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Abstract

Recent machine learning models are highly sensitive to adversarial input
perturbation. That is, an attacker may easily mislead a well-performing im-
age classification system by altering some pixels. However, proving that a
network will have correct output when changing some regions of the images,
is quite challenging. Because of this, only a few works targeted this problem.
Although there are an increasing number of studies on this field, reliable ro-
bustness evaluation is still an open issue. In this work, we will attempt to
contribute in this direction. We will present new interval arithmetic based
algorithms to provide adversarial example free image patches for trained ar-
tificial neural networks.
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1. Introduction

One of the hottest topics in present artificial intelligence research is to understand
the phenomenon of adversarial examples for machine learning techniques applying
artificial neural networks [7, 15]. The typical such image classification problem
is the following. After the proper training of the network, there exist pictures
surprisingly similar to the positive sample images that result in a wrong denial
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decision. As an illustration of the problem, see some real life images of car licence
plates on Figure 1, that could not be detected correctly.

Figure 1: Real life examples with car licence plate number classi-
fication problems

Using adversarial examples generated by existing attack algorithms like those
in [11, 4, 13], an offending driver can easily prevent the system to identify him.
Even in black box cases, i.e. when the attacker has no access to model parameters,
the attack can be successful [12]. This makes it difficult to apply these state-of-
the-art techniques in any safety critical settings. One might naively use attack
algorithms for evaluating robustness. However, as show in [4], robustness against
some attacks does not mean that the network is robust. Later, stronger attacks
may be developed, which will be able to fool the network. A certified evaluation
may end this arms race. Further, it motivates to develop reliable methods for
evaluating neural networks.

In this paper we present our first results on implementing an interval arithmetic
based reliable algorithm to describe adversarial example free zones on an image for
trained artificial neural networks.

2. Verified computation

There are already many available shocking results regarding adversarial examples
for artificial neural networks (see e.g. those in [8, 13, 18]). Also, many approximate
procedures are suggested for e.g. locating the nearest adversarial example to a
given correctly accepted image. On the other hand, we do not know about existing
verified implemented techniques being capable of providing adversarial example free
zones. Obviously there are approaches in this direction [6, 10, 16, 17]. This latter
feature is important for mathematically correct statements, especially on a field,
where the expected behavior of a computational method differs sometimes from the
anticipated one. Interval arithmetic based verified numerical calculations are the
proper tool for handling both rounding errors and their consequences, and also for
proving statements on positive measure sets of high dimension. We applied interval
methods to prove that the damped forced pendulum is chaotic [2], we proved most
of the Wright conjecture on a delayed differential equation [3], and verified new
optimal circle packing instances [14].

The set theoretical definition of interval arithmetic is:

𝐴 ∘𝐵 = {𝑎 ∘ 𝑏 | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}, 𝐴,𝐵 ∈ I,

where I is the set of compact intervals [𝑖, 𝑗], where 𝑖, 𝑗 ∈ R and 𝑖 ≤ 𝑗.
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The arithmetic definition is:

[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎+ 𝑐, 𝑏+ 𝑑],

[𝑎, 𝑏]− [𝑐, 𝑑] = [𝑎− 𝑑, 𝑏− 𝑐],
[𝑎, 𝑏] · [𝑐, 𝑑] = [min(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑),max(𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑)],

[𝑎, 𝑏]/[𝑐, 𝑑] = [𝑎, 𝑏] · [1/𝑑, 1/𝑐] if 0 /∈ [𝑐, 𝑑].

These definitions are equivalent. Although the obtained result intervals seem
to be sharp, it is not the case. The inclusion of the function

𝑓(𝑥) = 𝑥2 − 𝑥
obtained for the interval [0, 1] is [−1, 1], while the range of the function 𝑓(𝑥) (the
set of possible values) is here just [−0.25, 0.0]. Using more sophisticated techniques
the problem of the too loose enclosure can be overcome – at the cost of higher
computing times.

In a floating point environment (most cases) the outward rounding is important
to have a conservative inclusion that is a must in computer supported mathematical
proofs. Outward rounding means that the bounds of the calculated result inter-
vals are rounded in such a way that all result points are within the given bounds.
In other words, the lower bound is always rounded toward −∞, and the upper
bound toward ∞. This can easily be realized applying the four rounding modes
of the IEEE 754 standard (available on most programming languages and com-
puters). Several programming languages and packages support interval arithmetic
based inclusion function generation: C-XSC, FORTRAN-XSC, PASCAL-XSC, and
PROFIL/BIAS. Interval packages are available in several symbolic and numerical
systems such as Maple, Mathematica, Matlab. The package for the latter one,
Intlab is especially easy to use.

It is important to note that interval calculations do not require the knowledge
of the symbolic expression of the underlying functions, it is enough if a computer
subroutine is available. In our case a Python code was applied. Linear sums
and sigmoid or other monotonous functions used in artificial neural networks are
explicitly advantageous for interval inclusion functions: sharp bounding is expected
in general. On the other hand, non-monotonic activations can also be handled by
the presented method.

For our problem, we need a proper method to describe the large dimensional sets
that cannot contain adversarial examples. For this purpose, an interval arithmetic
based algorithm describing the level sets of nonlinear optimization problems [5]
seems to be appropriate. Unfortunately, this algorithm scales up very badly with
increasing dimension. This is why first we developed interval arithmetic based
algorithms that are capable of describing the level sets of an artificial neural network
around a feasible positive sample. In this way, we could ensure with mathematical
rigor that adversarial samples cannot exist within the found bounds. According
to our experiences, benevolent problems show much better complexity numbers
compared to theoretically possible pessimistic convergence rates.
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3. Results

The simple, logistic regression model were trained on the subset of the MNIST
dataset [9] that includes two classes: 3 and 7. We used 10 images from this database
which contain 28 × 28 pixel grayscale images of handwritten digits. Assuming 𝑛
examples (𝑥𝑖, 𝑦𝑖), 𝑥𝑖 ∈ R𝑛, 𝑦𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛, the goal is to approximate the
data using the logistic function 𝑦 ≈ 𝜎(𝑤𝑇𝑥+ 𝑏) = 1/(1 + 𝑒−𝑤𝑇 𝑥+𝑏).

We used the negative log likelihood loss function

𝐿(𝑤, 𝑏) = −
𝑛∑︁

𝑖=1

𝑦𝑖 · log(𝜎(𝑥𝑖;𝑤, 𝑏)) + (1− 𝑦𝑖) · log(1− 𝜎(𝑥𝑖;𝑤, 𝑏))

to find the best model (that is, 𝑤 and 𝑏). As our optimizer, we used ADAM [1]
with a minibatch size of 32 for 100 epochs.

The Python code of the obtained network was used for the evaluation. We have
applied the Python interval package on a simple 1.8 GHz Intel core i5 processor
laptop under Windows 7, within the PyCharm development system.

3.1. Changes on the whole picture
First we checked how much we can change the actual grayscale values of a picture
without having an adversarial example case. It means, that for each pixel we
allowed a given amount of relative change in the grayscale values. E.g. 1% means
an alteration of 3 for a pixel that has the white of the value 255. We understand
the relative change in the neighborhood of zero still in an absolute way, i.e. if the
given pixel was black with the grayscale value of zero, then in our calculation the
interval [0, 1] was actually checked. Note that this way of adding noise to a picture
is realistic in the sense, that many practical situations can fall into this category,
including for example traffic sign pictures in a slightly foggy weather. Also, many
documented adversarial examples were obtained by added random noise, where the
relative change in the grayscale values were limited.

We composed a simple greedy algorithm to find the largest possible relative
difference value efficiently. Here 𝑛 is the number of pixels; 𝑝 is the picture pixels
in a vector; 𝑚𝑎𝑥𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is the proven number of percents, initially set to zero;
𝑝𝑒𝑟𝑐𝑒𝑛𝑡 is the number of percent of changes to be checked, first it is set to one; 𝑝0
is the starting picture; 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 is a boolean variable meaning whether the network
gives a value above 0.5: then it is true, otherwise false. The simplified pseudo code
of the algorithm is:

0. If 𝐹 (𝑝0) > 0.5 then 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑡𝑟𝑢𝑒, otherwise 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒

1. Iterate until 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 <= 100

2. Let 𝑃 be an 𝑛 dimensional interval

3. For 𝑖 = 1 to 𝑛 do
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(a) If 𝑝𝑖 = 0, then 𝑃𝑖 = [0, 2 * 𝑝𝑒𝑟𝑐𝑒𝑛𝑡/100]
(b) Otherwise, if 𝑝𝑖 = 1, then 𝑃𝑖 = [1− 2 * 𝑝𝑒𝑟𝑐𝑒𝑛𝑡/100, 1]
(c) Otherwise 𝑃𝑖 = [𝑝𝑖 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡/100, 𝑝𝑖 + 𝑝𝑒𝑟𝑐𝑒𝑛𝑡/100], and check the end

points: if the lower one is negative, then set it to zero, if the upper one
is larger than 1, then set it to 1.

4. If 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑡𝑟𝑢𝑒 and 𝐹 (𝑃 ) ≥ 0.5, or 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒 and 𝐹 (𝑃 ) < 0.5 then
do:

(a) If 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 < 1, then 𝑚𝑎𝑥𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡, and break the main cycle,
Stop.

(b) Otherwise 𝑚𝑎𝑥𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡, and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡+ 1

5. Otherwise if 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 < 1, then set 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡− 0.1

(a) If now 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 0, then set 𝑚𝑎𝑥𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 0 and STOP
(b) Otherwise break the outer loop

6. End of the cycle started in the first step

From computational point of view, the above described checking means a single
interval evaluation of a trained network, when instead of the usual real number
grayscale values, real compact intervals should be evaluated. Since interval cal-
culation is according to the rule of thumb 4-35 times slower than the respective
real number calculations, this type of adversary example free set checking does
not require long computation. This is why we have composed a simple algorithm
that will increase the size of the checked interval until the respective conditions are
hurt. Our measured computation times for 10 images was 5.05 seconds. Note that
if two possible values form the interval box in each dimension, then one interval
evaluation will prove that all the 2784 points satisfy the condition set by the trained
artificial neural network. This is obviously not to be completed with one-by-one
real evaluations.

The proven amount of changes on the gray scale values everywhere on Figure 2
without having an adversarial example were in the order of appearance: 1%, 1%,
1%, and 2%, respectively. These proven values are useful in real life situations.

3.2. Arbitrary large changes in neighboring points
As a second try, we aimed to find those maximal rectangles in an image for which
all pixels may change their grayscale value arbitrarily between 0 and 255 without
being classified incorrectly. Basically, we grow squares around given pixels, check
their recognizability, and if it was positive, then enlarge them. Again, we built a
simple, efficient greedy algorithm for this purpose. Also, we take care of the sides
of the original image, that is why our result may be a rectangle. We repeat our
growing procedure for all the pixels of our image, and return that rectangle that
had the most pixels.
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Figure 2: Handwritten number classification test problem instances
from the MNIST test set

Denote the picture by 𝑝 a vectorial form; 𝑛 is the number of pixels; 𝑚𝑎𝑥𝑝𝑖𝑥𝑒𝑙𝑠
is the maximal number of pixels found in a rectangle; 𝑝0 is the starting picture;
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 is again a boolean variable meaning whether the network gives a value
above 0.5: then it is true, otherwise false; 𝑎𝑙𝑙𝑝𝑖𝑥𝑒𝑙 is a boolean variable meaning
whether the pixels of the actual picture 𝑝 can attain all possible values, the default
value is true; and 𝑠 is the size of the picture, for a 28 × 28 picture it is 28. The
simplified pseudo code of the second algorithm is:

0. If 𝐹 (𝑝0) > 0.5 then 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑡𝑟𝑢𝑒, otherwise 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒

1. For 𝑖 = 1 to 𝑛 do

2. Set 𝑝𝑖 = [0, 1].

(a) If 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑡𝑟𝑢𝑒 and min𝐹 (𝑝) ≤ 0.5, or 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒 and
max𝐹 (𝑝) ≥ 0.5 then 𝑎𝑙𝑙𝑝𝑖𝑥𝑒𝑙 = 𝑓𝑎𝑙𝑠𝑒 and go to the next iteration round

(b) Otherwise if 𝑚𝑎𝑥𝑝𝑖𝑥𝑒𝑙𝑠 = 0 then set 𝑚𝑎𝑥𝑝𝑖𝑥𝑒𝑙𝑠 = 1

3. Set 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1

4. Iterate the next 3 steps

5. Set 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑖, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠, 𝑠)

6. Set 𝑝 = 𝑚𝑜𝑑𝑖𝑓𝑦𝑝𝑖𝑥𝑒𝑙𝑠(𝑝, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠)

(a) If 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑡𝑟𝑢𝑒 and min𝐹 (𝑝) < 0.5, or 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒 and
max𝐹 (𝑝) ≥ 0.5, then break the iteration

(b) Otherwise: if the length of the list 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 is larger than 𝑚𝑎𝑥𝑝𝑖𝑥𝑒𝑙𝑠,
then set 𝑚𝑎𝑥𝑝𝑖𝑥𝑒𝑙𝑠 equal to the length of the list 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

7. Set 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒+ 1
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Figure 3: Original pictures and proven rectangles where we can
change everything without having an adversarial example.

8. Set 𝑝 = 𝑝𝑠𝑡𝑎𝑟𝑡, and continue with the next iteration

The obtained results are illustrated on Figure 3 for some of the studied images.
The calculated number of pixels to be changed arbitrarily were between 88 and 190
(compare it with the 28 × 28 = 784 pixels in the images). The combined running
time for the second round of 10 test images was 1971.87 second, i.e. closely half an
hour.

4. Conclusion

We are still in the phase when we explore the capabilities of interval arithmetic
based algorithms for describing the sensitivity of trained natural neural networks
to changes in object to be classified, but we find our present results encouraging
enough to continue our research project. The next issue can be the frightening case
of small patches changing the recognized meaning of traffic signs. On the other
hand, we could also be capable of proving where the next adversarial example is
relative to a given image.
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