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Abstract. Integrating logic reasoning and deep learning from sen-
sory data is a key challenge to develop artificial agents able to op-
erate in complex environments. Whereas deep learning can operate
at a large scale thanks to recent hardware advancements (GPUs) as
well as other important technical advancements like Stochastic Gra-
dient Descent, logic inference can not be executed over large reason-
ing tasks, as it requires to consider a combinatorial number of pos-
sible assignments. Relational Neural Machines (RNMs) have been
recently introduced in order to co-train a deep learning machine and
a first-order probabilistic logic reasoner in a fully integrated way. In
this context, it is crucial to avoid the logic inference to become a bot-
tleneck, preventing the application of the methodology to large scale
learning tasks. This paper proposes and compares different inference
schemata for Relational Neural Machines together with some pre-
liminary results to show the effectiveness of the proposed method-
ologies.

1 Introduction

Empowering machine learning with explicit reasoning capabilities
is a key step toward a trustworthy and human-centric Al, where
the decisions of the learners are explainable and with human-
understandable guarantees. While sub-symbolic approaches like
deep neural networks have achieved impressive results in several
tasks [7], standard neural networks can struggle to represent rela-
tional knowledge on different input patterns or relevant output struc-
tures. Recently, some work has been done to learn and inject re-
lational features into the learning process [17, 16]. Symbolic ap-
proaches [3, 18] based on probabilistic logic reasoners can per-
form an explicit inference process in presence of uncertainty. An-
other related line of research studies hybrid approaches leveraging
deep learning schemas and neural networks to learn the structure of
the reasoning process like done, for instance, by Neural Theorem
Provers [19] or TensorLog [11].

However, bridging the gap between symbolic and sub-symbolic
levels is still an open problem which has been recently addressed by
neuro-symbolic approaches [12, 20]. Hu et al. [10] inject the prior
knowledge into the network weights via a distillation process but
with no guarantee that the logic will be properly generalized to the
test cases. Deep Structured Models [1] and Hazan et al. [9] imposes
statistical structure on the output predictions. The Semantic Loss [22]
defines a loss which encodes the desired output structure. However,
the loss does not define a probabilistic reasoning process, limiting
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the flexibility of the approach. Deep ProbLog [13] extends the prob-
abilistic logic programming language ProbLog [3] with predicates
implemented by a deep learner. This approach is powerful but lim-
ited to cases where exact inference is possible. Deep Logic Mod-
els [14] improve over related approaches like Semantic-based Reg-
ularization [4], and Logic Tensor Networks [5], but they fail to per-
fectly match the discrimination abilities of a pure-supervised learner.

Relational Neural Machines (RNM) [15] can perfectly replicate
the effectiveness of training from supervised data of deep architec-
tures, while integrating the full expressivity and rich reasoning pro-
cess of Markov Logic Networks [18]. RNMs like any probabilistic
reasoner based on a graphical model representing the fully grounded
FOL knowledge are strongly limited in the scale at which they can
operate. Indeed, the large combinatorial number of possible assign-
ments together with the complex casual dependency structure of the
inference requires to device appropriate approximate inference al-
gorithmic solutions. This paper proposes and studies different new
inference solutions that are thought to be effective for RNMs.

The outline of the paper is as follows. Section 2 presents the model
and how it can be used to integrate logic and learning. Sections 3 and
4 study tractable approaches to perform training and inference with
the model, respectively. Section 5 shows the experimental evaluation
of the proposed ideas on various datasets. Finally, Section 6 draws
some conclusions and highlights some planned future work.

2 Model

A Relational Neural Machine establishes a probability distribution
over a set of n output variables of interest y = {y1,...,yn}, given
a set of predictions made by one or multiple deep architectures, and
the model parameters. In this paper the output variables are assumed
to be binary, i.e. y; = {0, 1}.

Unlike standard neural networks which compute the output via a
simple forward pass, the output computation in an RNM can be de-
composed into two stages: a low-level stage processing the input pat-
terns, and a subsequent semantic stage, expressing constraints over
the output and performing higher level reasoning. The first stage pro-
cesses D input patterns € = {1, ..., p}, returning the values f
using the network with parameters w. The higher layer takes as input
f and applies reasoning using a set of constraints, whose parameters
are indicated as A, then it returns the set of output variables y.

A RNM model defines a conditional probability distribution in the
exponential family defined as:

PIFN) = 5 exp (Z mc(f,y)>

where Z is the partition function and the C' potentials ®. express
some properties on the input and output variables. The parameters



y1 = savanna(z:

y2 = zoo(z1)

1 = savanna(zs) ys = z00(x2)

Figure 1. The graphical model representing an RNM, where the output
variables y depend on the output of first stage f, processing the inputs
{z1, z2} instantiated for the rules Vz lion(z) = savanna(z) V zoo(x),
Vavz' sameloc(z, z') A savanna(z) = savanna(z'), and
Vavz' sameloc(z,z') A zoo(z) = zoo(z').

A ={\i,..., Ac} determine the strength of the potentials ..

In a classical and pure supervised learning setup, the patterns are
ii.d., it is therefore possible to split the y, f into disjoint sets group-
ing the variables of each pattern, forming separate cliques. Let us in-
dicate as y(z), f(x) the portion of the output and function variables
referring to the processing of an input pattern x. A single potential
dy corresponding to the dot product between y and f is needed to
represent supervised learning, and this potential decomposes over the
patterns yielding the distribution,

po(ylf,N) —exp (Z do(y ))) (1
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where S C « is the set of supervised patterns. As shown by Marra et
al. [15], the cross entropy loss over sigmoidal or softmax outputs can
be exactly recovered by maximizing the log-likelihood of a RNM for
one-label and multi-label classification tasks, respectively.

Neuro-symbolic integration can be obtained by employing one
potential ®¢ enforcing the consistency with the supervised data to-
gether with potentials representing the logic knowledge. Using a sim-
ilar approach to Markov Logic Networks, a set of First—Order Logic
(FOL) formulas is input to the system, and a potential ®. for each
formula is considered. It is assumed that some (or all) the predicates
in a KB are unknown and need to be learned together with the pa-
rameters driving the reasoning process.

In the following we refer to grounded expression (the same ap-
plies to atom or predicate) as a FOL rule whose variables are as-
signed to specific constants. It is assumed that the undirected graph-
ical model is built such that: each grounded atom corresponds to a
node in the graph; all the nodes corresponding to grounded atoms
co-occurring in at least one rule are connected on the graph. As a re-
sult, there is one clique (and then potential) for each grounding g. of
the formula in y. It is assumed that all the potentials resulting from
the c-th formula share the same weight ., therefore the potential
®. is the sum over all groundings of ¢. in the world y, such that:
Pe(y) =32,  Dc(Ye.g) Where ¢e(ge) assumes a value equal to 1
and 0 if the grounded formula holds true and false. This yields the

probability distribution:
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This will allow to develop the data embeddings as part of training by
enforcing the consistency between the reasoner and network outputs,
while distilling the logical knowledge into the network weights.

Figure 1 shows the graphical model obtained for a simple multi-
class image classification task. The goal of the training process is to
train the classifiers approximating the predicates, but also to establish
the relevance of each rule. For example, in an image classification
task, the formula Vz Antelope(x) A Lion(z) is likely to be associ-
ated to a higher weight than Vz PolarBear(xz) A Lion(z), which
are unlikely to correlate in the data.
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3 Training

The computation of the partition function requires a summation over
all possible assignments of the output variables, which is intractable
for all but trivial cases. A particularly interesting case is when it is
assumed that the partition function factorizes over the potentials like
done in piecewise likelihood [21]:

A H Zc = H ZeXp(ACQC(f, y:)) (2)
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where y. is the subset of variables in y that are involved in the com-
putation of ®.. Then the piecewise-local probability for the c-th con-
straint can be expressed as:

exp (Ac®@e(f, ye))
Ze

Under this assumption, the factors can be distributed over the po-
tential giving the following generalized piecewise likelihood:
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If the variables in y are binary, the computation of Z requires sum-
mation over all possible assignments which has 0(2"") complexity.
Using the local decomposition this is reduced to O(|ye|-2"¢), where
C is the index of the formula corresponding to the potential with the
largest number ne of variables to ground.

If the c-th constraint is factorized using the PL partitioning, the
derivatives of the log-likelihood with respect to the model potential
weights are:

dlogp(ylf,A)
OA¢

and with respect to the learner parameters:

q)c(f,y) - Ep(PL [q)c]
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EM When the world is not fully observed during training, an
iterative Expectation Maximization (EM) schema can be used to
marginalize over the unobserved data in the expectation step using
the inference methodology as described in the next paragraph. Then,
the average constraint satisfaction can be recomputed, and, finally,
the A\, w parameters can be updated in the maximization step. This
process is then iterated until convergence.



4 Inference.

This sections proposes some general methodologies which can be
used to make RNM inference tractable.

Inference tasks can be sub-categorized into different groups. In
particular, MAP inference methods search the most probable assign-
ment of the y given the evidence and the fixed parameters w, A. The
problem of finding the best assignment ¢* to the unobserved query
variables given the evidence y© and current parameters can be stated
as:

y* =arg IILE}XZ Ac®e(f, [y y°]) 3

where [y’, y°] indicates a full assignment to the y variables, split
into the query and evidence sets.

On the other hand, MARG inference methods compute the
marginal probability of a set of random variables given some evi-
dence. MARG inference sums the probability of an assignment of a
query variable y, over all possible worlds. MARG inference for a
single query variable is defined as:

> plfAY) Vyey
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Both MAP and MARG inference are intractable in the most gen-
eral cases as they require to consider all possible assignments. There-
fore, approximate methods must be devised to be able to tackle the
most interesting applications. This section proposes a few inference
solutions that can be naturally applied to RNM.

Piecewise MAP Inference. MAP inference in RNMs requires
to evaluates all possible 2lvl assignments, which is generally in-
tractable. A possible solution is to employ the the piecewise approx-
imation (Equation 2) to separately optimize each single factor, so
reducing the complexity to 2™¢ with n; the size of the largest fac-
tor. The main issue with this solution is that the same variable can
be present in different factors, and the piecewise assignments can be
inconsistent across the factors. The assignments to variables shared
across factors can be performed by selecting the assignment selected
by the most factors.

Fuzzy Logic MAP Inference. The y values can be relaxed into
the [0, 1] interval and assume that each potential ®.(f,y) has a
fuzzy-logic [8] continuous surrogate @ (f,y) which collapses into
the original potential when the y assume crisp values and is contin-
uous with respect to each y;. When relaxing the potentials to accept
continuous variables, the MAP problem stated by Equation 3 can
be solved by gradient-based techniques, by computing the derivative
with respect of each output variable:

dlogp(y'ly°, £, A) o0 (f, [v' ¥°])
= )\67
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Different t-norm fuzzy logics have been considered as continuous
relaxations of logic formulas [4] e.g. Godel, Lukasiewicz and Prod-
uct logics. Furthermore, a fragment of the Lukasiewicz logic [6] has
been recently proposed for translating logic inference into a convex
optimization problem.

Piecewise MARG. The piecewise approximation defined by
Equation 2 allows to marginalize the probability of an assignment

over the single factors, allowing to efficiently perform MARG infer-
ence as:
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Finally the shared variable can be reconciled by selecting the assign-
ment for a shared variable that has the highest marginal probability.

Piecewise Gibbs. Gibbs sampling can be used to sample from the
distribution and then select the sample with the highest probability:

y* =arg g}i);z )\c<1)c(.f7 [y,7 ye})

In order to speed up the process, a blocked Gibbs sampler may
be considered, by grouping many variables and then sampling by
their joint distribution. For instance, piecewise approaches suggest to
group the variables belonging to potential, exploiting the constraints
expressed by the potential on the samples. To speed up the process,
a certain flip can be accepted, only if it yields a strictly greater prob-
ability value (Monotonic Gibbs sampling).

Piecewise Gibbs with Fuzzy Map Inference. Gibbs sampling
would generally require a high number of samples to converge to
the correct distribution. Hybrid inference methodologies can be used
to reduce the burn in time by starting the Gibbs sampler from the
MAP solution found using efficient approximate inference methods
like Fuzzy Logic MAP. The sampler then modifies the solution by it-
eratively sampling from the piecewise local distributions. Combining
Fuzzy Logic MAP and a Gibbs sampler allows to avoid low-quality
local minima where fuzzy MAP solutions can get stuck, while speed-
ing up the Gibbs sampling convergence.

Relax, Compensate and Recover. Relax, Compensate & Recover
(RCR) [2] is an algorithm to transform a graphical model into a sim-
plified model, where inference is tractable. This simplified model is
changed while running the algorithm, by computing compensations
to recover a solution as close as possible to the correct distribution.

Graph Neural Networks. A few recent works show that inference

in probabilistic models can be approximated by using Graph Neu-
ral Networks [23]. This would allow to define an end-to-end neural
RNM formulation.

5 Experiments

The experimental evaluation aims at testing some of the proposed
inference methods. The evaluation is still partial as more methods
are currently being implemented.

The evaluation is carried out on a toy task, that is designed to high-
light the capability of RNMs to learn and employ soft rules that are
holding only for a sub-portion of the whole dataset. The MNIST
dataset contains images of single handwritten digits. In this task it
is assumed that additional relational logic knowledge is available in
the form of a binary predicate link connecting image pairs. Given
two images z,y, whose corresponding digits are denoted by i, 7, a
link between x and y is established if the second digit follows the
first one, i.e. ¢ = j + 1. However, the link predicate can be noisy,



such that there is a degree of probability that the link(z, y) is estab-
lished for i # j + 1. The knowledge about the link predicate can be
represented by the FOL formulas:

VaVy link(x,y) A digit(z,i1) = digit(z,i+1) :=0,...,8,

where digit(x,1) is a binary predicate indicating if a number i is the
digit class of the image x. Since the link predicate holds true also for
pairs of non-consecutive digits, the above rule is violated by a certain
percentage of digit pairs. Therefore, the manifolds established by the
formulas can help in driving the predictions, but the noisy links force
the reasoner to be flexible about how to employ the knowledge. The
training set is created by randomly selecting 1000 images from the
MNIST dataset and by adding the link relation with an incremen-
tal degree of noise. For each degree of noise in the training set, we
created an equally sized test set with the same degree of noise. A
neural network with 100 hidden relu neurons is used to process the
input images. Table 1 reports the results of RNM inference meth-

Plink noise NN Fuzzy MAP | Piecewise Gibbs | Fuzzy MAP EM
0.0 0.78 1.00 1.00 1.00
0.2 0.78 1.00 1.00 1.00
0.4 0.78 0.99 0.98 0.96
0.6 0.78 0.89 0.88 0.96
0.8 0.78 0.86 0.64 0.86
0.9 0.78 0.78 0.28 0.78
Table 1. Accuracy of the different inference methods with respect to the

percentage of link that are established between digit image pairs violating
the logical rule.

ods against the baseline provided by the neural network varying the
percentage of links that are predictive of a digit to follow another
one. Using an EM based schema tends to consistently outperform
other methods, this is because EM allows to also improve the under-
lying neural network by back-propagating the reasoning predictions
to the learner. Other inference methods will be tested within EM.
Fuzzy MAP tends to find good solutions constantly improving over
the baseline. It is important to notice how RNM is robust with re-
spect to the high link noise levels even when the relational data is not
carrying any useful information, the final solution still matches the
baseline.

6 Conclusions and Future Work

This paper shows different inference methods for Relational Neural
Machines, a novel framework to provide a tight integration between
learning from supervised data and logic reasoning. As future work,
we plan to undertake a larger experimental exploration of RNM for
more structured problems using all the inference methods proposed
by this paper.
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