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Abstract
A key factor for ensuring safety in Autonomous Ve-
hicles (AVs) is to avoid any abnormal behaviors
under undesirable and unpredicted circumstances.
As AVs increasingly rely on Deep Neural Net-
works (DNNs) to perform safety-critical tasks, dif-
ferent methods for uncertainty quantification have
recently been proposed to measure the inevitable
source of errors in data and models. However, un-
certainty quantification in DNNs is still a challeng-
ing task. These methods require a higher compu-
tational load, a higher memory footprint, and in-
troduce extra latency, which can be prohibitive in
safety-critical applications. In this paper, we pro-
vide a brief and comparative survey of methods for
uncertainty quantification in DNNs along with ex-
isting metrics to evaluate uncertainty predictions.
We are particularly interested in understanding the
advantages and downsides of each method for spe-
cific AV tasks and types of uncertainty sources.

1 Introduction
In the last decade, Deep Neural Networks (DNNs) have wit-
nessed great advances in real-world applications like Au-
tonomous Vehicles (AVs) to perform complex tasks such as
object detection and tracking or vehicle control. Despite
substantial performance improvements introduced by DNNs,
they still have significant safety shortcomings due to their
complexity, opacity and lack of interpretability [McAllister
et al., 2017]. In particular, DNNs are brittle to operational
domain shift and even small data corruption or perturbations
[Kuutti et al., 2020]. This impedes ensuring the reliabil-
ity of the DNNs models, which is a precondition for safety-
critical systems to ensure compliance with automotive indus-
try safety standards and avoid jeopardizing human lives.

A concrete safety problem is to detect abnormal situations
under uncertain environment conditions and DNN-specific
unpredictability. These situations are difficult to analyze dur-
ing system development phases, in a way that they can be
properly mitigated at a real-time scale. Indeed, although a
DNN model achieves great performance in a validation set
from its operation environment, it is currently impossible

to test and provide the same performance guarantees in all
the possible environment configurations the system could en-
counter in the real world [Kuutti et al., 2020]. A common
practice to overcome this problem is to use runtime monitor-
ing of DNN components, so that safety can be ensured even if
the component was not fully validated at design time [Henne
et al., 2020; Koopman et al., 2019]. A central aspect to enable
DNN monitoring is to provide a runtime treatment of uncer-
tainties associated with DNN’s predictions [McAllister et al.,
2017; Koopman et al., 2019].

In this paper, we review common uncertainty estimation
methods for DNNs and compare their performance and ben-
efits for different AV tasks. These methods offer a potential
solution for runtime DNN confidence prediction and detec-
tion of Out-of-Distribution (OOD) samples, since prediction
probability scores in DNNs do not provide a true represen-
tation of uncertainty [Mohseni et al., 2019]. However, these
methods still demand a high computational load, incorporate
extra latency, and require a larger memory footprint. We com-
pare these factors since they can represent a major impedi-
ment in safety-critical applications with tight time constraints
and limited computation hardware. We also briefly focus on
surveying uncertainty metrics that evaluate the performance
of quantification methods, as another critical factor to ensure
safety in AV systems.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the sources of uncertainty in deep learning
for AVs. Section 3 presents a comparison of recent works
in AV tasks that include uncertainty estimation methods for
DNNs. It provides a brief review of common uncertainty es-
timation methods in deep learning as well as metrics for pre-
dictive uncertainty evaluation in classification and regression
tasks. Section 4 discusses the open challenges and possible
directions for future work.

2 Background
2.1 Sources of Uncertainty in Deep Learning for

Autonomous Vehicles
Autonomous vehicles have to deal with dynamic, non-
stationary and highly unpredictable operational environ-
ments. Taking into account all the details from the opera-
tional environment at design time is an intractable task. In-
stead, the operational environment is constrained in a way



that it considers only a subset of all possible situations that
the system can encounter in operation. This process is known
as Operational Design Domain (ODD) adoption [Koopman
and Fratrik, 2019], and safety requirements are built on the
top of the ODD specification.

Given the constrained operational environment within sys-
tem ODD, ensuring safety in an AV requires the identification
of unfamiliar contexts by modeling AV’s uncertainty [McAl-
lister et al., 2017]. However, there are many factors, not
only related to the environment, that affect the system per-
formance by introducing some degree of uncertainty. [Czar-
necki and Salay, 2018] identify a set of factors that contribute
to uncertainty in the perception function in an AV, and in this
manner affect its performance. From this set, we take spe-
cial attention to sensor properties, model uncertainty, situa-
tion and scenario coverage, and operational domain uncer-
tainty factors. In the context of DNNs, the first two fac-
tors can be modeled by using uncertainty estimation methods,
while the last two correspond to some degree of dataset shift
(i.e. breaking the independent and identically distributed as-
sumption between training and testing data.) and Out-of-
Distribution (OOD) samples [Quionero-Candela et al., 2009;
Mohseni et al., 2019].

Sensor properties like range, resolution, noise characteris-
tics, and calibration can influence the amount of information
in the samples delivered to a machine learning model during
training or testing. In consequence, the effect of these prop-
erties are captured as noise and ambiguities inherent to the
obtained samples. This type of noise in the data is known as
Aleatoric uncertainty, and represents the incapability of com-
pletely sensing all the details of the environment [Kendall
and Gal, 2017; Lee et al., 2019b; Gustafsson et al., 2019].
Aleatoric uncertainty can be further further classified into ho-
moscedastic uncertainty (uncertainty that remains constant
for different samples), and heteroscedastic uncertainty (un-
certainty that can vary between samples).

Model uncertainty is often referred to as Epistemic uncer-
tainty, and accounts for uncertainty in the model parameters.
This type of uncertainty captures the ignorance of the model
as a consequence of a dataset that does not represent the ODD
well, or that is not sufficiently large [Kendall and Gal, 2017;
Lee et al., 2019b]. Epistemic uncertainty is expected to
increase in unknown situations (e.g. different environment
ODD conditions such as weather or lightning), and can be
explained away by incorporating more data.

Situation and scenario coverage is related to the degree in
which situations and scenarios from an ODD are reflected in
training and operation stages; while operational domain un-
certainty refers to a discrepancy between ODD situations and
scenarios present at training and those encountered at oper-
ation (e.g. scenarios from two different ODDs) [Czarnecki
and Salay, 2018]. In both cases, uncertainty can be reduced
by incorporating more data, or by adjusting the ODD spec-
ification. However, it is extremely important to detect and
discover OOD samples (i.e. outliers), especially those that
have not been seen before, since those can lead to highly con-
fident predictions that are wrong, i.e., the unknown-unknowns
[Bansal and Weld, 2018].

In a similar fashion as the cases presented before, auto-
motive industry standard ISO/PAS 21448 or SOTIF (Safety
Of The Intended Functionality) [ISO, 2019], provides a pro-
cess to identify unknown and potentially unsafe scenarios to
minimize the risk by recognizing the performance limitations
from sensors, algorithms, or user misuse. Unsafe scenarios
can be further classified into unsafe-known (e.g out of ODD
samples) or unsafe-unknown (e.g. OOD samples). Once an
unknown-unsafe scenario or situation is identified, it becomes
a known-unsafe scenario that can be mitigated at design time
[Rau et al., ; Mohseni et al., 2019].

2.2 Uncertainty Estimation Methods for DNNs
In recent years, many probabilistic deep learning methods
have been proposed to obtain an uncertainty measure from
an approximation to the (highly multi-modal) predictive dis-
tribution, as well as methods for calibrating the outputs of
DNNs. In general, there are two approaches for DNN predic-
tive uncertainty calculation: sampling-based and sampling-
free methods. Sampling-based methods rely on taking multi-
ple predictive samples based on the same input to get the esti-
mator that will be associated with uncertainty. Sampling-free
methods require one single predictive output. These methods
are further discussed in Section 3.

Neural Network Calibration
Confidence calibration represents the degree to which a
model’s predicted probability estimates the true correctness
likelihood [Guo et al., 2017]. Under ideal circumstances, we
expect that the normalized outputs from a DNN (i.e softmax
outputs) correspond to the true correctness likelihood [Guo
et al., 2017]. From a frequentist perspective, this can be
viewed as a discrepancy measure between local confidence
(or uncertainty) predictions and the expected performance in
the long-run [Hubschneider et al., 2019; Lakshminarayanan
et al., 2017]. For example, we expect that a class predicted
with probability p is correct p% of the time, i.e. from 100
samples predicted with confidence 0.9, we expect 90 cor-
rect predictions. DDNs can be calibrated by using Temper-
ature Scaling, a simple post-processing technique [Guo et
al., 2017], or more recently, Dirichelt calibration [Kull et
al., 2019]. For a regression setting, [Kuleshov et al., 2018;
Hubschneider et al., 2019] formalize the calibration notion
for continuous variables, in which a p% confidence interval
should contain the true outcome p% of the time.

Despite the improvements achieved with calibration meth-
ods, they can not be seen as a complete solution for uncer-
tainty estimation problem, since calibration is performed rel-
ative to a validation dataset [Kull et al., 2019; Ashukha et al.,
2020] (i.e., calibration methods rely on in-distribution sam-
ples to learn a calibration map). In the presence of OOD
samples, a model is no longer calibrated. This limits the con-
tribution of calibration techniques to scenarios where huge
training datasets are available.



3 Comparison of Uncertainty Estimation
Methods in AV Domain

In this section, we compare and analyze some common uncer-
tainty estimation methods in terms of out-of-the-box calibra-
tion in the predictions (i.e. without a prior calibration), com-
putational budget, memory footprint, and required changes in
the DNN for applying each method (architecture, loss func-
tion, and others). We have chosen the most representative
works to the best of our knowledge in each application. Some
of the listed works introduce improvements by performing
combinations between other methods. This is summarized in
Table 1.

3.1 Methods Limited to Aleatoric Uncertainty
The first four methods listed in Table 1 exclusively deal with
aleatoric uncertainty. In classification tasks, uncertainty is
usually represented by normalized logits at the output layer
(e.g. softmax output) which can be interpreted as a proba-
bility distribution related to aleatoric uncertainty [Gustafsson
et al., 2019]. Unfortunately, normalized outputs as proba-
bility distributions fail to capture model uncertainty and this
very often results in overconfident predictions that are wrong
[Guo et al., 2017], especially in the presence of dataset-shift.
To overcome the problems of softmax, [Gast and Roth, 2018]
propose to use a Dirichlet distribution instead.

In a regression configuration, deep learning models do not
have an uncertainty representation by default. The outputs of
a DNN are intended to parameterize a probability distribution
(e.g., Gaussian, Laplace) to obtain a probabilistic representa-
tion. This modification of the architecture allows DNNs to
learn aleatoric uncertainty from the data itself by using thes
heteroscedastic loss and maximum likelihood [Kendall and
Gal, 2017; Ilg et al., 2018]. Similarly, in the heteroscedastic
version of the classification, [Kendall and Gal, 2017] place
a Gaussian distribution over the output logits (i.e., each logit
with its respective variance), before the softmax layer is ap-
plied. An alternative approach replaces the input, output and
activation functions of a DNN with probability distributions
[Gast and Roth, 2018]. This method allows the propagation
of a fixed uncertainty at the input to the output of the DNN
employing Assumed Density Filtering (ADF).

3.2 Bayesian Neural Networks
Bayesian Neural Networks (BNNs), aim to learn a distribu-
tion over the weights instead of point estimates. In this way,
we look for the posterior distribution of the weights given the
data p(w|D), by applying Bayes’ theorem from the data like-
lihood and a chosen prior distribution over the weights p(w):

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)dw

(1)

Given the predictive posterior distribution p(w|D), we ob-
tain the predictive posterior distribution for a new input x∗
by marginalizing over the model parameters:

p(y∗|x∗,D) =

∫
p(y∗|x∗,w)p(w|D)dw (2)

Instead of relying on only one configuration of the weights,
we use every possible configuration of the weights (all possi-
ble models) weighted by the posterior on the parameters, to
make a prediction, i.e. p(y∗|x∗,D) = Ep(w|D)[p(y

∗|x∗,w)].
This represents the Bayesian Model Average (BMA) and ac-
counts for epistemic uncertainty [Wilson and Izmailov, 2020;
Gal, 2016; Blundell et al., 2015].

Unfortunately, the integrals from (1) and (2) are intractable.
Thus, we must build a distribution that approximates the true
posterior distribution on the weights, q(w) ≈ p(w|D). Two
main paradigms exist to build q(w): Markov Chain Monte
Carlo (MCMC) and Variational Inference (VI) methods. In
the former, the gold standard is Hamiltonian Monte Carlo
(HMC), and other methods like Stochastic Gradient MCMC
(SG-MCMC) have been explored. However, MCMC meth-
ods are in general hard to scale to large DNNs due to the high-
dimensional and multi-modal posterior distribution [Gustafs-
son et al., 2019]. In the latter case, VI methods approxi-
mate the posterior over the weights by approximating a sim-
pler distribution qφ(w) (e.g. a gaussian) parameterized by φ.
The parameters of qφ(w) are found by minimizing the KL-
divergence to p(w|D).

A particular scalable and easy to implement sample-based
method for approximate VI is Monte Carlo Dropout (MCD)
[Gal and Ghahramani, 2016]. In this method, dropout reg-
ularization is also applied at test time, so that qφ(w) is a
Bernoulli distribution. Dropout is only performed in some
of the deeper layers of the DNN to model better high-level
features and to avoid slow training [Mukhoti and Gal, 2018;
Kendall et al., 2015]. Dropout probabilities can be set man-
ually, or the network can tune dropout rates during training
[Gal et al., 2017].

All the MCD-related methods listed in Table 1 refer to this
approximation of BNNs. It can be noted from the perfor-
mance comparison criteria, that the need to take multiple for-
ward passes (output samples) for the same input to approxi-
mate the distribution from Equation 2 represents a major im-
pediment to safety-critical applications with tight time con-
straints and limited computation hardware.

To get a representation of both types of uncertainty
(aleatoric and epistemic), the methods presented in Section
3.1 have been used in combination with MCD. For example,
in a regression configuration, a set of T samples are taken
from the predictions of a DNN that parameterize a distri-
bution in its output: {ŷt, σ̂t}Tt=1. However, since aleatoric
uncertainty is learned from the data itself (by using the het-
eroscedastic loss), this approach could produce wrong uncer-
tainty estimations in samples that include a higher level of
uncertainty than that observed during training. Another ap-
proach presented in [Loquercio et al., 2020], applies MCD to
take samples from a DNN where the input, output and acti-
vation functions are replaced by probability distributions ac-
cording to [Gast and Roth, 2018]. This method permits un-
certainty propagation at the input to the output of the DNN
using ADF (e.g., sensor noise can be propagated to the output
of the DNNs). This is an appealing method for AV applica-
tions where sensor properties are commonly known. Inter-
estingly, the authors show that this method can be applied to
trained DNNs and is architecture agnostic.
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3.3 Deep Ensembles
A Deep Ensemble (DE) is another sample-based method, in
which M DNNs are trained to obtain the predictive distri-
bution p(y|x) [Lakshminarayanan et al., 2017]. Each DNN
learns a set of parameters w that are point estimates, start-
ing for different random initialization and repeating the min-
imization M times. In an ensemble, predictions are aver-
aged and can be considered as a mixture model that is equally
weighted:

p(y|x) =
1

M

M∑
i=1

p(y|x, ŵi
), {ŵ(i)}Mi=1 (3)

For classification, equation (3) corresponds to an aver-
age of the softmax probabilities. For regression, the out-
puts that parameterize a probability distribution are averaged
to represent the mean and variance of the mixture. In this
manner, both types of uncertainty (aleatoric and epistemic)
can be easily captured. Although DE is considered a non-
Bayesian method, expression (3) represents an approxima-
tion of (2) since {ŵ(i)}Mi=1 can be seen as samples taken
from distribution that approximates the true posterior, by ex-
ploring different modes of from p(w|D) [Fort et al., 2019;
Wilson and Izmailov, 2020].

As presented in Table 1, the DE method tends to outper-
form approximate Bayesian inference methods like MCD, for
both, uncertainty estimates and accuracy [Gustafsson et al.,
2019]. A recent work from [Snoek et al., 2019] also shows,
that DE is more robust to dataset shift. These works suggest
that DE should be considered as the new standard method for
predictive distributions and uncertainty estimation. However,
DE has some drawbacks, especially if the target application
is a safety-critical application. DE requires a higher com-
putational load and a larger memory footprint, as shown in
Table 1. For the training and testing stage, the number of pa-
rameters, and the inference times scale linearly with M . To
mitigate this problem, [Osband et al., 2016] propose a fused
version of ensembles with multiple heads. All the heads share
the convolutional layers (feature extractors) and each head is
trained using boostrap samples.

3.4 Mixture Density Networks
Mixture Density Networks (MDN) [Bishop, 1994], is a
sample-free method for regression tasks, where the aim is to
train a DNN that predicts the parameters of a Gaussian Mix-
ture Model (GMM) given an input x. A GMM is formed by a
weighted sum of K Gaussians, to model the conditional dis-
tribution:

p(y|x) =

K∑
i=1

πi(x)N (y|µi(x),Σi(x)) (4)

where πi(x), µi(x),Σi(x) represent the set of parameters of
the GMM as a function of the input x for K mixtures. For
training, Negative Log-likelihood (NLL) is used as loss func-
tion.

By using the law of total variance, [Choi et al., 2018] for-
malized the acquisition of aleatoric and epistemic uncertianty
in MDNs. As a first step, the expectation of the GMM is

obtained as a combination of the mixture components in a
weighted sum: E[y|x] =

∑K
i=1 πi(x)µi(x). The predicted

variance is composed of the weighted sum of the variances
and the weighted variances of the means:

V[y|x] =
K∑
i=1

πi(x)Σi(x) +
K∑
i

πi(x)

∥∥∥∥∥µi(x)−
K∑
i

πi(x)µi(x)

∥∥∥∥∥
2

(5)

where the first term represents the aleatoric uncertainty and
the second term represents the epistemic uncertainty. We re-
fer the reader to [Choi et al., 2018] for more details about
uncertainty acquisition in MDNs.

As pointed out in Table 1, the sampling-free nature of this
method reduces the computation load, memory footprint, and
permits complex distribution modeling with respect to the
methods described before. These characteristics are attractive
for real-time applications. However, MDNs suffer from nu-
merical instability for high dimensional problems and mode
collapse when using regularization techniques [Makansi et
al., 2019].

3.5 Quality Metrics for Uncertainty Estimation
In this section, we discuss common metrics for evaluating the
quality of uncertainty estimation.

Classification Metrics. Different methods for uncertainty
estimation exist for classification tasks. Variation Ratio and
information metrics such as Predictive Entropy, Mutual In-
formation, can be used in classification settings to represent
uncertainty [Gal, 2016]. Variation ratio is a measure of dis-
persion; mutual information captures model confidence, and
predictive entropy accounts for epistemic and aleatoric un-
certainty [Mukhoti and Gal, 2018; Michelmore et al., 2018;
Phan et al., 2019]. [Mukhoti and Gal, 2018] propose specific
performance metrics for semantic segmentation to evaluate
Bayesian models. Since there is no ground-truth for uncer-
tainty estimation, [Snoek et al., 2019; Lakshminarayanan et
al., 2017] argue that proper scoring rules are NLL and Brier
score. NLL depends on predictive uncertainty and is com-
monly evaluated in a held-out set, however, it can overesti-
mate tail probabilities; whereas Brier-score measures the ac-
curacy of predictive probabilities by a sum of squared differ-
ences between the predicted probability vector and the target,
nonetheless, this score is prone to avoid capturing infrequent
events. Other evaluation metrics independent of score val-
ues are: the Area Under the Receiver Operating Characteris-
tic (AUROC), Area Under Precision Recall Curve (AUPRC),
and Area Under Risk-Coverage (AURC) [Hendrycks and
Gimpel, 2016; Ding et al., 2019].

Regression Metrics. Similarly, in regression tasks, NLL
is a proper scoring rule for a likelihood that follows Gaus-
sian distribution [Lakshminarayanan et al., 2017; Kendall and
Gal, 2017]. Furthermore, [Ilg et al., 2018] introduces a rel-
ative measure for uncertainty estimation, the Area Under the
Sparsification Error (AUSE) curve, that measures the differ-
ence between the dispersion of predictions (affected by pre-
dictive uncertainty), and a oracle in terms of true prediction
error, e.g. Root Mean Squared Error (RMSE) [Gustafsson et
al., 2019].



Calibration Metrics. For classification tasks, common
quality metrics are Expected Calibration Error (ECE) and
Maximum Calibration Error (MCE) [Guo et al., 2017]. The
former measures the difference between expected accuracy
and expected confidence; the latter identifies the largest dis-
crepancy between accuracy and confidence, which is of par-
ticular interest in safety-critical applications. For a regression
configuration, [Kuleshov et al., 2018] use calibration error as
a metric that represents the sum of weighted squared differ-
ences between the expected and observed (empirical) confi-
dence levels; correspondingly in [Gustafsson et al., 2019], the
authors propose to use the Area Under the Calibration Error
curve (AUCE) as an absolute measure of uncertainty. The
before-mentioned authors use reliability diagrams (i.e. cali-
bration plots) to get a visual representation of model calibra-
tion. Regardless of drawbacks with OOD samples, calibra-
tion plots and measures are used extensively to compare the
predictive quality of other uncertainty estimation methods.

3.6 Considerations per AV Task Type
In the context of AVs, for (end-to-end) steering angle pre-
diction, a broad variety of uncertainty estimation methods
have been applied. In some works only epistemic uncer-
tainty was captured by using MCD [Michelmore et al., 2018;
Michelmore et al., 2019]. However, usually both types of un-
certainty are captured [Lee et al., 2019b; Lee et al., 2019c;
Lee et al., 2019a] by using the method proposed by [Kendall
and Gal, 2017], or by using DE, boostrap ensembles, or
MDNs. The calibration plots presented in [Hubschneider et
al., 2019] show that MCD has better out-of-the-box calibra-
tion than bootstrap ensembles or MDNs; the last two meth-
ods are overconfident in their predictions. In this particu-
lar task, safety mechanisms have been proposed when un-
certainty estimations surpass a given or learned threshold in
order to improve vehicle safety [Michelmore et al., 2018;
Michelmore et al., 2019; Lee et al., 2019b].

Under the modular pipeline paradigm for AV control, prob-
abilistic modeling has mainly been applied to perception
tasks like object detection from 3D Lidar, semantic segmenta-
tion and depth estimation. For 3D object detection from Lidar
point-clouds, [Feng et al., 2018] estimate aleatoric and epis-
temic uncertainty using the methods proposed by [Kendall
and Gal, 2017]. However, epistemic uncertainty estimation
with MCD introduces a high computational cost. A later
work from [Feng et al., 2019b] leverages aleatoric uncertain-
ties to greatly improve the performance and reduce the com-
putational load from MCD. In [Feng et al., 2019a] the au-
thors show that predictions for classification and regression
are miscalibrated, and propose methods to fix calibration of
DNNs and produce better uncertainty estimates.

For semantic segmentation, [Phan et al., 2019; Mukhoti
and Gal, 2018; Gustafsson et al., 2019] model aleatoric un-
certainty from the softmax output, and epistemic uncertainty
by using MCD or ensembles. Common uncertainty metrics
in this case are predictive entropy and mutual information
[Mukhoti and Gal, 2018]. For Depth estimation, [Gustafsson
et al., 2019] compares DE with the heteroscedastic regression
in combination with MCD [Kendall and Gal, 2017]. In both
previous tasks (semantic segmentation and depth estimation)

DE achieves better performance and calibration than MCD
variants [Gustafsson et al., 2019]. However, in DE the com-
putational cost at training and testing grows linearly with the
number of ensembles. Similarly for traffic sign recognition,
DE exhibit the best-calibrated outputs, but in this case, MCD
in combination with softmax also produces well-calibrated
outputs close to that from DE [Henne et al., 2020].

For optical flow, [Gast and Roth, 2018] capture aleatoric
uncertainty by replacing the input, output and activation func-
tions with probability distributions. This method allows prop-
agating a fixed value of uncertainty at the input to the output
of the DNN. [Ilg et al., 2018] present an alternative approach,
where DE and bootstrap ensembles were used to obtain the
predictive uncertainty.

For future prediction, [Makansi et al., 2019] propose an
improvement to MDNs to predict the multi-modal distribu-
tion of positions of a vehicle in the future. This method
presents two stages: a sampling and a fitting network. The
former network receives the current position of the vehicle as
an input and outputs a fixed number of hypotheses for future
positions. The latter network fits a mixture distribution to the
hypothesis estimated in the first network. This improvement
helps to avoid mode collapse in MDNs, however, high dimen-
sional outputs remain challenging for this approach.

4 Conclusions
We presented a comparative survey for uncertainty estima-
tion methods for both, classification and regression tasks, in
the AV domain. We also provide a general comparative anal-
ysis of these methods. From this analysis we can see that DE
has become a gold-standard for uncertainty quantification in
many AV tasks thanks to its high-quality uncertainty predic-
tions and its robustness to OOD samples. However, the high
computational load and large memory footprint, can hinder its
use in safety-critical applications that have hardware limita-
tions or tight time-constraints. Here, sampling-free methods
are an interesting avenue for future research. New robust (to
OOD) and lightweight approaches should be explored in the
AV domain, to produce good-quality uncertainty estimates.
We also observed that predictions from these methods are un-
calibrated (overconfident or underconfident) and are usually
applied to classification tasks. We encourage the application
of calibration methods also for regression tasks by using the
methods proposed by [Kuleshov et al., 2018] instead of lim-
iting the assessment of predictions with only reliability di-
agrams. We also suggest to study and compare uncertainty
estimation methods under dataset-shift conditions to assess
their robustness. For future work, we plan to incorporate un-
certainty information into the Responsability-Sensitive Safety
model [Shalev-Shwartz et al., 2017]. This generalizes the ap-
proach from [Salay et al., 2020] by considering component
uncertainty from different AV subsystems and propagating it
through them. These subsystems could include DNNs e.g.
for planning and control.
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