
Improving the adaptation of web applications to
different versions of software with MDA

A. M. Reina Quintero1, J. Torres Valderrama1, and M. Toro Bonilla1

Department of Languages and Computer Systems
E.T.S. Ingenieŕıa Informática.
Avda. Reina Mercedes, s/n.

41007 Seville, Spain
{reinaqu, jtorres, mtoro}@lsi.us.es

http://www.lsi.us.es/~reinaqu

Abstract. The Model-Driven Architecture (MDA) has been proposed
as a way of separating the details of an implementation platform from the
problem domain. This paper shows that this approach is also good for
the adaptation of software to the different versions of the same platform.
As an example, Spring Web Flow (SWF), a framework that allows the
definition and representation of user interface flows in web applications,
has been chosen. After six months of evolution, the web flows defined with
SWF 1.0 RC1 were not compatible with SWF 1.0. The paper analyzes the
changes introduced by the new release, and it proposes an MDA-based
approach to soften the impact of these changes.

1 Introduction

The fast evolution of technology has caused the period of time that companies
take for providing new versions of their products be shortened, if they want to
be up-to-date. Many times, new releases offer new and improved features, but
also cause backward incompatibility. This problem is stressed in open source
projects, because new versions are often released out due to their continuous
interaction with end users. Therefore, it is crucial to adapt software products
that are being developed with these frameworks at a minimum cost.

On the other hand, web applications are becoming more and more complex,
and nowadays, they are more than just simple interconnected web pages. Thus,
an important piece in its development are Web Objects [4], that is, pieces of com-
piled code, that provide a service to the rest of the software system. These pieces
of code are often supported by open source frameworks, and as a consequence,
the evolution of these frameworks has also become an important challenge in
web application evolution.

The process of releasing out new versions of a framework or a software
product can be considered as a software evolution process. There are several
techniques for software evolution that range from formal methods to ad-hoc
solutions. But the most promising ones are: reengineering, impact analysis tech-
niques, category-theoretic techniques and automated evolution support. MDA



also seems to be a promising philosophy for dealing with software evolution, not
only because it allows the separation of the domain concerns from the technolo-
gical concerns, but also because design information and dependencies are explicit
in models and transformations, respectively.

This paper shows how the MDA philosophy can help us to adapt easily to
a new release of a framework the software artifacts produced with an earlier
version. Furthermore, it analyzes the evolution process in the MDA. To demon-
strate the benefits of this philosophy, the paper will be based on a case study.
The case study describes how a web flow defined with Spring Web Flow 1.0-RC1
can be adapted to Spring Web Flow 1.0, a more stable release. Spring Web Flow
(SWF)1 is a component of the Spring Framework’s web stack focused on the
definition and execution of user interface (UI) flows within a web application.
A user interface flow can be considered as part of the navigation process that a
user has to deal with while interacting with a web application. For the sake of
having a clear idea of the period of time between the two sreleases, it should be
highlighted that SWF 1.0 RC1 was out in May 2006, while SWF 1.0 was pub-
licly accessible in October 2006. And, although both versions share most of the
concepts, there are some technical details that differ and that cause backward
incompatibility.

The rest of the paper is structured as follows: In section 2, the problem is
introduced by example, that is, the working example is explained and prob-
lems are briefly highlighted. Secondly, the approach is explained following three
stages: metamodel and tranformation definitions, evolution analysis and change
propagation. After that, some related works are enumerated and, at last, the
paper is concluded and some future lines of work are pointed out.

2 Problem Statement

Due to the constant evolution of technology, new versions of software products
are released out more and more frequently. This cycle of new versions is spe-
cially speeded up when dealing with open source products. This is due to user
participation: users are constantly sending reports about mistakes. In this con-
text, a frequent operation is software migration, thus the study case is going
to be focused on a migration from Spring Webflow 1.0 RC1 to Spring Webflow
1.0, a new, more stable release, which appeared just 6 months after the public
appearance of the 1.0 RC1 release.

A flow defines a user dialog that responds to user events to drive the execution
of application code to complete a business goal. And, although the elements
or constructs needed to define a web flow are the same in both versions, the
technical details differ from one release to the other. As a consequence, there is
no backward compatibility.

In order to be clear enough, the flow used as study case is simple, but it
covers the main issues needed. The initial example has been obtain from [2],
1 The Spring Web Flow Home Page: http://opensource.atlassian.com/

confluence/spring/display/WEBFLOW/Home



and can be seen as part of the navigation path from a simple e-shop web site.
The flow simulates part of the dialog that takes place when a user wants to buy
certain product. The navigation steps that a user has to pass through to buy
some thing are: Firstly, select the Start link. Secondly, enter his personal data.
Thirdly, select the properties of the product. And, finally, after pushing the Buy
button, he will obtain a message reporting about the shopping.

<<ActionState>>setupForm <<ActionState>>bindAndValidatePersonalDetails<<ViewState>>personalDetailsViewsuccess submit
<<DecisionState>>testQuantity true

<<ViewState>>orderDetailsView
<<ActionState>>bindAndValidateOrderDetails

<<EndState>>submissionSuccess
[${flowScope.order.cancelled} ]

successerror

false

buytoPersonalDetails error
success

<<ViewState>>personalDetailsView <<ViewState>>orderDetailsViewsuccess <<DecisionState>>testQuantitytrue <<EndState>>submissionSuccess
[${flowScope.order.cancelled} ]falsetoPersonalDetailssuccess buy<<ViewState>>personalDetailsView <<ViewState>>orderDetailsViewsuccess <<DecisionState>>testQuantitytrue <<EndState>>submissionSuccess
[${flowScope.order.cancelled} ]falsetoPersonalDetailssuccess buy

(a) SWF 1.0 RC1 flow

(b) SWF 1.0 flow

Fig. 1. State chart corresponding to the web flow specified in SWF 1.0 RC1

The implementation of this dialog using SWF requires the definition of a web
flow. This web flow can be specified in two different ways, by means of an XML-
file or using a Java-code. It is a good technique to draw a state chart in order
to understand the web flow better. The flow consists of six states (Fig. 1(a)):
three ActionState’s, two ViewState’s and one DecisionState. Initially, the
flow starts its execution by an ActionState which is in charge of setting up the
form. Then, the form is displayed through the personalDetailsView state. After
that, the flow enters into another ActionState, which will bind and validate the
data introduced by the user. If there are any problems with data, the flow will go
back again to the personalDetailsView state; otherwise, it will enter into the
orderDetailsView state, and the process will be repeated. Finally, if all data are
right, the flow will enter into the testQuantity state, a DecisionState, that
can route the flow depending on the value of the attribute cancelled. However,
if the flow evolves in order to be SWF 1.0 compliant, we have the state chart



shown in Figure 1(b). The number of states has been reduced from six to three.
That is, all the ActionState’s have disappeared.

3 The approach

3.1 Metamodel and transformation definition

The first step in the approach is to obtain a metamodel which expresses the
concerns that are implicit in the framework and their relationships. In our case
study, a metamodel of Spring Web Flow is needed. In this case, two different
metamodels should be defined, one for the SWF 1.0 RC1, and the other one
for SWF 1.0. The great advantage here is that, at this point, both metamodels
should not differ too much. The models conforming to these metamodels are also
needed. It is likely that we have models conforming to SWF 1.0 RC1, but if the
model-driven process has been not followed, some reengineering techniques could
be applied to obtain them. Finally, a set of transformations for obtaining the
code should be given, whether model-to-text or model-to-model transformations.
Furthermore, with all these artifacts, an analysis should be done in order to
determine the kind of evolution that has been entered into the new release of
the framework.

3.2 Analysing the evolution

In order to face up to the adaptation process, the artifacts that are subject to
change should be identified, and also, which of these changes should be classi-
fied as evolution. In MDA there are three ways of evolution: model evolution,
transformation evolution and metamodel evolution. In model evolution, changes
to source models must be mapped into changes to target models through the
transformation rules. In transformation evolution, changes to the transformation
definition must be mapped into changes to target models. Finally, in metamodel
evolution, changes to a metamodel must be mapped to changes to described
models, plus to transformation definitions.

This section will analyze the different changes introduced in the Spring Web
Flow framework, and it will classify them according to the ways of evolution in
MDA. In our study case, the main changes introduced to Spring Web Flow are:

1. From DTD’s to XMLSchemas. Although structurally, this change is im-
portant, conceptually is very simple. The only thing to do is to define a new
set of model-to-text transformations. And, if the model-to-text transformer
is based on templates, we only have to modify the template. This is a kind
of model evolution.

2. Changing the root and the initial state. This change is also simple.
While in SWF 1.0 RC 1, the root of the XML webflow was <webflow> in
SWF 1.0, the root is <flow>. Moreover, the way of specifying the start state
has also been modified: in SWF 1.0 RC, the initial state was specified as an



attribute of the root element <webflow id="orderFlow" start-state="¬
setupForm">; however, in SWF 1.0, it is defined as an XML element <start-
state idref="personalDetailsView"/>. These modifications only imply
the template redefinition. This is a kind of model evolution.

3. New renderAction property in the ViewState This change is due to
the introduction of a new property renderAction belonging to ViewState.
But this new property implies a bit of conceptual change, because we should
change the design of the flow in order to take advantage of the advanced
features of the framework. Thus in SWF 1.0 RC1 an initial ActionState
was needed in order to setup initially a form. If we look at the Figure 1, we
will see that the start state is an ActionState named setupForm. However,
in SWF 1.0 this can be represented by a property <render-actions> linked
to the ViewState that is in charge of rendering the form. As a result of the
new design, in the Figure 1(b), the ActionState has completely disappeared.
This is a kind of metamodel evolution.

4. Actions in transitions This change is not really due to the new version of
SWF, but due to the inexperience of the authors with SWF when working
with SWF RC1. Thus, two states (one ViewState and one ActionState)
were defined in order to specify, on the one hand, a web form, and on the
other hand, the binding and validation of data introduced by the user in
that form. There, the ViewState named personalDetailsView is followed
by the ActionState named bindAndValidatePersonalDetails, which is
in charge of the binding and validation of user data. In that flow there is
also another pair of states that follow the same pattern orderDetailsView
and bindAndValidateOrderDetailsView. However, these two states can be
replaced for just one ViewState, and the validation and biding can be trig-
gered by the transition, which implies the disappearance of the ActionState.
Thus, if we compare the Figures 1(a) and 1(a), we will see that the number of
states has been reduced, and now, the bindAndValidatePersonalDetails
and bindAndValidateOrderDetails have been missed. This is a kind of
transformation evolution.

3.3 Change propagation

In order to migrate our application to be compliant to the new version of the
framework, different actions should be undertaken. And the concrete action will
depend on the kind of evolution. The easiest evolution to face up to is the model
evolution. In this case, the only thing to do is reformulate the set of model to
text transformations defined for generating the XML-Webflow files.

The metamodel evolution implies not only the modification of the Spring
Webflow metamodel, but also the definition of new model to text transforma-
tions. In order to migrate the old Spring Webflow models into the new ones, two
different strategies can be followed: one based on horizontal transformations, and
the other one based on vertical transformations. Horizontal transformations [1]
change the modular structure of an application at the same level of abstraction.
If we think in model transformations, source models and target models should



be expressed at the same abstraction level. On the other hand, vertical transfor-
mations [1] involve the transformation of a high abstraction level model into a
lower level one.

In the strategy based on horizontal transformations, besides the original
model-to-text transformations, a set of horizontal model-to-model transforma-
tions has to be defined. These transformations along with the original and
evolved metamodels, and the original model will be the input of a model trans-
formation engine, which will produced the evolved model as output. Applying
the model to text transformations, the evolved Spring Webflow will be obtained.

The second strategy is more aligned to MDA and it consists on the definition
of a new metamodel which captures only the relevant concerns, that is, it should
ignore those elements that are platform dependent. This second approach is a bit
more expensive than the first one, in the sense that new artifacts are needed, and
they are conceptually more complex. But it also has some advantages. Firstly,
as the different versions deal with the same concepts, it is likely that the PIM
metamodel will not change very often, and the important modifications should
be at the PSM and transformation levels. Secondly, with the second approach
we have to define a new metamodel for the new version of the product, but many
times, this new metamodel is very similar to the one defined for the previous
version, so this task does not suppose too much work. And, finally, if we define
a PIM metamodel, we can deal with the same concepts but in other platforms.
Finally the model evolution can be solved defining a set of horizontal transfor-
mations to reformulate the old models. In this case, the metamodel remains the
same, and also the model to text transformations.

4 Related Work

The model-driven software evolution is a new area of interest, thus in the 11th
European Conference on Software Maintenance and Reengineering a workshop
on model-driven software evolution has been held. In [7] a survey of the problems
raised by the evolution of model-based software systems is made and it is stated
that Model-Driven Engineering requires multiple dimensions of evolution. Our
approach deals with three of these dimensions. On the other hand, in [6] the
drawbacks of model driven software evolution are analyzed, and as a conclusion
the authors state that a dual approach is needed, that is, to use requirements
evolution to generate the model specification and the test specification to validate
the system. Our approach follows a top-down approach, but, at this point we
are not interested in validation or verification.

In [3] incompatibilities between models and metamodels caused by meta-
model revisions are faced up. The proposed approach is based on the syncroniza-
tion of models with evolving metamodels, but this approach only deals with one
dimension of evoulution, the metamodel evolution. [5] proposes a framework
where software artifacts that can be represented as MOF-compliant models can
be synchronized using model transformations, but they are focused on tracea-
bility of changes of software models . Finally, in [8], a systematic, MDA-based



process for engineering and maintaining middleware solutions is outline. In our
approach, SWF can be considered as part of a corporate middleware.

5 Conclusions and Further Work

This paper has pointed out how we can take benefit of the MDA philosophy in
order to have a better adaptation to the different versions of the same software
product. To do so, a case study based on the Spring Web Flow framework has
been introduced. An analysis of the changes introduced in the new version of
the framework has been made. Furthermore, two different approaches based on
model transformations have been considered to face to metamodel evolution. In
this case, the following artifacts are needed: one SWF 1.0 RC1 metamodel, one
SWF 1.0 metamodel, one web flow metamodel (this one, at the PIM level), two
sets of model to text transformations (one for obtaining the XML file conforming
to SWF 1.0 RC1, and another one for obtaining the XML conforming to SWF
1.0); and, finally, a set of model to model transformations, which will transform
the web flow model (at the PIM level) into a model for SWF 1.0 RC1 and SWF
1.0, respectively.

One of the future works is the implementation, via web, of a metamodel
repository, in such a way that we can count with the metamodels of the different
versions of the frameworks. Thus, a set of metamodels will be publicly available
in order to improve the adaptation to different releases of a framework.

References

1. K. Czanercki and U.W. Eisenecker. Generative Programming. Methods, Tools and
Applications. Addison Wesley, 2000.

2. Steven Devijver. Spring web flow examined. JavaLobby.
3. B. Gruschko and D. S. Kolovos. Towards synchronizing models with evolving meta-

models. In Proc. Int. Workshop on Model-Driven Software Evolution held with the
ECSMR, 2007.

4. A. E. Hassan and R. C. Holt. Architecture recovery of web applications. In Pro-
ceedings of the 24rd Int. Conf. on Software Engineering, 2002, pages 349–359, 2002.

5. I. Ivkovic and K. Kontogiannis. Tracing evolution changes of software artifacts
through model synchronization. In Proc. of the 20th IEEE International Conference
on Software Maintenance (ICSM’04), 2004.

6. H. M. Sneed. The drawbacks of model-driven software evolution. In Proc. Int. Work-
shop on Model-Driven Software Evolution held with the 11th European Conference
on Software Maintenance and Reengineering, 2007.

7. A. van Deursen, E. Visser, and J. Warmer. Model-driven software evolution: A
research agenda. In Proc. Int. Ws on Model-Driven Software Evolution held with
the ECSMR’07, 2007.

8. J. P. Wadsack and J. H. Jahnke. Towards model-driven middleware maintenance.
In Proc. Int. Workshop on Generative Techniques in the context of Model-Driven
Architecture, 2002.


