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Abstract. The article deals with the formation of generalized primitive matrices of 

Galois G  and Fibonacci F  of any order above the field (2)GF . The terms “Galois 

and Fibonacci matrices” are borrowed from the theory of cryptography, in which 

pseudorandom sequence generators (PRS) on Galois and Fibonacci schemes are 

widely used. Matrixes G  and F  software are used to generate the same PRS as 

the corresponding generators. The generalized matrices include the Galois matrices 

(as well as the transposition related to them relative to the auxiliary diagonal of the 

Fibonacci matrix), formed by primitive elements    of the field (2)GF  over 

the irreducible polynomials (IP) 
nf , which are not necessarily primitive. In the 

classical Galois and Fibonacci matrices, the constitutive element is   . Synthe-

sis of matrices G  and F is based on the use of IP degree and primitive field ele-

ments, generated by polynomials 
nf . The statement, according to which the gener-

alized matrix of Galois is isomorphic to their forming elements of the field (2)GF . 

The ways of construction of conjugate ( , 
G F ) and inverse ( ,G F ) Galois and 

Fibonacci matrices are considered. A new effective algorithm for calculating the in-

verse elements of Galois's extended fields is proposed. The interrelation of the 

found variety of Galois and Fibonacci matrices is established. The ways of using 

such matrices in cryptographic applications to solve the problem of building gener-

alized linear PRS generators of the maximum period are discussed.  

Keywords: pseudorandom binary sequences, linear feedback shift registers, 

irreducible polynomials, primitive matrices.  

1 Introduction  

1.1 Terminological definitions  

One of the key problems in the theory and practice of cryptographic protection of 

information is the problem of formation (generation) of binary pseudorandom se-

quences (PRS) of maximum length with acceptable statistical characteristics. As a 

rule, PRS generators are implemented using a linear feedback shift register (LFSR) 

[1]. Only LFSR with specially selected feedback functions can pass through all non-

zero internal states - these are the so-called maximum period registers. For LFSR to 

be the maximum period register, the corresponding feedback polynomial must be a 

primitive [2]. 

Each PRS generator can be assigned uniquely to the associated Galois (or Fibo-

nacci) matrices, which calculate the same sequences as those generated by the LFSR 



 

generators. The terms "Galois and Fibonacci Matrix" are borrowed from the theory of 

cryptography and coding [3], in which binary PRS generators based on Galois and 

Fibonacci schemes are used mainly. 

The main task of this article is to develop algorithms for constructing PRS genera-

tors based on the so-called generalized LFSR and primitive matrices (PrM) of Galois 

and Fibonacci n order over the field (2)GF . The matrices being synthesized un-

ambiguously determine both the structure of the corresponding generalized n bit 

LFSR of the maximum period and the PRS of the maximum length ( m sequences) 

formed by them. 

1.2 Classic Galois and Fibonacci PRS generators 

The classical generator (register) Galois, which example is shown in Fig. 1, compares 

to each non-zero element of the field (2 )nGF  some degree 10   of a minimum 

primitive element of the field on module PrP 
nf . 

 

Fig. 1. Structural diagram of the typical Galois generator over the PrP 
8 101001101f   

Feedbacks in the classic Galois generators are unambiguously determined by the 

selected primitive polynom (PrP) 
nf  and are formed as follows: the responses of each 

digit of the register arrive at the inputs of the next digits, being for them the excitation 

functions. Also, the response of the register's highest digit is provided (according to 

the XOR scheme) to input inputs of those and only those register digits, the numbers 

of which coincide with the non-zero numbers of PrP monomials. The simplicity of the 

algorithm of construction (synthesis) of Galois generators, easily traceable in Fig. 1, is 

a consequence of the accepted variant of LFSR discharge numbers ranking (from 

right to left), whereas usually the numbering of shift register discharges is performed 

from left to right [4]. 

Let's ( )S t   the state of Galois register at a discrete point in time t . Denote 

( )n

f G  the Galois matrix, corresponding to the selected Galois generator. With the 

help of this matrix forms the same binary sequence as the corresponding PRS. The 

order n  of the matrix ( )n

fG  coincides with the degree of PrP 
nf , which generates the 

n bit generator Galois. Let's imagine the iterative procedure of changing Galois 

register states by the ratio  

 
( )( ) ( 1) , (0) 00 01, 1, 2,

n

n

fS t S t S t    G  (1) 



 

The vector (0)S  highlights the lower row (write it number 1) of the matrix G . Con-

sequently, in the bottom line of a matrix ( )n

fG , it is necessary to write down the value 

(1)S , coinciding with a generating element (GE) 10   of a field (2 )nGF  over PrP 

nf . Continuing transformation operations (1), we come to the final expression (2) for 

the classical Galois matrix. The upper line of the matrix ( )n

fG  is a subtraction of the 

( 1)n  binary vector 

1

10 00
n

 on the module 
nf .   

 

1 2 2 1

( )

1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

n n

n

f

     
 
 
 

  
 
 
  
 

G , (2) 

where k  the polynomial coefficients, the vector form of which is  

 1 2 1
1 1, 1, 2, , 1

n n n k
f k n

 
       . (3) 

The structure of the matrix (2) predetermines the general rule of synthesis of clas-

sical Galois matrices, the essence of which is as follows. In the right corner of the 

bottom line of the matrix ( )n

fG  being synthesized, we will place the smallest primitive 

element 10   of the Galois field generated by PrP 
nf . The subsequent matrix rows 

are formed from the previous rows as a result of their shift by one digit to the left. The 

digits released on the right are filled with zeros. If the unit of the row goes beyond the 

left border matrix ( )n

fG , then this row is reduced to the remainder of the module 
nf , 

resulting in it also becomes a n bit. The formulated rule is called the rule of synthe-

sis of KMG (classical Galois matrices). 

In addition to the classic Galois matrices (2), you can also enter Fibonacci matri-

ces 
( )n

f
F  over PrP 

nf  that correspond to linear shift registers in the Fibonacci scheme 

(linear generators of pseudorandom Fibonacci sequences). Fibonacci matrices are 

mutually unambiguously related to Galois matrices by the right-hand transposition 

operator (transposition relative to the auxiliary diagonal) [5]  

 F G . (4) 

Transposition, relative to the main matrix diagonal, indicated by the symbol T , will 

be called a left-hand inversion. According to (4) we have  



 

 

1

2

2

1

( )

0 0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

n

n

n

f





 
 

 
 

  
 
 
 
  

F . (5) 

The Fibonacci PRS generator, corresponding to the matrix (5) for PrP 

8 101001101f  , is shown in Fig. 2. 

 

Fig. 2. Structural diagram of the classic Fibonacci generator over the PrP 
8 101001101f   

2 Expansion of the family of classic PRS generators  

2.1 Conjugate generators Galois and Fibonacci 

In group theory, an element a  of a group A  is a conjugate element a  of the same 

group [], if there is an element z A  such that  

 1a z a z    . (6) 

Similar to (6), we will introduce a formal definition of the conjugate Galois and Fibo-

nacci matrices by form 

 
1   M P M P , (7) 

where M  there is one of the matrices G  or F , and P  an unborn matrix of the 

same order as the matrix M .  

As follows from the ratio (7), they are matrices 


M  similar to M , preserving the 

basic properties of matrices M . The matrix P  is the inverse permutation matrix 

(IPM), which is conventionally designated by a numeral 1 . Below is an example of 

the fourth- order IPM 



 

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



 
 
 
 
 

1 .  

In this way 

 
; ;

; .

 

 

     

     

1 1 1 1

1 1 1 1

G G G G

F F F F
 (8) 

Multiplication square matrix by the IP matrix M  on the left is equivalent to an 

inversion of matrix rows M , and on the right – a reversal of columns of this matrix. 

So it follows that the conjugate matrix 


M  is formed from the matrix M  as a result 

of joint inversions of its rows and columns equivalent to the joint operations of left- 

and right-side transposition, i.e. T T   M M M  .  

The general forms of the classical conjugate matrices of Galois and Fibonacci, in 

which the indices f  and n  are omitted for simplicity and, according to (2), (4) and 

(8), look like: 

 

1 2 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 n n



 

 
 
 
 

  
 
 
 
     

G , 
(9) 

 

1

2

2

1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0 0

n

n







 
 
 
 

  
 

 
  
 

F . (10) 

Based on the relations (9) and (10), we come to the structural schemes of the conju-

gate generators Galois and Fibonacci, which are presented in Fig. 3 and 4. 

 
 
Fig. 3. Structural diagram of the mating Galois generator over the PrP 

8 101001101f   



 

 

Fig. 4. Structural diagram of the mating Fibonacci generator over the PrP 
8 101001101f   

2.2 Galois and Fibonacci inverse generators 

Let us explain the way of calculating the inverse matrixes of Galois G  [6, 7], to 

which we come, solving the equation 

  G G E , (11) 

where E  the single matrix is.  

For example, for the fourth-order matrices, according to (2) and (11), we have 

 

3 2 1 1 11 12 13 14 1 0 0 0

1 0 0 0 21 22 23 24 0 1 0 0

0 1 0 0 31 32 33 34 0 0 1 0

0 0 1 0 41 42 43 44 0 0 0 1

 

       
     
     
     
     
     

. (12) 

For simplicity, the unknown components of the reverse matrix are represented in (12) 

by their indices. Summarizing the solution of the matrix equation (12), we come to 

the classical inverse matrix of the Galois n order above the PrP 
nf : 

 

1 2 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 n n 

 
 
 
 

  
 
 
 
     

G , (13) 

which unequivocally defines the structural scheme of the PRS generator generated by 

the selected PrP 
8 101001101f   

 

 
 

Fig. 5. Galois reverse oscillator diagram over the PrP 
8 101001101f    



 

Using the relations (4) and (8), we can easily find both the inverse Fibonacci matrix 

F  and the conjugate matrices 
G , 


F  and then the corresponding structural 

schemes of PRS generators. 

2.3 Relationship between classical Galois and Fibonacci generators 

From the comparison of Galois (4) and Fibonacci (6) matrices, as well as their conju-

gate variants (9) and (10), we come to the operators of a transformation of one of the 

known matrices into any other matrix. 

Table 1: Matrix conversion operators 

 G  F  
G  

F  

G  —   T   T 

F    — T T   


G  T   T —   


F  T T     — 

 

From the analysis of the structural schemes of simple generators over PrP 

8 101001101f  , shown in Figs. 1 - 4, we come to the general rules of change, sum-

marized in Table 2, the schemes of linear feedback of the known PRS generator over 

a given f  to the schemes of any of the remaining three types of generators. In con-

trast to Table 1, in which the symbols G , F , 
G  and 


F  the primitive matrixes of 

PRS generators are designated, in Table 2 the same symbols conventionally denote 

the scheme of feedback in the corresponding generators.     

Table 2. Operators of the feedback schemes 

 G  F  
G  

F  

G  — 1 1  1  1  

F  1 1  — 1  1  


G  1  1  — 1 1  


F  1  1  1 1  — 

The meaning of the term "feedback scheme" in G , F , 
G  or 


F of PRS generators 

can be explained by referring to their stylized graphical representation shown in Fig. 

6. Let's pay attention to such peculiarities of feedback. If the generators G  and F  

feedback are clockwise, the generators 
G  and 


F  are counter-clockwise.  



 

 

Fig. 6. A stylized representation of feedback schemes in PRS generators 

Let's specify the physical meaning of transformation operators in Table 2. The opera-

tor 1  means that the feedback scheme marked with the symbol  undergoes rotation 

on 180  a relatively vertical axis. Such transformations occur, as it follows from Fig. 

6, in pairs of generators ( , )G G  or ( , )F F . The operation 1  is similar to the 

process of inverse shifting of matrix columns M , which is realized by multiplying it 

by the IPM on the right side. The operator 1  rotates the feedback scheme relative to 

the horizontal axis. Thus, the process is similar to the operation 1  of inverse permu-

tation of matrix rows, if you multiply it by IPM on the left side. The specified conver-

sions of feedback take place in pairs of generators ( , )G F  or ( , )F G  . Finally, the 

operator 1 1  means that both vertical and horizontal axes rotate the feedback 

scheme. Such transformations of feedback circuits are performed in pairs of genera-

tors ( , )G F  or ( , ) 
G F .    

The feedback diagrams in reverse PRS generators are formed as a result of turning 

on the relatively 180  vertical axis of the charts shown, as an example, in Fig. 6 for 

the generators, generated by the PrP 
8 101001101f  . The way of formation of ma-

trixes of a full set of LFSR generators of PRS (and among them - classical, conjugate, 

and return generators) is shown in Fig. 7.  
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Fig. 7. The interrelation of classic LFSR matrixes of PRS generators 



 

In this figure, a pair of symbols ( )f ▲  define a binary vector (row or column), in 

which f  is replaced by the digit 1, and a shaded triangle - a sequence of polynomial 

coefficients 
k , and the top of the triangle indicate the location of the senior factor. 

For example, f ▲ it means a vector 
1 2 11 n n   

, while f ▼ it implies a vector 

1 2 11 n   
. Besides, symbols 0 and   also suggest zero vector-column and vector-

line, respectively. And finally, the symbols T   indicate not only the two-way trans-

position but also the inversion of the polynomial coefficients 
k .     

3 Research methods  

3.1 Generalized generators Galois and Fibonacci 

Based on the construction of generalized generators of Galois (as well as Fibonacci), 

we will put the generalized matrices corresponding to them. 

Definition. The generalized matrix of Galois (GMG) will be called the matrix, 

formed by the primitive element    of the field (2 )nGF  over the IP 
nf , which is 

not necessarily primitive. 

We come to the algorithm of GMG construction, expanding the Rule of synthesis 

of KMG, formulated in paragraph 1.2. The essence of the algorithm of GMG for-

mation is as follows. Let's choose some primitive element    of the field (2 )nGF  

generated by the IP 
nf , which we will place in the right corner of the bottom line of 

the synthesized matrix 
( )n

f
G . Subsequent matrix rows (in the direction from bottom to 

top) are formed from the previous rows as a result of their shift by one digit to the left. 

The numbers released on the right are filled with zeros. If a higher unit shifted, row 

goes beyond the left border of the matrix. This row is reduced to the remainder of the 

module 
nf , which also results in it becoming a digit. The row returns to matrix 

boundaries, and the process of filling in its rows continues as described above.  The 

formulated rule is called the rule of GMG synthesis.  

 

0 1 1 0 1 0 1 0

0 0 1 1 1 1 1 1
;

1 1 1 0 1 1 0 1

0 1 1 1 0 1 0 0

 

   
   
   
   
   
   

G F , 

1 1 1 0 0 0 1 0

0 1 1 1 1 0 1 1
;

1 1 0 0 1 1 1 1

0 1 1 0 0 1 0 1

 

   
   
    
   
   
   

G F  

(14) 

 



 

Let's consider an example of the synthesis of generalized primitive matrices and 

LFSR generators of PRS, choosing as an irreducible binary polynomial 11111nf   of 

the fourth degree, which is not primitive, and primitive forming element. Matrixes 

corresponding to the selected parameters are represented by expressions (14).    

Let's ,i jh  denote the element of i  th  row and j  th column, , 1,i j n , any of 

the matrices , , or 
G F G F  underlying the construction of LFSR with generalized 

linear relations. The state of the k  th discharge LFSR ( 1)ks t   at the moment 1t   

coincides with the excitation function of this discharge ( )k t  at the moment t  and is 

determined by the expression: 

 ,
1

( 1) ν ( ) ( )
n

k k i k i
i

s t t h s t


     .  

The structural scheme of the generalized primary four-digit Galois generator is shown 

in Fig. 8. Vertically arranged generator records marked with a symbol   at the top 

implement the digit multiplication operation, and registers marked with a symbol 

  addition operation on module 2. 

 

Fig. 8. Structural scheme of generalized PRS Galois/Fibonacci generators 

Galois generator (Fig. 8) is converted into a Fibonacci generator by replacing the 

register contents with the system matrix F  (14). If we place matrix column elements 

in the multiplication registers  
G  or 


F  from the system (14), we get a paired gen-

erator in the Galois or Fibonacci configuration. The scheme of the matched Gal-

ois/Fibonacci PRS generator is shown in Fig. 9. 



 

 

Fig. 9. Structural scheme of generalized conjugate generators of PRS Galois/Fibonacci 

3.2 Isomorphism of Galois matrixes 

From the theory of polynomials is known, that multiplication of an arbitrary degree k  

polynomial ( )k x  by x  the equivalent of a shift of a polynomial by one digit to the 

left and, consequently, an increase by 1 degree of a polynomial  

 1( ) ( )k kx x x  . (15) 

Using the ratio (15) and taking into account the way OMG is formed, let's write down 

the chain of transformations: 

 

1 1

2 2

( )

, mod mod

1

n n

n n

n

f n n

x x

x x

f f

x x

 

 



   
   

   
     
   

   
      

G . (16) 

Elements of the right vector-column in the ratio (16) are monomers, which, being 

represented in the binary form, turn the vector-column into a single matrix, i.e. 

 

1

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 11

n

n

x

x

x





   
   
   
    
   
   

  
  

E , (17) 

which makes it possible to formulate the following  

The postulate. The generalized binary matrix of Galois ( )

,

n

f G  isomorphous to its 

forming element  



 

 
( )

,

n

f   G . (18) 

Therefore, according to the expressions (16) and (17), there is a mutually unam-

biguous correspondence (isomorphism) between GMG ( )

,

n

f G  and its forming element 

ω, which is displayed by the ratio (18). Also, it is easy to establish that isomorphism 

(18) leads to such consequences.    

Consequence 1. The generalized Galois matrices ( )

,

n

f G  are nondegenerate for all 

parameters nf  and   are linearly independent rows of matrices, as can be readily 

ascertained from the ratio (17). 

Consequence 2. To elevate the matrix ( )

,

n

f G  in degree k , it is enough to calculate 

forming elements  (mod )k

k nf   and then calculate matrix ( )

, k

n

f G .  

Consequence 3. The minimum non-zero value of degree e, which ensures equality 

 ( )

,

e
n

f  G E , coincides with the order of the element forming the matrix ( )

,

n

f G . 

Consequence 4. The generalized matrix of Galois ( )

,

n

f G  is primitive if the form-

ing element   is primitive, i.e., if   . 

Consequence 5. Matrixes 
1

( )

,

n

f G  and 
2

( )

,

n

f G , 1 2   , are commutative, be-

cause commutatively the  product of the elements forming them.  

Consequence 6. Algebraic transformations over the totality of Galois matrices are 

isomorphic to the same transformations over the forming elements of matrices. 

Consequence 7. GMG ( )

,

n

f G , inverse matrix ( )

,

n

f G , can be constructed according 

to the rule of synthesis of generalized Galois matrices, formulated in item 3.1. The 

forming element of the matrix ( )

,

n

f G  is the inverse element   of the forming element 

matrix ( )

,

n

f G . 

Consequence 8. A lot of GMGs can be expanded by introducing similar Galois 

matrices ( )

,
ˆ n

f G  defined by the 

 
( ) 1 ( )

, ,
ˆ n n

f f G P G P
   . (19) 

As P  matrices in transformation (19), it is preferable to consider permutation ma-

trices of the n  order, because, for them, the inverse matrices are simply enough 

calculated, namely 
1 TP P

 
. Unlike the GMG ( )

,

n

f G  matrixes ( )

,
ˆ n

f G , they remain 

commutative and lose their isomorphism property. This feature of such matrices of 

Galois, first of all, provides an opportunity to build on their one-way basis functions, 

widely used in cryptography and other applications. And, secondly, it is possible to 

construct one-sided functions based on them, which are widely used in cryptography 

and other applications, LFSR generators of PRS are free from Berlekemp-Messi at-

tack. 



 

The complete set of generalized Galois and Fibonacci matrices can be represented 

in the form of a graph (Fig. 10), similar to the chart of many classical matrices shown 

in Fig. 7.  

T T T T





  

  









G F

G F

F G

F G

 

Fig. 10. The interrelation of generalized matrixes of LFSR generators of PRS 

The location of the vectors of FE generalized matrices, all of them for simplicity, will 

be called Galois matrices, is shown in Fig. 11. The vector arrows are directed towards 

the higher classes of the forming elements. 

 

Fig. 11. Conditional and graphical representation of vectors of FE matrices of Galois 

3.3 Calculating inverse elements of the Galois field 

The generalized matrixes located in the corners of the outer contour of the graph 

in Fig. 10 are calculated elementary. In fact, the arbitrary GMG ( )

,

n

f G , including the 

inverse matrix ( )

,

n

f G , is unambiguously determined by its FE  . Therefore, for the 

construction of GMG ( )

,

n

f G , it is necessary to calculate the element   and then, us-

ing the rule of synthesis GMG, to make a matrix ( )

,

n

f G . The remaining matrices of the 



 

external contour of the graph are connected with the operators of left- and right-hand 

transposition.  

The main problem in the designated calculation chain is the definition of the ele-

ment  . There are different ways of finding the inverse elements of the Galois field 

[7, 8]. Among them, the most frequently used method is based on the extended Eu-

clidian algorithm [9-11].  

Below is an alternative approach to calculation   — it is more straightforward in 

the program implementation than the Euclid algorithm. The essence of the alternative 

algorithm is explained in Table 3, in which it is indicated: n  the degree of IP f ; 

k   step of iteration; (2 1)n

nL     the order of the multiplicative group of the field 

(2 )nGF , generated by IP nf ;  VI   vector of initialization. Writing ( )k fa   

means the calculation of the residual   value a  of the module  nf  on the k  th 

iteration step.  

Table 3: Calculation procedure of extended inverse elements of the Galois field 

n  nL  k  Residue  n  nL  k  Residue 

VI  1 
2

1 ( ) f    

 6 63 
8 8 7( ) f     

3 7 
2 2 1( ) f     9 

2

9 8( ) f    

3 
2

3 2( ) f    
7 127 

10 10 9( ) f     

4 15 
4 4 3( ) f     11 

2

11 10( ) f    

5 
2

5 4( ) f    
8 255 

12 12 11( ) f     

5 31 
6 6 5( ) f     13 

2

13 12( ) f    

7 
2

7 6( ) f     

 

It is known, that for any non-zero field element the equality of 

 2 1) ( ) 1
n

nL

f f

    .  (20)  

Introducing (20) in the form 

 2 2( )) ) 1
n

f f

     ,   

we'll get 

 
2 2( )

n

f

  . 
 (21)  

According to formula (21), the inverse element   is determined by residue   an 

even degree 2 2n   of the field element   from the IP module nf . These residues 

are placed in odd lines in Table 3.  

Based on Table 3, we quickly come to the expression for the number of iterations 

k , performed when calculating the inverse field elements   over the IP degree n   



 

 2 3k n  .  

Let's consider a numerical example. Suppose 4n  , 10011f   and  . Ac-

cording to Table 3, the first step is to perform the following calculations 

 
2

1 10011 1110f f         .  

For the next step, we find 

 
2 1 10011 1010f f          ;  

 

2

3 2 10011 1000f f         ; 

4 3 10011 10f f         ; 

2

5 4 100f f       . 
 

The residue 5 100   is the opposite of the subtraction element  . 

The vector of initialization starts 2

1 ( ) fVI      the computational process (ac-

cording to Table 3). The further procedure consists 2n  cycles, each of which in-

cludes two iteration steps. We find the auxiliary vector 2 ( 2)n  as the first one (on the 

even step k ), and the second one (on the odd stage of iteration) — the inverse ele-

ment 2 3n   . 

4 Discussion 

Visual perception of the FE vectors presented in Fig. 11 can create an assumption 

about the possible existence of an alternative set of matrices, the vectors of forming 

elements which are located in the vicinity of the vertices of the auxiliary diagonal of 

the square (fig. 12). 

 

Fig. 12. Alternative arrangement of vectors FE matrices of Galois 



 

However, this is a false assumption, as none of the FE   fields (2 )nGF  above 

the IP nf  leads to the formation of a primitive Galois matrix. And this excludes the 

possibility of building PRS generators of the maximum period [12-14]. 

5 Conclusions 

The main scientific results of this study include the following:  

1. Algorithms for the synthesis of the so-called generalized Galois matrices have 

been developed. Generalized matrices are those formed by primitive elements    

over IP 
nf , which are not necessarily primitive. In addition to Galois matrices, many 

generalized matrices also include other matrices (Fibonacci, conjugate, and backward 

matrixes). All the above matrices are interconnected by a set of linear transformations 

(left- and right-hand transposition). The generalized matrixes of Galois (as well as 

classical ones) are intended for the construction of LFSR generators of PRS of the 

maximum period. The advantage of the widespread PRS generators is that they, un-

like the classic LFSR generators, are free from the Berlekemp-Messi attack.  

2. The postulate, according to which the generalized Galois matrices appear to be 

isomorphic elements forming them, is formulated and confirmed [15, 16].   

3. A new algorithm for calculating the inverse field elements (2 )nGF  over IP nf  

is proposed, which is simpler in comparison with the widely used generalized Euclid-

ean algorithm. 
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