a pixel-level mutator or
an image-level mutator or something in-between, which we
think is the best for practical reasons. We enumerate the re-
gions and mutations so that the mutation selector identifies
them by indexes. Figure 2 shows an example for the division
of input into regions. Our proposed input mutator induces a
bias towards locality since it applies mutations to regions of
an image. Therefore, it is a natural fit for image problems and
convolutional neural networks.

4.5 Algorithm
Algorithm 1 Algorithmic description of DeepSmartFuzzer

1: procedure DEEPSMARTFUZZER(T, tc0, tc1, tc2, tc3)
2: while not tc0 do
3: I = Input Chooser(T)
4: R = MCTS Node(I)
5: best cov, Ibest = 0, I
6: while not tc1 do
7: while not tc2 do
8: L = MCTS Selection(R)
9: C = MCTS Expansion(L)

10: I (n-1) = get batch corresponding to node(C)
11: r(n),m(n) = MCTS Simulation(C)
12: I (n) = Input Mutator(I (n-1), r(n),m(n))
13: if not tc3 then
14: cov inc = Coverage(T ∪ I (n)) - Coverage(T)
15: if cov inc > best cov then
16: best cov, Ibest = cov inc, I (n)

17: MCTS Backpropagation(C, cov inc)
18: R = select child(R)
19: if best cov > 0 then
20: T = T ∪ Ibest

21: return T

We describe our method more formally in Algorithm 1.
The while loop in line 2 refers to iterating until a termination
condition (tc0) that is a timeout or reaching a target number

of new inputs. In line 3, a batch of inputs I is sampled using
the input chooser. The root node R is created in line 4, and
variables to store the best mutated batch Ibest are initialized in
line 5. The while loop in line 6 refers to looping until a termi-
nation condition (tc1) that limits the search space by limiting
the number of levels in the search tree that the MCTS can
search. Next, the while loop in line 7 refers to iterating until
a termination condition (tc2) that determines the number of
times the subtree of the root node R will be explored. In line
8, MCTS Selection, which is selection of a path from the root
node R to a leaf node L using the potentials (calculated by
using UCT) of the nodes, is made and it results in a leaf node
L. Then, in line 9, MCTS Expansion is applied and it creates
a new child node C as a child of the leaf node L. In line 10,
the mutations formed by the path from the root node of the
game tree to the given node C are applied to the initial batch
I and it results in I (n-1). Basically, I (n-1) is the mutated batch
that is the result of MCTS Selection and Expansion. Then,
MCTS Simulation plays the game until a complete action so
that r(n) and m(n) are assigned to a region index and a mu-
tation index, respectively (line 11). Our MCTS Simulation
is different than the original MCTS Simulation. Instead of
playing the game randomly until the end, our MCTS Simu-
lation plays the game randomly until a complete action since
our game formulation produces a reward for every complete
action. The input mutator then mutates the batch I (n-1) ac-
cording to a region index r(n) and a mutation index m(n) so
that a new batch I (n) is created (line 12). Termination con-
dition (tc3) controls the rationality of the generated batch by
limiting the distance between the mutated batch I (n) and the
original batch I. If this new batch I (n) does not violate the
termination condition (tc3), then the mutated batch I (n) is
considered a candidate batch of test inputs (line 13-14). In
line 15, coverage increase is calculated from the difference
between the coverage of test set T together with the mutated
batch I (n) and the test set T . If this is the greatest coverage
increase for this batch I, the mutated batch I (n) is stored as
the best mutated batch Ibest (line 15-16). MCTS Backprop-
agation is applied from the new child node C with coverage
increase as reward (line 17). This concludes one iteration of
the while loop with tc2, and the algorithm continues looping
to explore the root node until tc2. When termination condi-
tion tc2 is reached, it sets the best child of root R as the new
root node (line 18). The best child is the node with the great-
est value, which is the average coverage increase (reward)
found on the paths (sequences of mutations) that contain the
node. After setting a child as the new root, an iteration of
the while loop with tc1 is completed, and the while loop con-
tinues iterating by working on the subtree of the child node
(now called as the root node R). After the while loop is com-
pletely finished, the best batch found Ibest is added to the test
set if it creates a coverage increase (line 19-20). Here, we
add the complete batch to the test set in order to avoid the
search for the effective inputs in the batch and thereby speed
up the process. This concludes a complete iteration of MCTS
on the batch I and the algorithm continues iterating with new
batches until termination condition tc0 is reached. When tc0
is reached, the final test set which includes the mutated inputs
found up to that point is returned (line 21).

mutation
17

region 0 region 8

mutation
0

mutation
29

... ...
...

...

... ...

... ...

... ...

... ...

region 4

mutation 16

mutation 4

region 5

(a) The game tree (b) The selected mutations on a seed input

Figure 3: Visualization of a snapshot when our method searching the mutation space for TFC and MNIST-LeNet5 where action columns
represents the potentials (the more brighter the more potential) of each enumerated action on the search tree

Figure 3 illustrates the algorithm in action as follows: it
selects a region (action) and a mutation (action) so that the
input mutator applies the mutation to the region, and then this
process is continued repeatedly while MCTS is searching the
game tree.
5 Experiments2

5.1 Setup
Datasets and DL Systems We evaluate DeepSmartFuzzer
on two popular publicly available datasets namely MNIST
[LeCun, 1998] and CIFAR10 [Krizhevsky and Hinton, 2009]
(referred to as CIFAR from now on). MNIST is a handwrit-
ten digit dataset with 60000 training and 10000 testing inputs.
Each input is a 28x28 pixel white and black image with a
class label from 0 to 9. CIFAR is a 3-channel colored image
dataset with 50000 training and 10000 testing samples. Each
input is a 3x32x32 image in ten different classes (e.g., plane,
ship, car). For the MNIST dataset, we study LeNet1, LeNet4,
and LeNet5 [LeCun et al., 1998] DNN architectures, which
are the three well-known and popular models in the literature.
For the CIFAR dataset, we make use of a suggested convolu-
tional neural network architecture [Wicker et al., 2018].

Compared Techniques and Coverage Criteria Bench-
marks We evaluate our tool by comparing its performance
with two existing CGF frameworks for deep learning systems.
The first tool, namely DeepHunter [Xie et al., 2018], aims to
achieve high coverage by randomly selecting a batch of in-
puts and applying random mutations on them. DeepHunter
also leverages various fuzzing techniques from software test-
ing, such as power scheduling. However, the tool is not pub-
licly available. Therefore we use our implementation of Dee-
pHunter in evaluation. The second tool, namely Tensorfuzz
[Odena and Goodfellow, 2018], uses the guidance of cover-
age to debug DNNs. For example, it finds numerical errors
and disagreements between neural networks and quantized
versions of those networks. Tensorfuzz code is publicly avail-
able, and we integrate it into our framework.

For an unbiased evaluation of DeepSmartFuzzer, we test
our tool on various coverage criteria. We use DeepXplore’s

2Source code: https://github.com/hasanferit/DeepSmartFuzzer

[Pei et al., 2017] neuron coverage (NC), DeepGauge’s [Ma
et al., 2018] k-multisection neuron coverage (KMN), neuron
boundary coverage (NBC), strong neuron activation coverage
(SNAC) and Tensorfuzz’s coverage (TFC).
Hyperparamters We set neuron activation threshold to
0.75 in NC and the number of sections k to 10000 in KMN,
respectively. For NBC and SNAC, we set as lower (upper)
bound the minimum (maximum) activation value encoun-
tered in the training set, respectively. These are the recom-
mended settings in the original studies. On the other hand, we
observed that the distance threshold used in the original Ten-
sorFuzz study was too small for MNIST and CIFAR models
such that every little mutation could increase the coverage.
Therefore, we tune the threshold of TFC for LeNet1, LeNet4,
LeNet5 and CIFAR CNN as 302, 132, 112 and 32, respec-
tively.

The number of regions, the set of mutations, and termina-
tion conditions (tc1, tc2, tc3) constitute the hyperparameters
of DeepSmartFuzzer. The number of regions is selected as
9, which corresponds to 3 × 3 division of an image. The
set of mutations is contrast change, brightness change, and
blur. The first termination conditions (tc1) is chosen to limit
MCTS from going down more than 8 levels deep in the game
tree. The second termination condition (tc2) limits the num-
ber of iterations on each root to 25. For the last termination
condition (tc3), we use the limitations that DeepHunter [Xie
et al., 2018] puts on the distance between mutated and seed
inputs to avoid unrealistic mutated inputs.

5.2 Results
Summary We aim to show that DeepSmartFuzzer is able
to generate good test inputs. First, we compare DeepSmart-
Fuzzer with DeepHunter and TensorFuzz by comparing the
coverage increases created by approximately 1000 new inputs
for each method in combination with different DNN models
and coverage criteria. Experimental results in Table 1 and 3
show that the inputs generated by our method result in the
greatest amount of coverage increase for all (DNN model,
coverage criterion) pairs except for a few. This suggests that
DeepSmartFuzzer creates better test inputs than DeepHunter
and TensorFuzz with regards to the coverage measurements.

https://github.com/hasanferit/DeepSmartFuzzer

Model - Coverage
/

CGF

MNIST
LeNet1
(NC)

MNIST
LeNet1
(KMN)

MNIST
LeNet1
(NBC)

MNIST
LeNet1
(SNAC)

MNIST
LeNet1
(TFC)

MNIST
LeNet4
(NC)

MNIST
LeNet4
(KMN)

MNIST
LeNet4
(NBC)

MNIST
LeNet4
(SNAC)

MNIST
LeNet4
(TFC)

DeepHunter 0 2.34 ± 0.03 % 35.42 ± 2.76 % 41.67 ± 4.17 % 29.00 ± 3.61 0 1.91 ± 0.04 % 13.15 ± 2.34 % 16.67 ± 0.81 % 20.00 ± 2.00
TensorFuzz 0 1.83 ± 0.23 % 0 0 0.33 ± 0.58 0 1.26 ± 0.05 % 0 0 0

DeepSmartFuzzer 0 2.91 ± 0.11 % 41.67 ± 4.77 % 42.36 ± 6.36 % 204.67 ± 8.50 1.41 ± 0.00 % 2.07 ± 0.14 % 11.50 ± 1.13 % 16.90 ± 3.07 % 64.33 ± 6.03
DeepSmartFuzzer(clustered) 0 2.88 ± 0.04 % 38.54 ± 0.00 % 39.58 ± 7.51 % 111.00 ± 14.53 1.41 ± 0.00 % 2.02 ± 0.07 % 11.50 ± 0.54 % 15.02 ± 2.15 % 53.33 ± 8.39

Table 1: Coverage increase achieved by each CGF for MNIST-LeNet1 and MNIST-LeNet4 models.

Model - Coverage
/

CGF

MNIST
LeNet1

(NC)

MNIST
LeNet1
(KMN)

MNIST
LeNet1
(NBC)

MNIST
LeNet1
(SNAC)

MNIST
LeNet1
(TFC)

MNIST
LeNet4
(NC)

MNIST
LeNet4
(KMN)

MNIST
LeNet4
(NBC)

MNIST
LeNet4
(SNAC)

MNIST
LeNet4
(TFC)

DeepHunter 0* 1051.00 ± 4.00 847.00 ± 159.74* 724.67 ± 180.17* 1029.67 ± 29.48 0* 1051.00 ± 4.00 1036.00 ± 12.49 1033.67 ± 27.50 1026.67 ± 33.50
TensorFuzz 0* 1023.33 ± 1.15 0* 0* 0.33 ± 0.58* 0* 768.00 ± 0.00* 0* 0* 0*

DeepSmartFuzzer 0* 1024.00 ± 0.00 1002.67 ± 36.95 533.33 ± 73.90* 1024.00 ± 0.00 128.00 ± 0.00* 981.33 ± 73.90† 1024.00 ± 0.00† 789.33 ± 195.52* 1024.00 ± 0.00
DeepSmartFuzzer(clustered) 0* 1024.00 ± 0.00 896.00 ± 128.00* 469.33 ± 97.76* 1024.00 ± 0.00 128.00 ± 0.00* 1024.00 ± 0.00† 1024.00 ± 0.00† 725.33 ± 97.76* 1024.00 ± 0.00

Table 2: Number of new inputs produced by each CGF for MNIST-LeNet1 and MNIST-LeNet4 models. *2 hours timeout †Extended
experiments with 6 hours limit for timeout

Model - Coverage
/

CGF

MNIST
LeNet5
(NC)

MNIST
LeNet5
(KMN)

MNIST
LeNet5
(NBC)

MNIST
LeNet5
(SNAC)

MNIST
LeNet5
(TFC)

CIFAR
CNN
(NC)

CIFAR
CNN

(KMN)

CIFAR
CNN

(NBC)

CIFAR
CNN

(SNAC)

CIFAR
CNN

(TFC)
DeepHunter 0.51 ± 0.58 % 1.77 ± 0.03 % 6.23 ± 0.55 % 8.40 ± 0.66 % 19.00 ± 1.73 1.99 ± 0.19 % 0.98 ± 0.03 % 2.39 ± 0.64 % 4.48 ± 0.90 % 16.00 ± 2.65
Tensorfuzz 0.13 ± 0.22 % 0.75 ± 0.06 % 0.13 ± 0.22 % 0 1.33 ± 0.58 0.93 ± 0.15 % 0.13 ± 0.01 % 1.54 ± 0.19 % 2.92 ± 0.34 % 0

DeepSmartFuzzer 2.16 ± 0.44 % 1.99 ± 0.01 % 7.82 ± 1.06 % 9.03 ± 1.10 % 76.33 ± 5.69 3.51 ± 0.48 % 1.38 ± 0.09 % 2.39 ± 1.23 % 4.91 ± 2.51 42.33 ± 4.51
DeepSmartFuzzer(clustered) 2.29 ± 0.38 % 1.92 ± 0.08 % 7.89 ± 0.72 % 8.40 ± 1.91 % 76.00 ± 8.89 3.51 ± 0.37 % 1.33 ± 0.06 % 3.83 ± 2.66 % 8.80 ± 7.11 48.67 ± 7.02

Table 3: Coverage increase achieved by each CGF for MNIST-LeNet5 and CIFAR-CNN models.

Model - Coverage
/

CGF

MNIST
LeNet5
(NC)

MNIST
LeNet5
(KMN)

MNIST
LeNet5
(NBC)

MNIST
LeNet5
(SNAC)

MNIST
LeNet5
(TFC)

CIFAR
CNN
(NC)

CIFAR
CNN

(KMN)

CIFAR
CNN

(NBC)

CIFAR
CNN

(SNAC)

CIFAR
CNN

(TFC)
DeepHunter 86.33 ± 96.81* 1051.00 ± 4.00 1021.00 ± 10.54 1021.67 ± 19.66 1034.00 ± 17.52 1047.00 ± 6.24 1035.67 ± 13.58 1031.67 ± 12.34 1049.00 ± 10.54 1042.67 ± 5.51
Tensorfuzz 0.33 ± 0.58* 448.00 ± 0.00* 0.67 ± 1.15* 0* 1.33 ± 0.58* 7.33 ± 1.15* 192.00 ± 0.00 21.00 ± 2.65 20.67 ± 3.21 0*

DeepSmartFuzzer 362.67 ± 73.90* 1024.00 ± 0.00† 1024.00 ± 0.00† 725.33 ± 36.95* 1024.00 ± 0.00 1024.00 ± 0.00 1024.00 ± 0.00† 320.00 ± 0.00 341.33 ± 36.95 1024.00 ± 0.00
DeepSmartFuzzer(clustered) 362.67 ± 73.90* 1024.00 ± 0.00 † 1024.00 ± 0.00† 682.67 ± 36.95* 1024.00 ± 0.00 1024.00 ± 0.00 1024.00 ± 0.00† 341.33 ± 36.95 341.33 ± 36.95 1024.00 ± 0.00

Table 4: Number of new inputs produced by each CGF for MNIST-LeNet5 and CIFAR-CNN models. *2 hours timeout †Extended experi-
ments with 6, 12, 24 hours limits for timeout

Figure 4 shows examples of mutated MNIST and CIFAR in-
puts created by DeepSmartFuzzer.

Figure 4: Example inputs generated by DeepSmartFuzzer

Comparison to DeepHunter and Tensorfuzz We focus
on the inputs generated by DeepSmartFuzzer, DeepHunter,
and Tensorfuzz. For experimental integrity, we make each
method generate approximately 1000 input samples. Only
the inputs which induce coverage increase are taken into ac-
count. We also put a time limit in order to avoid unending
cases resulting from being unable to find any coverage in-
crease for some (DNN model, coverage criteria) pairs. When
a method could not produce the target amount of inputs in
time, yet it creates some coverage increase such that it shows
more potential to be explored, the timeout limit is extended
so that they could reach 1000 inputs. This condition is not
applied to TensorFuzz since it generates inputs one by one,
and therefore, it could practically take days to reach 1000 in-
puts for some cases. The timeout is set to be 2 hours initially.
It is then gradually increased to 6, 12, and 24 hours to ex-
plore the full potential. Tables 1 and 3 show the amounts
of coverage increase produced by approximately 1000 gen-
erated input samples from each method with divergent set of
coverage criteria and DNN models for MNIST and CIFAR

datasets. In order to provide complete results, Tables 2 and 4
indicate exactly how many inputs are generated for each case.
All of these results are given as mean and standard deviation
of the population resulting from running the same experiment
three times with different random seeds.

For most of the cases, DeepSmartFuzzer is better than
the other two. Especially for the case of TFC, DeepSmart-
Fuzzer provides a substantial improvement over DeepHunter
and TensorFuzz. This might be related to TFC being a layer-
level coverage criterion, while the others are neuron-level
coverage criteria. Our solution gets better when model com-
plexity is increased. This is suggested by the increasing
performance gap between our method and the others. Fur-
thermore, DeepSmartFuzzer with clustering tends to be bet-
ter than naive DeepSmartFuzzer when the complexity of the
model is increased.

On the other hand, for a few cases, our approach fails to
provide an improvement. For example, in neuron coverage
(NC) with LeNet1 model case, we observe that all fuzzers fail
to generate any coverage-increasing input. This is because
when we cannot find any reward (i.e. coverage increase), our
MCTS solution is similar to a random search. However, we
believe this problem can be avoided with a well-designed re-
ward shaping, and this is left to future work. Also, for the case
of LeNet4 in combination with NBC, DeepHunter seems to
be better than ours. This may indicate a need for further hy-
perparameter tuning since it conflicts with the general trend.

In order to check the statistical significance of the results,

we apply one-tailed t-test. We check two hypotheses which
are whether DeepSmartFuzzer is better than Tensorfuzz and
whether DeepSmartFuzzer is better than DeepHunter in terms
of coverage increase. For the statistical comparisons, we use
all 60 experiments (with different models and different cover-
age criteria) for each CGF method as observations. The sig-
nificance threshold is set at .05. We find P<.001 for the for-
mer hypothesis and P=.007 for the latter hypothesis. There-
fore, we accept the hypotheses.

Overall, we conclude that DeepSmartFuzzer provides
a significant improvement over existing coverage-guided
fuzzers for DNNs.

6 Conclusion & Future Work
In this study, we introduce a novel Coverage Guided Fuzzing
(CGF) technique for DNNs that uses Monte Carlo Tree
Search (MCTS) to explore and exploit the coverage increase
patterns. We experimentally show that our method is better
than previous CGFs for DNNs in terms of satisfying subject
coverage criteria. Our results also show that MCTS methods
can be promising for better DNN testing. We use naive cov-
erage increase as reward. Therefore, experimentation with
reward shaping and different reinforcement learning methods
for this problem are left for future studies. Finally, we share
the source code regarding to our experiments and implemen-
tation publicly in order to provide a base for future studies.

Acknowledgements
This research was supported in part by Semiconductor Re-
search Corporation under task 2020-AH-2970.

References
[Ammann and Offutt, 2016] Paul Ammann and Jeff Offutt. Intro-

duction to software testing. Cambridge University Press, 2016.
[Carlini and Wagner, 2017] Nicholas Carlini and David Wagner.

Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (S&P), pages 39–57, 2017.

[Chaslot et al., 2008] Guillaume M JB Chaslot, Mark HM
Winands, H JAAP VAN DEN HERIK, Jos WHM Uiterwijk, and
Bruno Bouzy. Progressive strategies for monte-carlo tree search.
New Mathematics and Natural Computation, 4(03):343–357,
2008.

[Cireşan et al., 2012] Dan Cireşan, Ueli Meier, and Jürgen Schmid-
huber. Multi-column deep neural networks for image classifica-
tion. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3642–3649, 2012.

[Gerasimou et al., 2020] Simos Gerasimou, Hasan Ferit Eniser,
Alper Sen, and Alper Cakan. Importance-driven deep learning
system testing. In International Conference on Software Engi-
neering, ICSE, 2020.

[Goodfellow et al., 2015] Ian Goodfellow, Jonathon Shlens, and
Christian Szegedy. Explaining and harnessing adversarial exam-
ples. In International Conference on Learning Representations
(ICLR), 2015.

[Hinton et al., 2012] G. Hinton, L. Deng, D. Yu, G. E. Dahl, et al.
Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[Kim et al., 2019] Jinhan Kim, Robert Feldt, and Shin Yoo. Guid-
ing deep learning system testing using surprise adequacy. In Pro-
ceedings of the 41th International Conference on Software Engi-
neering, ICSE, 2019.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In 17th
European Conference on Machine Learning, ECML’06, pages
282–293. Springer-Verlag, 2006.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geoffrey
Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua Bengio,
Patrick Haffner, et al. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[LeCun, 1998] Yann LeCun. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist, 1998.

[Ma et al., 2018] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, et al. Deep-
Gauge: Multi-granularity testing criteria for deep learning sys-
tems. In IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2018.

[Madry et al., 2017] Aleksander Madry, Aleksandar Makelov, Lud-
wig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[Odena and Goodfellow, 2018] A. Odena and I. Goodfellow. Ten-
sorfuzz: Debugging neural networks with coverage-guided
fuzzing. In arXiv preprint arXiv:1807.10875, 2018.

[Papernot et al., 2016] Nicolas Papernot, Patrick McDaniel,
Somesh Jha, Matt Fredrikson, et al. The limitations of deep
learning in adversarial settings. In International Symposium on
Security and Privacy (S&P), pages 372–387, 2016.

[Pei et al., 2017] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman
Jana. DeepXplore: Automated whitebox testing of deep learning
systems. In Symposium on Operating Systems Principles (SOSP),
pages 1–18, 2017.

[Sun et al., 2018a] Y. Sun, M. Wu, W. Ruan, X. Huang, et al. Con-
colic testing for deep neural networks. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software En-
gineering (ASE), pages 109–119, 2018.

[Sun et al., 2018b] Youcheng Sun, Xiaowei Huang, Daniel Kroen-
ing, James Sharp, Matthew Hill, and Rob Ashmore. Testing deep
neural networks, 2018.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V.
Le. Sequence to sequence learning with neural networks. In
International Conference on Neural Information Processing Sys-
tems, pages 3104–3112, 2014.

[Szegedy et al., 2013] Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, et al. Intriguing properties of neural net-
works. arXiv preprint arXiv:1312.6199, 2013.

[Wicker et al., 2018] Matthew Wicker, Xiaowei Huang, and Marta
Kwiatkowska. Feature-guided black-box safety testing of deep
neural networks. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS),
pages 408–426, 2018.

[Xie et al., 2018] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, et al. Deep-
hunter: Hunting deep neural network defects via coverage-guided
fuzzing. In arXiv preprint arXiv:1809.01266, 2018.

	Introduction
	Related Work
	Background
	Method: DeepSmartFuzzer
	Overview
	Input Chooser
	Mutation Selector
	Input Mutator
	Algorithm

	ExperimentsSource code: https://github.com/hasanferit/DeepSmartFuzzer
	Setup
	Results

	Conclusion & Future Work

