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ABSTRACT
In this work, we present a flood detection technique from time series
satellite images for the City-centered satellite sequences (CCSS) task
in the MediaEval 2019 competition [1]. This work utilises a three
channel feature indexing technique [13] along with a VGG16 pre-
trained model for automatic detection of floods. We also compared
our result with RGB images and a modified NDWI technique by
Mishra et al, 2015 [15]. The result shows that the three channel
feature indexing technique performed the best with VGG16 and
is a promising approach to detect floods from time series satellite
images.

1 INTRODUCTION
Flooding is the most common natural disaster event, which affects
people every year all around the world. In most cases, it directly
impacts human life and damages properties. In recent years, many
techniques have been developed to organise rescue operations in
such events in more efficient ways. Flood mapping through satellite
images is one such area where a lot of research has been conducted
aiming to monitor floods and perform timely risk analysis [2, 3, 5,
18].

Sentinel-2 provides high resolution multi-spectral images, with
13 bands for emergency services, which can also be useful to moni-
tor and analyse the flooding situation. Each of these bands high-
lights a certain geological features like water, land or clouds. Each
band offers a different reflectance and absorbance property which
can be exploited for flood detection and monitoring.

Among the 12 bands, visible range bands Red, Green and Blue
create a true colour image. These images can map floods and stand-
ing water but often suffer from cloud or building shadows which
prevents accurate mapping. For that reason several water index
techniques have been proposed in order to reduce the effects of
shadows and expose appropriate water values. The near infrared
(NIR) band highly absorbs water reflectance and reflects vegeta-
tion. This property of NIR has made it a popular choice in the past
in order to extract water bodies from images. For that reason the
normalised difference water index (NDWI) was introduced [14],
which leverages NIR and the green band as shown in equation 1.
NDWI maximises water features and minimises all other features.
Leveraging this particular water indexing technique resulted in the
development of many improvements in recent years [6, 20].

NDW I =
Green − NIR

Green + NIR
(1)
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NDWI struggles to separate built up areas from water bodies, as
NDWI and built-up falls in same range [20] of reflectance values.
Considering the built-up area issue and incapability of shallow
water detection using NDWI, a combination of two indices has
been proposed [15]. The combination of the NDWI water index
along with an index using Blue and NIR bands to highlight shallow
water along with water bodies. Similarly, Li et al.,2017 [13] proposed
a three channel feature index for supervised learning. In this work
they leveraged the three indexes being NDVI, NDWI, and RE-NDWI
and combined them to create 3 channel images instead of one like
RGB [10]. All these indexing techniques are capable of mapping
water bodies. Consequently, we assume that these can also be useful
in flood water mapping. This could be helpful to rescue teams and
provide an improved understanding of disaster situations and areas.
As these processes are mostly manual, automating them can be
hugely helpful in order to have accurate information in a timely
manner.

Lately, Deep Convolutional Neural Networks (CNNs) such as
AlexNet [11], VGG16 [17], have performed very well in many do-
mains such as speech recognition, image classification and natural
language processing. Remote sensing has also become a widely
popular area where deep CNNs have shown good performance [16].
However, in order to train the CNN models with a large number
of layers, a significant amount of data is required. This is one of
the main challenges in the domain of flood detection. At the same
time it has been shown that transfer learning or pre-trained deep
CNNs can be a strong option for automating flood detection [8].
Among the deep CNNs, VGG16 has shown great performance pre-
viously in many image classification tasks like object detection,
image segmentation and scene classification [7].

Flood water is mostly a shallowwater body, and difficult to detect
due to built-up area or cloud shadows. In this work we propose
that if each type of feature such as vegetation, water or clouds are
separated efficiently, it can be trained using a pre-trained deep CNN,
which is capable to automate the process of flood detection in time
series satellite imagery.

2 APPROACH
2.1 Image Processing

2.1.1 Run 1. As shallow water is difficult to map in remote
sensing images due to built-up areas, a combination of water index
techniques has been proposed in the past [15]. In this approach
NDWI is used along with Blue and NIR band indexing as shown in
equation 2

ModNDW I =
Green − NIR

Green + NIR
+
Blue − NIR

Blue + NIR
(2)
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2.1.2 Run 2. For this run we used true colour images, that is
three channel RGB composite images with Red, Green and Blue
bands.

2.1.3 Run 3. For this run we leveraged the three-channel index
feature space approach [13]. The images are processed to NDVI [eq.
3] that uses NIR and Red bands, NDWI [eq. 1], and Red Edge NDWI
(RE-NDWI) [eq. 4], which uses green and red edge (RE) vegetation
band. All three of them are then combined horizontally to create
a three-channel images like RGB. This approach highlights the
individual properties of vegetation, water and clouds.

NDV I =
Red − NIR

Red + NIR
(3)

RE_NDW I =
Green − RE

Green + RE
(4)

2.2 Model
The VGG16 network is one of the most popular deep CNN’s for
image classification and object detection [7, 8, 12]. It consists of 13
convolutional layers and 3 fully-connected layers. We leveraged
the pre-trained VGG16 network, which is trained on the ImageNet
dataset [4]. Initial layers only extract the general features, and task
specific features are extracted by the later layers. We froze the initial
4 blocks and leveraged the last block for our task.

2.3 Experiment
The 12 band data was provided by MediaEval 2019 under subtask
City-centered satellite sequences (CCSS) of the multimedia satellite
task [1]. It consists of 267 sets of sequences in the development
dataset and 68 sets in the test dataset. For the training and testing
of the model we split the development dataset into 80% training set,
10% validation set, and another 10% development test set. Data had
imbalance class, so we used stratified sampling by class to split the
data into train, test, and validation datasets. We also used an image
augmentation technique for training datasets by shifting, rotating
and flipping the images and achieved the boost of approximately
2-4%.

VGG16 was originally trained to work on 3-channel image data
like RGB. However, Mod-NDWI creates a single-channel images
like greyscale, which we consequently converted into a 3-channel
image assuming identical values for each input channel.

For processing the time series image, we used a pixel based
technique. For that, we created the average image of each set of
sequence images after individual image processing and fed those to
the VGG16 model. The average image modifies only the changed
values due to change in image while keeping unchanged values the
same. The changed values in average image possibly be influenced
by cloud coverage or atmospheric changes. But as each changed
value is due to the different features, it might be distinguishable
from change due to water values.

These averaged images are then fed to the VGG16 model with
frozen 4 blocks and unfrozen last block for our task. The VGG16
network is then followed by a flatten layer, dense layer of 128 unit,
and softmax layer. We also used a dropout [19] of 0.5 to avoid over-
fitting and the ReLU activation function. The Adam optimiser [9]
with learning rate of 5e-6 has been used with binary cross entropy

Figure 1: Model Architecture

loss function. The model is trained for approx. 30 epochs depending
on best performance of each processed images.

3 RESULTS
For the evaluation of the model we used micro average F1 Score,
as mentioned in the competition evaluation task [1]. Also, image
data had imbalance classes, due to which accuracy measure can be
misleading, for that reason F1 score is an appropriate evaluation
metric as it provides balance score of precision and recall.

The result shown in table 1, which clearly show that the averag-
ing of images can provide good performance in order to detect if
a city is flooded. Additionally, the 3-dimensional feature indexing
technique outperforms the true colour RGB and Mod-NDWI [15]
by approximately 3% in both development and test results.

Table 1: Development and Test Results

Run Dev F1 Test F1
Run 1 0.963 0.897
Run 2 0.963 0.941
Run 3 1.00 0.970

4 CONCLUSION
In this work, we explored the automatic detection of floods in an
area for sequence of time series images. We used a pixel based
averaging approach on RGB, Modified NDWI and a three-channel
feature indexing technique along with deep CNNs model VGG16.
The results pointed towards significant improvements in flood de-
tection when using a three-channel feature index. Furthermore, it
appears that the averaging technique is efficient in detection of
flood in the city over the time period.
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