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Abstract. In the model checking domain the state explosion problem
is the core issue. The cause is usually the sheer size of the model or the
cardinality of tokens in the initial state. For the latter, which we call
token-scaling models, we propose an under-approximation for reachable
states. The idea is to reduce the number of tokens in the initial state and
thus reducing the state space. If in the reduced state space a witness path
is found, then the witness path can also be executed in the original state
space. This method preserves existential temporal properties (ECTL∗)
using a simulation relation between the reduced and the original state
space. Since the cardinality of the initial marking varies from only a few
tokens to multi-digit numbers of tokens, we apply heuristics to compute
the number of tokens that should be removed. We implemented the new
method in the explicit model checker LoLA 2. The experiments, done
on the model checking contest benchmark, show that this method can
speed up the model checking process and solve additional queries.
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1 Introduction

State space explosion is the main issue in the model checking domain. The cause
in place/transition Petri nets (P/T net) is usually either the model size itself, or
the cardinality of the initial marking, i.e., the number of tokens on the initially
marked places is large and thus resulting in a large state space. In this paper we
are concerned with the latter one. P/T nets that have a large number of tokens
on the initially marked places, are usually scaling over the number of tokens in
the initial marking, while the net stays the same. We call such nets token-scaling
models. Token-scaling models are widespread in a lot of different fields. E.g., in
biochemistry the tokens represent molecules, or in scheduling problems they rep-
resent resources. Such a biochemistry example model would be the Angiogenesis
model [2], which is part of the model checking contest (MCC) [1]. It consists of
39 places, 64 transitions and 185 arcs and with scaling parameter 25 it results
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in over 4.3 · 1019 reachable markings. One example for a scheduling problem
would be the RobotManipulation model [5] from the MCC. The structure is
even smaller and consists of only 15 places, 11 transitions and 34 arcs and with
scaling parameter 10000 this results in over 2.8 · 1033 reachable markings.

To combat the state explosion problem on token-scaling models, we introduce
an under-approximation for the verification of existentially quantified temporal
properties (ECTL∗). The idea is to reduce the number of tokens in the initial
marking, on places which have more than one token. Due to this the state space
is also reduced. If in the reduced state space a witness path is found, then the
witness path can also be executed in the original state space. For preserving
ECTL∗ formulas a simulation relation [6] between the original and the reduced
transition system needs to be established. The cardinality of the initial marking
depends on the model and its scaling parameter, which can vary from only a few
to multi-digit numbers of tokens. we apply different heuristics to compute how
many tokens should be removed from the initial marking.

The introduced method works with all specifications were a single path, ei-
ther a witness path or a counterexample, is enough to verify the specification.
This means next to positive ECTL∗ formulas with a witness path, we can verify
ACTL∗ formulas (universal temporal properties) and LTL formulas (linear time
logic) which have counterexamples. The downside of the token-scaling verifica-
tion is, it is only a sufficient condition and can only provide answers if a witness
path or a counterexample exists. If this is not the case, the original state space
has to be checked. The upside is that this method uses in the end a normal model
checking algorithm, meaning it can be combined with other reduction techniques
like symmetries [8] or partial order reduction [3, 7, 9].

We implemented the introduced method in our award winning model check-
ing tool LoLA 2 and tested it on the model checking contest (MCC) benchmark.
We run the token-scaling verification in parallel to the actual model checking
algorithm. The experiments show that the token-scaling method can produce
results faster and solve additional queries, which couldn’t be solved before due
to the large state space.

The paper is organized as follows. We start in Section 2 with a motivational
example. In Section 3 we give a brief introduction of the terminology of P/T nets,
temporal logic and simulation. Then we introduce our new under-approximation
for token-scaling models in Section 4. We continue in Section 5 with the in-
troduction of two different heuristics to increase the performance. It follows an
experimentally validation of our new approach in Section 6. And we conclude
the work in Section 7.

2 Motivational example

Figure 2 shows the token-scaling P/T net RobotManipulation [5]. In the MCC
the scaling parameter n ∈ N is between 1 and 10000. The initial marking is based
on n. The three marked places p_i1, access and r_stopped get the following
number of tokens: p_i1 = 2 · n+ 1 and access = r_stopped = 2 · n. The model
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Fig. 1. RobotManipulation [5] model from the MCC with n = 1. The number of initial
tokens is in place p_i1 = 2 · n+ 1 and in places access = r_stopped = 2 · n.

consists of 15 places, 11 transitions and 34 arcs. Despite its simple structure,
the size of the state space for n = 10000 is rather large and results in 2.8 · 1033
reachable markings.

We discovered that there are quite a few interesting temporal properties,
which are not dependent on the actual number of tokens in the initial marking.
The idea is now to reduce the number of tokens on the marked places in the
initial marking and therefore reducing the state space. If we find a witness path
in the model with a reduced initial marking, then we know the witness path can
also be executed in the model with the original initial marking. It follows that
if the property under investigation holds with the reduced initial marking, then
the property also holds with the original initial marking.

For our example model with n = 5000 a simplified specification ϕ from the
last edition of the MCC is concerned with the comparison of the cardinality of
some places: ϕ = EF(p_rel > p_m AND p_m > p_rdy), i.e., does a path
exists, where in a marking finally it holds, that (p_rel > p_m AND p_m >
p_rdy). With n = 5000 the places access and r_stopped have 10000 tokens and
the place p_i1 has 10001 tokens in the initial marking. We tested this with our
model checking tool LoLA 2 [11]. Without partial order reduction LoLA 2 could
not verify this property, even after computing the first one billion states. With
partial order reduction enabled a witness path consisting of 195006 transitions
was found, while the overall computed reachable markings where 250010. Using
our new under-approximation we reduced the number of tokens in the initial
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marking of all marked places to 5 tokens. With this, LoLA 2 found a witness path
consisting of only 112 transitions, while computing only 159 markings in total.
This is with and without partial order reduction enabled. We see the possible
speed-up, here three orders of magnitude, using the under-approximation.

3 Terminology

Definition 1 (Place/Transition Net). A place/transition net, P/T net for
short, consists of a finite set of places P , a finite set of transitions T where
P ∩ T = ∅, a set of arcs F ⊆ (P × T ) ∪ (T × P ), a weight function W :
(P × T ) ∪ (T × P ) → N where W (x, y) = 0 if and only if (x, y) /∈ F , and an
initial marking m0 : P → N, where marking is a mapping m : P −→ N.

The behaviour of a P/T net is defined by the transition rule.

Definition 2 (Transition rule of a P/T net). Let N = [P, T, F,W,m0]
be a P/T net. Transition t ∈ T is enabled in marking m if, for all p ∈ P ,
W (p, t) ≤ m(p). If t is enabled in m, t can fire, producing a new marking m′
where, for all p ∈ P , m′(p) = m(p) −W (p, t) +W (t, p). This firing relation is
denoted as m t−→ m′. It can be extended to a marking sequence by the following
inductive scheme: m ε−→ m (for the empty sequence ε), and m

ω−→ m′ ∧ m′ t−→
m′′ =⇒ m

ωt−→ m′′ (for a sequence ω ∈ T ∗ and a transition t ∈ T ).

Using the transition rule, a P/T net induces a transition system, which is
also called the reachability graph or the state space of the P/T net.

Definition 3 (Labeled Transition System, Reachability Graph). A tran-
sition system consists of a set S of states, an initial state s0 ∈ S, and a labelled
transition relation E : S × L× S, for some label set L of transitions.
The reachability graph of a P/T net is a transition system, where the set of
markings, transitively reachable from the initial marking m0 using the transition
rule of the P/T net, is the set of states, and the transition rule defines the set of
vertices. m0 serves as initial state. A marking m′ is reachable from a marking
m in a P/T net if there is a marking sequence ω ∈ T ∗ with m ω−→ m′.

We continue with the introduction of the syntax and semantics of the tem-
poral logic CTL∗. We start with the presentation of atomic propositions.

Definition 4 (Atomic proposition). Let N = [P, T, F,W,m0] be a P/T net.
An atomic proposition is one of the constants true and false, or an expression
of the shape k1p1 + · · · + knpn ≤ k, for some n ∈ N, k1, . . . , kn, k ∈ Z, and
p1, . . . , pn ∈ P . For a marking m of N , m satisfies proposition k1p1+· · ·+knpn ≤
k if and only if the term

∑n
i=1 kim(pi) actually evaluates to a number less or

equal to k. The fact that m satisfies atomic proposition ϕ is denoted by m |= ϕ.

Definition 5 (Syntax of CTL∗). For a given set of atomic proposition AP ,
the temporal logic CTL∗ is inductively defined as follows:
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– Every ϕ ∈ AP is a state formula;
– If ϕ and ψ are state formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), and ¬ϕ;
– Every state formula is a path formula;
– If ϕ and ψ are path formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), ¬ϕ, Xϕ, Fϕ, Gϕ,

(ϕUψ), and (ϕRψ);
– If ϕ is a path formula then Eϕ and Aϕ are state formulas.

We now consider the semantics of the logic CTL∗ with respect to a Kripke
structure. A Kripke structure requires every state to have a successor state.
Hence, the reachability graph of a P/T net with deadlocks is not a Kripke struc-
ture, but can be turned into one, by adding a silent transition from every dead-
lock state to itself.

Definition 6 (Semantics of CTL∗). Let AP be a set of atomic propositions
and N a P/T net with its reachability graph TS extended to a Kripke structure.
The semantics of CTL∗ is defined by satisfaction relations of a state formula ϕ
at a state (i.e., a marking) s, denoted s |= ϕ, and of a path formula ϕ by a path
π, denoted π |= ϕ.

– for ϕ ∈ AP , let s |= ϕ according to Def. 4;
– for a state formula ϕ, π |= ϕ if π = s1s2 . . . and s1 |= ϕ;
– π |= (ϕ ∧ ψ) if π |= ϕ and π |= ψ; s |= (ϕ ∧ ψ) if s |= ϕ and s |= ψ;
– π |= ¬ϕ if π 6|= ϕ; s |= ¬ϕ if s 6|= ϕ;
– π |= Xϕ for π = s1s2 . . . if π′ = s2s3 . . . and π′ |= ϕ;
– π |= (ϕUψ) for π = s1s2 . . . if, for some i ≥ 1 and πi = sisi+1 . . . , πi |= ψ,

and for all j (1 ≤ j < i), πj = sjsj+1 and πj |= ϕ;
– s |= Eϕ if, for some path π starting in s, π |= ϕ.

Let further ϕ∨ψ be equivalent to ¬(¬ϕ∧¬ψ), Fϕ to true Uϕ, Gϕ to ¬F¬ϕ,
ϕRψ to ¬(¬ϕU¬ψ), and Aϕ to ¬E¬ϕ.

A Kripke structure satisfies a state formula if its initial state does. It satisfies
a path formula if all paths starting in the initial state do. For CTL∗, several
fragments are frequently studied.

Definition 7 (Fragments of CTL∗). CTL∗ formula ϕ is in

– ACTL∗ if ϕ does neither contain E nor ¬;
– ECTL∗ if ϕ does neither contain A nor ¬;
– CTL if every occurrence of X,F,G,R,U is immediately preceded by an oc-

currence of A or E;
– LTL ⊂ ACTL∗ if ϕ does neither contain E nor A;

And since we have all the equivalences we need to push negations to the level
of atomic propositions. Further we know that ECTL∗ properties are preserved
if transition systems are related by a simulation relation.



6 Torsten Liebke and Karsten Wolf

Definition 8 (Abstraction, Simulation [6]). Let TS1 = [S1, E1, s01] and
TS2 = [S2, E2, s02] be Kripke structures. A relation σ ⊆ S1×S2 is an abstraction
relation if, for all atomic propositions ϕ, (s, s′) ∈ σ and s |= ϕ implies s′ |= ϕ.
Abstraction relation σ is a simulation if (s01, s02) ∈ σ and, for all (s1, s2) ∈ σ
and (s1, t, s

′
1) ∈ E1 implies the existence of a state s′2 where (s2, t

′, s′2) for some
label t′, and (s′1, s

′
2) ∈ E2.

Simulation preserves certain temporal logic fragments.

Proposition 1 (Simulation preserves ACTL∗, [4]). Let TS1 = [S1, E1, s01]
and TS2 = [S2, E2, s02] be Kripke structures. If TS1 simulates TS2, then

– TS1, s01 |= ϕ implies TS2, s02 |= ϕ, for any ACTL∗ formula ϕ;
– TS2, s02 |= ϕ implies TS1, s01 |= ϕ, for any ECTL∗ formula ϕ.

Using this, we can find a counterexample for ACTL∗ using an equivalent
ECTL∗ formula.

Proposition 2 (Counterexample for ACTL∗). For every ACTL∗ formula
ϕ there exists an ECTL∗ formula ψ s.t. ¬ϕ and ψ are equivalent CTL∗ formulas.

4 Under-approximation for token-scaling models

For token-scaling models we propose an under-approximation to reduce the size
of the state space. The idea is to reduce the number of tokens on certain places
in the initial marking. I.e., the state space is reduced, since fewer tokens are
available. The basic concept is to use a threshold of tokens λ ∈ N. The number
of tokens on places that contain more than λ tokens in the initial marking, will
be reduced to λ tokens.

Definition 9 (Reduced initial marking m0r). Let N = [P, T, F,W,m0] be a
P/T net and λ ∈ N. In the reduced initial marking m0r it holds for all p ∈ P
that m0r(p) = λ if, m0(p) ≥ λ or m0r = m0(p) else.

We substitute the initial markingm0 of the given P/T netN with the reduced
initial marking m0r and verify the property under investigation on the reduced
net.

Definition 10 (Reduced net Nr). Let N = [P, T, F,W,m0] be a P/T net.
We call Nr = N [m0 7→ m0r] the reduced net, where the initial marking m0 is
substituted with the reduced initial marking m0r.

With the reduced net, we can now introduce the under-approximation for
token-scaling models.

Theorem 1 (N simulates Nr). Let N = [P, T, F,W,m0] be a P/T net, with
the induced transition system TS = [S,E, s0] and Nr = [P, T, F,W,m0r] the
corresponding reduced net, with the induced transition system TSr = [Sr, Er, s0r].
It holds that TS simulates TSr and that TSr, s0r |= ϕ implies TS, s0 |= ϕ, for
any ECTL∗ formula ϕ.
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Proof. The existence of the simulation, together with proposition 1 preserve
ECTL∗. Since the new system TSr is an under-approximation, it holds that the
original system TS is relative to the reduced system TSr an over-approximation.
For over-approximation, it is well known (proposition 1), that the simulation
preserves ACTL∗. And with the inversion, which is the under-approximation,
the simulation preserves ECTL∗. ut

This approach is able to verify temporal properties in a transition system which
have a witness path or a counterexample.

Proposition 3. For every ECTL∗ formula ϕ, it holds, if ϕ is true in the reduced
net Nr then ϕ is also true in the original net N . For every ACTL∗ formula ϕ
and with this also for every LTL formula ϕ, it holds, if ϕ is false in the reduced
net Nr then ϕ is also false in the original net N .

5 Heuristics

The reduced initial marking has to balance between two objectives. On one hand
a small state space is desired and therefore initially marked places should have as
few tokens as possible. On the other hand it should have enough tokens to verify
the property under investigation. The optimum would be that initially marked
places have exactly the number of tokens on it, which are needed to produce
the witness path. Since we don’t know this number in advance, we propose two
heuristics, to compute the reduced initial marking. We calculate a threshold for
the marked places in the initial marking and cut the number of tokens on these
places, to the calculated threshold.

Largest constant heuristic: Given is a multiplier n ∈ N, we compute the
threshold based on the n-times largest constant appearing in the net, meaning
the arc weight and the formula.

Percentage heuristic: Given is a divisor d ∈ N, the threshold for each
place is 1/d-times the original number of tokens. To avoid getting zero tokens
on places, we always round up the division.

6 Experimental validation

We implemented the introduced method in our explicit model checker LoLA
2 [11]. For evaluating the methods, we used the benchmark provided by the
model checking contest 2019 [1]. The benchmark consists of 94 models, which
result in 1018 model-instances due to the scaling parameter. As specification we
use the formulas provided in the MCC 2019. Although the introduced method
works also for LTL and a lot of CTL formulas, we only present the experimental
results for reachability queries. The results for LTL and CTL are similar. For
each instance, there are 32 reachability formulas: 16 of them are concerned with
the cardinality of tokens on places and the other 16 are concerned with the
fireability of transitions.
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For our purpose we only choose a subset of the models from the benchmark.
We consider only P/T nets, since coloured nets usually scaling over the cardi-
nality of places, transitions and arcs. In the MCC coloured nets are mostly safe
and if they are not safe they contain only a few tokens on each place. This is
also true for their place/transition counterparts, which we therefore also ignore.
We also only consider nets which are not safe. Furthermore, we consider only
nets, whose initial marking has tokens that can be removed. We also avoid one
instance that has in the initial marking, on at least one place, more than 232

tokens. All in all we consider 21 models with 214 instances with 32 formulas for
each instance. The total number of checked formulas are 6848.

We executed the experiments on our machine Ebro, which has been used
for executing parts of the actual MCC in recent years. It has 32 physical cores
running at 2.7 GHz and 1 TB of RAM. The operation system used is CentOS
Linux 7 (Core). We run our new method in parallel to the actual state space
search and a structural method, namely a counterexample guided abstraction re-
finement (CEGAR) state equation [10]. Both methods are well developed and
already pushed to the limits. From 6848 formulas 5152 formulas were solvable
with a witness path or counterexample. The remaining formulas were either solv-
able directly in the initial marking or the entire state space had to be searched.
There were 122 formulas that could not be solved. Our new method, with the
threshold set to 5 tokens, and run in parallel to the other two methods, was able
to solve 436 (8.5 %) of the remaining 5152 queries. No additional query from
the 122 unsolved ones could be solved. The picture stays more or less the same
if we change the threshold to anything between 1 and 10. The largest constant
heuristic does not perform very well with multiplier 1 or 2, although increasing
the multiplier is improving the performance. The percentage heuristic, on the
other hand, performs really well with n set to anything between 3 and 10. With
n = 3, the new method could solve 659 (12.8 %) queries. It was even able to
solve 8 (6.5 %) queries from the 122 unsolved ones.

7 Conclusion

Token-scaling P/T nets tend to have large state spaces, since they have a lot
of tokens on the initially marked places. However, there are a lot of interesting
specifications, which can be verified with way fewer tokens in the initial mark-
ing. We introduced an under-approximation for token-scaling P/T nets. It is a
sufficient quick check, that is based on the reduction of tokens on the marked
places in the initial marking. The method is applicable whenever a witness path
can be found, namely in the class of ECTL∗ formulas, including reachability, or
whenever a counterexample can be found, namely in the class of ACTL∗ and
LTL formulas. The experiments show that running the token-scaling method
in parallel to a full model checking algorithm speeds up the verification pro-
cess, which gives in reverse more time to other verification queries. Our new
method could solve 9.6 % of all queries in the benchmark, while competing di-
rectly against well established methods like the actual state space search and the
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CEGAR state equation method. An additional 6.5 % of the queries that could
not be solved by any other method were solved by the new method. We also
showed that using a good heuristic can increase the performance even more. In
the future we are interested in better heuristics using the structural information
of the P/T net and involving the formula.
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