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Abstract. Elementary Net Systems with Localities (ENL-systems) is
a class of Petri nets introduced to model GALS (globally asynchronous
locally synchronous) systems, where some of the components might be
considered as logically or physically close and acting synchronously, while
others might be considered as loosely connected or residing at distant
locations and communicating with the rest of the system in an asyn-
chronous way. The specification of the behaviour of a GALS system
comes very often in the form of a transition system. The automated
synthesis, based on regions, is an approach that allows to construct Petri
net models from their transition system specifications. While theory of
regions is well developed, there is still lack of implemented tools capable
of dealing with complex real-life system construction. In this paper we
focus on developing algorithms and tool support for the synthesis of the
ENL-systems from step transition systems, where arcs are labelled by
steps (sets) of executed actions. The algorithms are implemented within
the WORKCRAFT framework.
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1 Introduction

A number of computational systems exhibit behaviour that follows the ‘glob-
ally asynchronous locally (maximally) synchronous’ paradigm. Examples can
be found in hardware design, where a VLSI chip may contain multiple clocks
responsible for synchronising different subsets of gates [12], and in biologically
inspired membrane systems representing cells within which biochemical reactions
happen in synchronised pulses [23]. To formalise such systems, [16] introduced
Place/Transition-nets with localities (PTL-nets), where each locality defines a
distinct set of events which must be executed synchronously, i.e., in a maximally
concurrent manner (often called local mazimal concurrency).
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An attractive way of constructing complex computing systems is their auto-
mated synthesis from behavioural specifications given in terms of suitable tran-
sition systems. In such a case, the synthesis procedure is often based on the
regions of a transition system, a notion introduced in [14], and later used to
solve the synthesis problem for many different classes of Petri nets [2,4,7, 6, 21,
22,24]. A comprehensive, systematic survey of the synthesis problem and region
theory is presented in [3].

The vast majority of results in the area of synthesis of Petri nets use the stan-
dard transition systems, where the arcs are labelled with single events/actions,
as initial specifications of systems’ behaviour. In this paper, however, we fol-
low the approach, used in [17-20, 24], employing step transition systems instead,
where arcs are labelled with sets of executed events/actions.

This paper is concerned with finding efficient algorithms for deriving regions
for the synthesis of ENL-systems. The nets with localities, as already mentioned,
were first introduced in [16] using as a base a class of Place/Transition nets. The
idea of actions’ localities was later adapted to Elementary Net Systems (EN-
systems) in [17], where a solution to the synthesis problem for ENL-systems
was presented. Further advances in the area of synthesising nets with localities
from step transition systems are the subjects of [18-20]. The papers [17-19]
suitably adapted the classical theory of regions [4] to cope with local maximal
concurrency in the context of three different classes of nets, while [20] concen-
trated on finding the rules for reducing the number of regions that are essential
to sythesise ENL-systems. The mentioned sequence of papers built up a the-
ory for the synthesis of ENL-systems. This paper concentrates on implementing
existing theoretical results into a tool, with the main focus on computing re-
gions of ENL-transition systems. The algorithms are implemented within the
WORKCRAFT framework [25, 27]. Developing efficient algorithms for the synthe-
sis of ENL-systems is challenging (note that the problem is NP-complete which
can be shown following the argument made in [2]). Also, there are no imple-
mented tools for the synthesis of Petri nets from step transition systems. The
ones that exist, like Petrify [9,15,10], VipTool [5], ProM [1], Genet [8] or Rb-
miner [26] work with specifications that do not include the information about
concurrency in the form of steps of simultaneously executed actions.

To explain the basic idea behind ENL-systems, let us consider the net in
Figure 1 modelling two co-located consumers and one producer residing in a
remote location. In the initial state, the net can execute the singleton step {c, }.
Another enabled step is {p2} which removes the token from b; and puts a
token in both by and bs. In this new state, there are three enabled steps, viz.
{p1}, {c1,¢,} and {ps, s, ¢; }. The last one, {ps, c1, ¢; }, corresponds to what
is usually called mazimal concurrency as no more activities can be added to it
without violating the constrains imposed by the available resources (represented
by tokens). However, the previously enabled step {c;} which is still resource
(or token) enabled is disallowed by the control mechanism of ENL-systems. It
rejects a resource enabled step like {c,} since we can add to it ¢; co-located
with c¢; obtaining a step which is resource enabled. In other words, the control
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mechanism employed by ENL-systems (and PTL-nets) is that of local mazimal
concurrency as indeed postulated by the GALS systems execution rule.
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Fig.1: A one producer/two co-located consumers system (shading of boxes indicates
the co-location of events they represent).

The paper is organised as follows. The next section recalls some basic notions
concerning step transition systems, ENL-transition systems, ENL-systems and
their synthesis. Section 3 introduces an algorithm for computing regions of a
given step transition system (ENL-transition system) and provides theoretical
results to support the algorithm. The paper ends with a conclusion that includes
some directions for future work.

2 Preliminaries

Let E be a fixed finite non-empty set of events. A co-location relation on E is
any equivalence relation = on the set of events. Moreover, for an event e and a
non-empty set of events U (called a step), we will denote e = U whenever there
is at least one event f € U satisfying e = f.

Definition 1. A step transition system on E is a triple ts = (Q, A, qo) where
Q is a non-empty finite set of states, A C Q x (2P \ {@}) x Q is a finite set
of transitions (arcs), and qo € @ is the initial state. We will write q BN q (or

simply q L) whenever (q,U,q’) is a transition. We will call q the source of
transition (q,U,q') and ¢’ its target.

To ease the presentation, we will assume that each event of E occurs in at
least one of the steps labelling the transitions of ts.

Definition 2. A sequence of steps Uy, ...,Uy forms a step sequence from g
to ¢', o, in a step transition system ts = (Q, A, qo) if there are states ¢ =
q1,Q2 - - Q1 = ' such that (¢;,U;,qiv1) € A fori=1,..., k. We will denote
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Ur...Ug
this q R, q or q = ¢'. We will say that a step sequence has no loops if

all its states are distinct (adjacent to at most two transitions).

Let ts = (Q, A, qo) and ts' = (Q’, A, q()) be step transition systems. We say
that ts and ts’ are isomorphic, ts = ts', if there is a bijection f: Q — Q' such
that f(qo) = ¢4 and (¢,U,¢') € A< (f(q),U, f(¢')) € A, for all ¢,¢' € Q and
U € 2F\ {2}

In diagrams of bigger step transition systems we will write annotations of arcs
for singleton steps without braces (e.g.,e instead of {e}). Also, by thick arcs in
a step transition system we will mean arcs labelled by non-singleton steps.

In the following sub-sections we gather definitions introduced in [17,19, 20].

2.1 ENL-systems

Definition 3 ([17]). An elementary net system with localities (ENL-system)
s a tuple
enl £ (B,E,F,=~,¢)

such that B is a finite set of conditions disjoint from the events, F C (B x E)U
(E x B) is the flow relation, = is a co-location relation on E, and co C B is the
initial case (in general, any subset of B is a case).

In diagrams, conditions (local states) are represented by circles, events (ac-
tions) by boxes, the flow relation by directed arcs, and each case (global state)
by tokens (small black dots) placed inside those conditions which belong to this
case. Moreover, boxes representing co-located events are shaded in the same
way (see Figure 1).

For every event e, its pre-conditions and post-conditions are given respec-
tively by

¢ = {b|(be)c F}ande* = {b| (e,b) € F}

(both sets are assumed non-empty and disjoint). Two events are in conflict (or
conflicting) if they share a pre-condition, or share a post-condition. The dot-
notation extends to sets of events in the usual way, e.g., *U = | J{%¢ | e € U}.

The semantics of enl is based on steps of simultaneously executed events. We
first define potential steps of enl as all non-empty sets of non-conflicting events.
A potential step U is then resource enabled at a case cif *U C cand U*Nc = &,
and control enabled if, in addition, there is no event e ¢ U such that e = U
and the step U U {e} is resource enabled at c¢. A control enabled step U can
be ezxecuted leading from ¢ to the case ¢ = (¢ \ *U) U U®. We denote this by
c[U) (or c[U)). The step execution mechanism employed by ENL-systems can
therefore be called local maximal concurrency.

The step transition system of enl is given by:

tsent = (C, {(c,U,¢) €28 x 28 x 2B | ce C A cU)C} ,c0)



90 A.Ahmed and M.Pietkiewicz-Koutny

where C' — the set of reachable cases — is the least set of cases containing cg
and closed w.r.t. the step execution relation. To ease the presentation, we will
assume that enl does not have dead events, i.e., each event occurs in at least one
of the steps labelling the arcs of the step transition system ts.y;.

ENL-systems can be considered as Elementary Net Systems (EN-systems)
equipped with an explicit notion of localities for their events. The local maxi-
mal semantics of their execution means that certain properties enjoyed by EN-
systems do not hold for ENL-systems, like the following monotonicity property:

Fact 1 The step monotonicity for EN-system states that: If c[U) and U C U
then c[U'(U\U")).

2.2 ENL-transition systems

To link the nodes (global states) of a step transition system ts with the conditions
(local states) of the hypothetical ENL-system corresponding to it, we use the
notion of a region.

Definition 4 ([17]). A region with explicit input and output events is a triple
t Z (in, r,out) € 2F x 29 x 2F,
where sets in and out satisfy the following implication
(in=0 ANout=0) = (r=Q V r=09)

and for every transition g Y, q', the following hold:

Rl Ifger andq ¢r then |UNout| = 1.
R2 Ifqé¢r and ¢ €r then |[UNin| =1.
R3 IfUNout# @ thenqger and ¢’ ¢ r.
R4 IfUNin# S thenqé¢r andq €r.

Each region is a triple: t = (in,r, out), where r is a subset of states of the
step transition system, in is a subset of its events E which are responsible for
entering r, and out is a subset of events F which are responsible for leaving 7.
There are exactly two trivial regions satisfying r = @ or r = Q, viz. (&, @, &) and
(2,Q, ). Moreover, (in,r,out) is a region iff so is its complement (out, Q\r,in).
We will denote the complement of a region t by t. In general, a region, as defined
above, cannot be identified only by its set of states; in other words, in and out

may not be recoverable from r. However, if the step transition system is thin,

i.e., for every event e € FE there is a transition ¢ ﬁ) q' of ts, then different

regions are based on different sets of states [17].
The set of all non-trivial regions of ts will be denoted by R and, for every
state g, R, is the set of all non-trivial regions (in, r, out) containing g,

%qg{teiﬁts\qer}.

The sets of pre-regions, °e, and post-regions, e°, of an event e comprise all the
non-trivial regions (in, r, out) respectively satisfying e € out and e € in,
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e = {teNRe |ecout} and e = {re Ry |ecin}. [17]

This extends in the usual way to sets of events, e.g., °U = |J{ % | e € U}.

The set of potential steps of ts comprises all non-empty sets U of events such
that °en °f =e°N f° = @, for each pair of distinct events e, f € U. A potential
step U is then region enabled at state ¢ if °U C Ry and U° "R, = @ [17,19].

Definition 5 ([17,19]). A step transition system ts = (Q, A, qo) is an ENL-
transition system w.r.t. a co-location relation = if the following hold:

A1l Each state is reachable from the initial state.
A2  For every event e, both °e and e° are non-empty.
A3  For all distinct states ¢ and ¢', Ry # Ry

A4  For every state q and step U, we have that q Y U s region enabled
at ¢ and there is no event e € U such that e = U and the step U U {e} is
region enabled at q.

Omne can show (see [17]) that the step transition system of an ENL-system
with the co-location relation = is an ENL-transition system w.r.t. =.

2.3 Synthesis of ENL-systems

ENL-systems generate ENL-transition systems. The converse also is true, and
the translation from ENL-transition systems to the corresponding ENL-systems
is based on the regions of step transition systems.

Let ts = (Q, A, go) be an ENL-transition system w.r.t. a (given) co-location
relation =. Then the net system associated with ts is defined as [17,19]:

en[f; g (mts 5 EaFt57 =, ERqo)

where Fiy = {(v,e) € Re X E | v € %} U{(e,t) € E x Ry | t € €°}. Tt turns
out that such a construction always produces an ENL-system which generates a
transition system isomorphic to ts. (Note that one does not have to use all the
regions in R¢s to construct a desired ENL-system, and a method to reduce their
number is described in [20].)

Theorem 1 ([17]). Let ts be an ENL-transition system w.r.t. a co-location
relation =. Then enl, is an ENL-system and its step transition system is iso-
morphic to ts. Moreover, the isomorphism 1 between ts and the step transition
system of enly. is given by ¢ (q) = Ry, for every state q of ts.

The enl;, net system obtained from the synthesis of the step transition system
might contain many conditions which are redundant from the point of view of its
behaviour, i.e., deletion of such conditions (and their adjacent arcs) would lead
to a net whose step transition system is still isomorphic to ts [20]. This paper is
not concerned with eliminating any redundant regions/conditions.
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3 Algorithm approaches

In this section, we present the approaches that have been used for designing and
implementing algorithms to generate non-trivial regions of a given step transi-
tion system (ENL-transition system) as defined in Section 2.2. We consider the
execution time of the algorithms as the main measure to gauge their efficiency.

The initial idea was to focus on thin step transition systems, as in these

transition systems, for every event e € E, there is a transition ¢ ﬂ ¢, for some
q,q € Q. This, we believed, would allow us to ignore the thick arcs and base our
algorithm solely on singleton arcs, which in turn would enable us to use some of
the techniques used in the Petrify tool [10], which works with standard transition
systems rather than with step transition systems. Although we discovered that in
certain circumstances the thick arcs can be ignored, leading to some reduction of
execution time when verifying regional conditions R1-R4, the rules for ignoring
thick arcs were complicated, and the class of thin step transition systems was
not a special case, for checking these rules easily. The results of this approach
are reported on in section 3.2 and we will use some of them, which apply to all
step transition system, in our algorithms. Therefore, we abandoned the special
case of thin step transition systems and decided to seek a solution for the general
class of step transition systems (ENL-transition systems).

3.1 A general approach

In the first instance, we have implemented (starting with a brute-force approach)
an algorithm for extracting regions of ENL-transition systems as defined in [17]
and recalled in Section 2. By using this approach, we could obtain the expected
results. However, it was noticeable that the execution time of deriving regions
took too long even for small step transition systems. For example, the algorithm
took around 37 minutes (see Figure 5) to generate the non-trivial regions for
the ENL-transition system in Figure 2 (see also its associated net in Figure 3).
This was not surprising. As region is a triple v = (in, r, out) € 2F x 29 x 27 the
computation of all non-trivial regions in such a way would involve generation
of all sub-sets of the set of states (), all subsets of the set of events E and
then checking regional conditions, R1-R4, for all the arcs in the step transition
system. Thus, optimising the implemented (brute-force) algorithm was essential
for reducing its execution time and making it of any practical value.

The approach for reducing the number of potential in and out sets of regions
is based on the information about causality and concurrency embedded in the
step transition systems. This approach is presented in section 3.3.

The approach for reducing the number of candidates for the sets of states (r)
for regions is based on source and targets sets. This idea was first used in the
Petrify tool [10] and is adapted here to the context of step transition systems.
This approach is explained in section 3.4.
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Fig.2: An ENL-transition system tss, where p1 and p2 are co-located events, and
c1,c2,c3 and ca are co-located events. The graph should be glued on the states qo, q1,
g6 that appear twice in the picture.

3.2 Ignoring thick arcs

In this approach, we attempted to improve the execution time of extracting all
the non-trivial regions by ignoring all the thick arcs in a given step transition

systems in order to reduce the number of transitions (g N q') that need to be
checked for every potential region (see Section 2.2).

The question is: which of the thick arcs can be ignored without changing the
set of non-trivial regions? The thin step transition systems would be the first
candidate of a class of systems to consider, because they contain the arcs labelled
with all possible singleton steps, so all the events would be present in the set of
steps labelling the remaining arcs of the step transition system after the removal
of thick arcs. However, even in some of the thin transition systems removing
thick arcs can be problematic as the Figure 4 shows. In that example removing
the only thick arc, {e, f}, leads to the transition system being disconnected,
meaning that previously ENL-transition system would not longer be classified
as such on the grounds of not satisfying the axiom A1. The property of thinness
is too weak to make a decision about the removal of thick arcs. We need to make
much stronger assumptions as stated in the following proposition.

Proposition 1. Let ts = (Q, A, qo) and ts' = (Q, A’, qo) be two step transition
systems, where ts' is obtained from ts by deleting a thick arc (q,U,q") € A labelled
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Fig.3: The ENL-system resulting from the synthesis of the ENL-transition system tss
in Figure 2. Note that the synthesised net contains many redundant conditions.

by step U that satisfies: U = Uy W ... Uy and there exists in ts a step sequence
o =U,...Uy, leading from q to ¢, for any permutation of steps Uy, ..., Us.
Then 9%{5 = mtsl .

Proof. The inclusion Rs C Ry holds trivially. We need to prove that Ry C
Ris. Let v = (in,r,out) € Rie. We need to show that v € Ry, that means
that for the arc (q,U,¢q’) of ts that was removed from ts to obtain ts’ and t
the conditions R1 - R4 hold. We can assume, to the contrary, that one of the
conditions does not hold for (q,U, ¢).

Case 1: R1 does not hold for (¢q,U,¢’) and t. That means we have that ¢ € r
and ¢’ ¢ r and |U Nout| # 1. From assumptions, it follows that there is a step
sequence in ts', 0 = Uy ... Uy, where (q1,U1,q2), (¢2,U2,q3), - -, (qk, Uk, qra1) €
A qg=q and ¢ = qr11. As v = (in,r,out) € R, ¢ € 7 and ¢’ ¢ r, there
exists a transition (g;,U;, gi+1), 1 < @ < k, such that ¢; € r and ¢;+1 ¢ r and
for which R1 is satisfied in ts’. Hence |U; N out| = 1. Suppose that there exists
another step, U; # U;, in the step sequence o such that (g;j,Uj,qj+1) € A" and
g; € r and gj+1 ¢ . From this and the assumptions it follows that there exists
a permutation of steps of ¢ (which leads from ¢ to ¢'), where U; and U; are
consecutive steps, which is impossible as the sources of the arcs they label must
belong to r and the targets must be outside r. We also cannot have a step U;
in o labelling a transition (g;,Uj,qj+1), for which ¢; ¢ r and ¢j41 € r, as in
this case we would need to have either a loop in o with two occurrences of U,
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Fig.4: An ENL-transition system tsp with co-located events e and f and non co-located
events g and h (a); the ENL-system resulting from its synthesis (b).

or another step in o, apart from U;, which labels a transition exiting r, and we
already proved that that is impossible. Hence, for all steps of o apart from Uj,
we have that they do not cross the border of r. As a consequence, from R3,
which is satisfied for them, |U; Nout| = 0. As steps Uy, ..., Uy are disjoint and
U=UW..."Uy, we have |U Nout| = 1, a contradiction. So, R1 is satisfied for
(¢,U,q') and .

Case 2: R2 does not hold for (¢, U, ¢') and t. The proof is similar to the proof of
Case 1 and also leads to a contradiction. So, R2 is satisfied for (¢,U,¢’) and t.
Case 3: R3 does not hold for (¢,U, ¢’) and t. That means |U Nout| # 0 and ¢ ¢ r
or ¢ € r. We can assume, without the loss of generality, that ¢ ¢ r. We now
need to consider two cases:

1. If ¢’ € r and ¢ ¢ r, there is a step U; in o, labelling a transition (q;, U;, g;+1) €
A, where 1 < ¢ < k and ¢; ¢ r and ¢;41 € r. Since R3 holds for this
transition and t in ts’, we have |U; Nout| = 0. For other steps of o, U; # Uj,
we must have |U;Nout| = 0, as otherwise we would have a transition, labelled
with step Uj, exiting r, but that would mean that either o has a loop with
two occurrences of U;, or there is another transition, labelled with a step,
different from Uj;, entering r again, and this is impossible according to the
argument used in Case 1. So, |U; Nout| = 0 for i = 1,...,k, and as a
consequence |U Nout| = 0, a contradiction.
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2. If ¢’ ¢ r and ¢ ¢ r, then again we have, for all steps U; in o, labelling transi-
tions (qi, Ui, qit1), 1 <i <k, either q;,q;+1 ¢ r or we have at least one pair
of transitions, with one transition entering r (labelled U;, for example) and
one transition exiting = (labelled Uj, for example). The latter can be ruled
out as according to the assumptions, there would need to be a step sequence
between ¢ and ¢’ in ts' with U; and U; being consecutive steps. However,
that would mean that there must exist another two steps (different from U;
and Uj) in o one labelling a transition entering r and another labelling a
transition exiting  and we already know that this must be excluded as two
steps labelling exiting transitions and two steps labelling entering transitions
cannot be part of any permutation of steps leading from ¢ to ¢’. So, for all
transition (g;, Us, gi+1), 1 <4 < k, we have ¢;, ¢;+1 ¢ r, and, by R3, which is
satisfied for arcs of ts’, we have |[U;Nout| = 0 for i = 1...k. As a consequence
|U Nout| =0, a contradiction.

So, R3 is satisfied for (¢, U, ¢’) and .

Case 4: R4 does not hold for (¢, U, ¢’) and t. The proof is similar to the proof
of Case 3 and also leads to a contradiction. So, R4 is satisfied for (¢, U, ¢’) and
t. O

To check the conditions stated in Proposition 1 would be computationally
expensive. However, there is a class of step transition systems, for which they
are always satisfied as shown in the Theorem 2. But first, we introduce a concept
of co-located sequential events in the context of step transition systems.

Definition 6. Let ts = (Q, A, qo) be an ENL-transition system w.r.t. a co-

location relation = and E be a set of events used in the steps labelling transitions

from A. We say that = partitions the set of events E into sets of co-located se-

quential events, £ = Fy W... W E,,, if the following holds: for alli =1,...,m

there is no ¢ € Q and no step U in ts such that e, f € E; and e, f € U and
U

q—.

Theorem 2. Letts = (Q, A, qo) be an ENL-transition system w.r.t. a co-location
relation =, which partitions its set of events E into sets of co-located sequential
events (E = Fy W ... W E,, ). Then all thick arcs in ts satisfy the conditions of
Proposition 1.

Proof. From the fact that = partitions the set of events into sets of co-located
sequential events we have that every non-singleton step of ts can contain only
one event from any individual sub-set E;, i = 1,...,m and therefore, there is
no non-singleton step that can be executed as a consequence of the local max-
imal concurrency semantics (enforced concurrency). Hence, the sets of resource
enabled steps and control enabled steps of ts are the same. That in turn means
that ts, which is an ENL-transition system, is a step transition system of some
EN-system and in this class of nets the step monotonicity property (see Fact 1)
is satisfied for every (resource) enabled step. So, for every thick arc of ts the
conditions of Proposition 1 are satisfied. a
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3.3 Reducing the number of potential in and out sets of regions

For a given step transition system ts = (Q, 4, qo), finding its regions involve
finding the in and out sets of events that are part of their definition. To reduce
the execution time of generating all the non-trivial regions we can look at the
possibilities of minimising the number of in and out sets to be considered. For
a transition system that has n events (|E| = n), the brute-force approach would
consider 2" sets for ¢n and out sets. However, looking at transitions of ts and
their labels, we can eliminate safely many candidates for in and out sets as stated
in the following propositions.

Proposition 2. Let vt = (in,r,out) be a region in a step transition system ts =
(Q, A, qo). If the target of any transition q v, q in ts, where e € U’, is the

source of another transition q' AN q" in ts, where f € U"” and f # e, then the
following hold:

1. {e, f} Lin;
2. {e, f} € out.

Proof. 1. Assume, to the contrary, that we have two transitions in ts, g v, q

and ¢’ v, q"” and two events e and f, such that e # f, e € U’ and f € U”,
and {e, f} C in for a region v = (in,r, out). Hence, since regional condition
R4 is satisfied for both transitions and t, we have: ¢ € r and ¢’ € r and
q ¢ r and ¢ € r. We obtained a contradiction and so {e, f} Z in.
2. The proof is similar, but we use R3 regional condition here rather than R4.
O
Corollary 1. Let v = (in,r,out) be a region in a step transition system ts =
(Q, A, qo). If the target of any transition q e} q' in ts is the source of another
JREI q" ints, for f #e, then {e, f} L in and {e, f} L out.

Proof. Follows directly from Proposition 2. a

transition q

Proposition 3. Let v = (in,r,out) be a region in a step transition system ts =

(Q,A,q0), and let q Y, q' be a transition in ts, such that there are two events
e, f € U. Then the following hold:

1. {e, f} L in;
2. {e, f} £ out.

Proof. 1. Assume, to the contrary, that we have a transition ¢ v, q in ts,
where e, f € U and {e, f} C in. Hence, since regional condition R2 is

satisfied in ts for ¢ Y, ¢ and t, we have that =(q¢ € r and ¢’ € r) is
true, which means that either ¢ € r or ¢’ € r. However, as R4 regional

condition is also satisfied for ¢ BN q' and t, we have ¢ € r and ¢’ € r, but
this contradicts the previous conclusion.
2. The proof is similar, but we use R1 and R3 regional conditions here rather
than R2 and R4.
O
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3.4 Using source and target sets

After selecting the candidates for the sets in and out we need to turn our atten-
tion to discovering the sets of states (r) for regions of the form: v = (in, r, out).
When doing so we need to look at the possibilities of reducing the number of
these sets (see Section 3.1). In the context of standard transition systems, where
arcs are labelled by single events, these sets would solely define regions. So, al-
though we are considering step transition systems in this paper rather than the
standard transition systems, some of the ideas developed earlier can be re-used
in our new setting. For this part of the algorithm, we use the ideas of excitation
and switching regions introduced in [9, 10, 15], where an excitation region for an
event e is the maximal set of states, which are the sources of transitions labelled
by e, while a switching region for an event e is the maximal set of states, which
are targets of transitions labelled by e. We generalise these ideas to our setting
of step transition systems. Also, we take advantage of the fact that step transi-
tion systems contain explicit information about the concurrency of events. We
use this information, as well as the information about the causality of events, to
select potential in and out sets (see Section 3.3), which are going to be useful
in this step of the algorithm. In what follows we will call excitation regions the
source sets and switching regions the targets sets in the context of step transition
systems.

Definition 7. Let ts = (Q, A, qo) be a step transition system on E. We define
the following two sets of states for every e € E:

— The source set Sc ={q¢€ Q|3 €Q:(q,U,¢') € A N ecU}.
— The targetset T, ={¢' € Q|Jq€Q:(q,U,¢) €A N ecU}.

Proposition 4. Let v = (in,r,out) be a region in a step transition system on
E, ts =(Q,A,q), and let e € E. Then the following is satisfied:

1. Ife€out then Se Cr and T.Nr = 2.
2. Ife€in thenT, Cr and S. Nr = @.

Proof. Let (q,U,q') € A be a transition in ts and e € U. Hence ¢ € S, and
q eT,.

1. If e € out then e € UNout and from the definition of a region (R3) we have:
gerand ¢ €r.So, S Crand T, Nr =a.
2. If e € in then then e € U Nin and from the definition of a region (R4) we
have: g ¢ r and ¢ €r. So, T, Cr and S.Nr = 2.
O

If we want to combine the discovery of sets in, out and r, when searching for
all non-trivial regions of step transition systems, we can use the results given in
Corollary 2, Propositions 5 and Corollary 3.

Corollary 2. Let vt = (in,r,out) be a region in a step transition system on E:

ts = (Q, A, qo). Then
U S. U U T.Cr.

ecout ecin
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Proof. Follows directly from Proposition 4. ad

From Corollary 2, we see that the set of states r of any region v = (in, r, out)
in a step transition system ts = (@, A, go) can be represented as

r=1 Seu |JT. U F, (1)

ecout ecin

where F* is a set of states we will call the filler set for t. We will use the following
denotations: S* = | Seand T" = T

ecout ecin ~¢€°

Proposition 5. Let v = (in,r,out) be a region in a step transition system ts =
(Q, A, qo) and (q,U,q") € A. Then the following hold:

1. Ifqer and UNout = & then ¢ €.
2. Ifqgé€r and UNin =& thenq & r.

Proof. 1. Follows directly from R1 of the definition of a region.
2. Follows directly from R2 of the definition of a region.
O

Corollary 3. Let v = (in,r,out) be a region in a step transition system ts =
(Q,A,q0) and (q,U,q") € A, where U C E\ (inUout). Then the following hold:

1. Ifqe STUT" and ¢ € STUT® then q' € F*.
2. If¢ € SSUT" and q € S*UT" then q € F*.

Proof. Follows from the representation of r (see Eq. (1)) and Proposition 5. O

3.5 An algorithm for generating regions of ENL-transition systems

Before we propose an algorithm for computing regions of ENL-transition sys-
tems, we summarise a few useful facts:

1. For every region v = (in,r,out) in a step transition system ts we have:
in Nout = &. This follows from R3 and R4 of the definition of a region.

2. For any non-trivial region t = (in,r,out) in a step transition system ts we
have: S*UT" # @. This follows from the definition of a region, which states
that the sets in and out can only be both empty for trivial regions.

3. The set of potential in sets is the same as the one of out sets, as the in set
of a region t is the out set of its complement, ¥, and the other way round.

Although the title of this section suggests that the input for the algorithm
should be an ENL-transition system, the algorithm can take as its input just
a step transition system as defined in Definition 1, and it will compute regions
as defined in Definition 4. The definition of a region that is used implies the
target class of nets and the synthesis problem, in which the regions are later
used as conditions to build the synthesised net. The algorithm does not check
the axioms A1-A4 (see Definition 5) to decide whether the input step transition
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Algorithm 1: Extract Ry,

1 Function EztractR (Step transition system ts = (Q, A, qo))
2 Initialise R¢s to empty set
3 InOut = Generate All Potential in/out Sets(ts) ; // 1InOut| =n
4 for i:= 1 to n do
5 for j:= 1 to n do
6 Initialise S* and T* to empty sets
7 /* Comnsider (in;,out;) € InOut x InOut, and not
(outj,in;) € InOut x InOut */
if in; Nout; = @ and in; U out; # & then
9 for every event e € out; do
10 Generate set Se
11 L Add S. to S°
12 for every event e € in; do
13 Generate set Te
14 L Add T, to T*
15 else
16 L break ; // (in;,out;) is not valid
17 Initialise S to STUT" ; // Initial states to consider
18 Initialise r to STUT"
19 for every g € S do
20 Initialise Feyrrent to empty set
21 for every arc (¢,U,q') € A do
22 if (in;Uout;) NU = @ and ¢’ ¢ r then
23 Add ¢ tor
24 L Add ¢ to Feurrent
25 for every arc (¢’,U,q) € A do
26 if (in; Uout;) NU = & and ¢ ¢ r then
27 Add ¢ tor
28 L Add ¢ to Feurrent
29 Set S to Feuyrrent
30 Let v = (in, r, out;)
31 if v satisfies regional axioms then
32 Add ¢ to Ris
33 Add t = (outj,Q \ r,in;) to Res
34 return Ry

system is indeed an ENL-transition system and therefore synthesisable. In most
of our experiments, however, we used ENL-transition systems as inputs for the
algorithm for the testing purposes (see Section 3.6).

To explain the algorithm we can look at a step transition system of Fig-
ure 4(a). In the first step of the algorithm we obtain all potential in and out sets
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using the techniques from Section 3.3. We can consider one such a pair: in = &
and out = {h}. This pair trivially satisfies the validity constraints as stated in
Section 3.3. The algorithm now discovers r for a candidate region v = (&, r, {h}).
The set r is defined as 7 = STUT UF" = |, cous Se U Uecin Te UFT (see Equa-
tion (1)). First the algorithm computes the set S*UT", in this case containing a
single element ¢3. The most complex part of the algorithm is the one to compute
the filler set F* (using Corollary 3). The set F"* is initially empty. It does not
feature in the algorithm explicitly. So, initially, r = S = S*UT* = {¢3}. We
start the for-loop at line 19 (see lines 19-29). Below we go through its iterations.

1. S = {g3} and Foyrrent = @ (this set records the states added to r during
the current iteration of the loop). We consider all possible arcs adjacent to
g3 that are not labelled by steps containing events from in U out = {h}. We
have two arcs to consider:

— Arc g3 ﬂ q4: we add g4 to r to ‘bury’ this arc in r. Now we have:
Fcurrent = {C]4} and r = {q3a Q4}

— Arc g5 {if>} q3: we add g2 to r to ‘bury’ this arc in r. Now we have:
Fcurrent = {Q4, Q2} and r = {Q3, q4, q2}~

2. S ={q2,q4} and Fyrrent = @ and we consider all possible arcs adjacent to
g2 and g4 that are not labelled by steps containing events from inUout = {h}
and are not yet ‘buried’ in 7. We have two arcs to consider:

— Arc ¢ ﬁ qs: we add g5 to r to ‘bury’ this arc in r. Now we have:
Fcurrent = {Q5} and r = {QQ, qs, q47q5}'

— Arc ﬂ q2: we add ¢; to r to ‘bury’ this arc in r. Now we have:
Fewrrent = {¢5, 1} and r = {43, 94,45, 2, 1 }-

3. S={gs5,q1} and Feyrrent = @ and we consider all possible arcs adjacent to
¢1 and g5 that are not labelled by steps containing events from inUout = {h}
and are not yet ‘buried’ in 7. We have one arc to consider:

— Arc q ﬂ q1: we add qp to r to ‘bury’ this arc in r. Now we have:
Feurrent = {QO} and 7 = {CI3, 44,495,492, 41, qO}'
4. S ={qo} and Foyrrent = &. In this iteration we cannot add any more states
to r that are not already there, so S is set to @ for the next iteration of the
loop. The computation of r is completed.

The discovered candidate for a region is v = (&, {qo, 91, 42,93, 94, G5}, {h}).
The algorithm then checks the regional axioms for the candidate and, if they
are satisfied, the region and its complement (in this case * = ({h}, {¢s, 47}, 9))
are added to the set of discovered regions. These are two out of ten non-trivial
regions of tso in Figure 4(a) discovered by Algorithm 1 (see the screenshot from
WORKCRAFT, for this example, in Figure 7, in the Appendix).

3.6 Results of the experiments

The machine used in the experiments was PC with 3.20 GHz Intel Core i7 CPU
and 12GB RAM, running Windows 10 Pro. The algorithms were implemented
in Java (JDK 1.8.0) on top of the WORKCRAFT framework (version 3.2.6).
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The average execution time of each algorithm was calculated on the basis of
20 runs. All experiments reported in this paper were conducted in isolation in
order to prevent any side effects caused by concurrently executing processes. We
ran each of the experiments over approximately the same time period to ensure
that the computer was placed under similar load. The same machine was used
for conducting all the experiments to ensure fair performance comparisons.

Using an example of the ENL-transition system in Figure 2, ts3, we now
compare the execution time taken to derive regions when applying five different
approaches described as follows:

Approach 1: We generate all sets of 29 and all sets of 2F; we check regional
axioms for all arcs of A.

Approach 2: We generate all sets of 29 and all sets of 2F; we check regional
axioms for selected arcs of A, after ignoring the thick arcs (see Theorem 2).
Approach 3: We generate all sets of 2¢; we consider only a selection of sets from
2F to generate potential in and out sets by using the results from Section 3.3;
we check regional axioms for all arcs of A.

Approach 4: We generate only a selection of sets from 2% by using the source
and target sets; we consider only a selection of sets from 2F to generate potential
in and out sets by using the results from Section 3.3; we check regional axioms
for all arcs of A.

Approach 5: We generate only a selection of sets from 29 by using the source
and target sets; we consider only a selection of sets from 2¥ to generate potential
in and out sets by using the results from Section 3.3; we check regional axioms
for selected arcs of A, after ignoring the thick arcs.

All the algorithms, related to the five approaches described above, produced
the same non-trivial regions for ts3. Figure 5 shows the results of the comparison,
where clearly the best savings are gained by reducing the number of potential
in and out sets by using the results presented in Section 3.3.

To test Algorithm 1, we selected the following examples: ts; in Figure 8 (2
states, 4 events), tso in Figure 4 (8 states, 4 events), ts3 in Figure 2 (16 states,
6 events), ts, in Figure 9 (12 states, 6 events), the step transition system of an
ENL-system in Figure 10 (ts5). The last transition system has 64 states and 9
events. The results of the experiments are shown in Figure 6.

When testing Algorithm 1, our first aim was to check whether it generates
correctly all the expected regions. We selected our examples for testing trying to
consider ENL-transition systems representing nets with different characteristics:
thin step transition systems (tsq, tss, ts5) or not thin (tsq, ts4); step transi-
tion systems of nets with conflicts (ts;, tsp) or without conflicts (tss, ts4, tss);
step transition systems of nets, where every locality represents a sequential sub-
system (ts3, ts5) or not (ts1, tso, ts4). For all the chosen examples the algorithm
produced the expected results. The first four examined transition systems were
very small. The last step transition system, tss, was bigger. As it has 64 states
it was already too big to test the brute-force version of the algorithm on it,
but Algorithm 1 produced its non-trivial regions in terms of milliseconds. We
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Fig.5: A diagram showing the execution time taken to derive non-trivial regions of the
ENL-transition system ts3 in Figure 2 when applying the five different approaches.
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Approaches: . Algorithm 1 |:| Algorithm 1 with removal of arcs, if possible

Fig.6: A diagram showing the execution time taken to derive non-trivial regions of the
ENL-transition systems: ts1, tsa, tss, ts4 and ts5, when using Algorithm 1 without (or
with) the removal of thick arcs, respectively
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tested Algorithm 1 on ENL-transition systems with up to 90 states and it still
performed very well. We found this promising.

The removal of thick arcs, applicable to tsg, ts4 and ts5, gave the best results,
in terms of execution time, for transition systems tss and ts5 as they satisfy the
conditions of Theorem 2 allowing for the removal of all thick arcs.

4 Conclusions

In this paper we presented an algorithm for deriving non-trivial regions of ENL-
transition systems. The algorithm was tested on a selection of small step tran-
sition systems. We plan to build a set of benchmarks to test its performance on
bigger examples and see how it scales with the increasing sizes of inputs.

In the future, we plan to add new algorithms to our tool to produce a complete
tool for the synthesis of ENL-systems, including algorithms for the minimization
of the synthesised nets; and algorithms for synthesising ENL-systems with the
assumption that the co-location relation is not known in advance and needs to
be discovered as a part of solving the synthesis problem.
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Appendix
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Fig.7: An execution time and PR of the ENL-transition system tsp in Figure 4(a) as
shown in WORKCRAFT.
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Fig.8: An ENL-transition system tsi, where e, f, g and h are co-located events.
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Fig.9: An ENL-transition system tss, where p; and ps are co-located events, and
c1,c2,c3 and ca are co-located events. The graph should be glued on the states qo, q1,
q2, g3 that appear twice in the picture. ts4 is isomorphic to the step transition system

of the ENL-system in Figure 1.
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Fig. 10: An ENL-system, where events a, b, ¢ are sharing a location; events d, e, f are
in the second location; and events g, h and 4 are in the third location. It generates tss

step transition system considered in Figure 6.



