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Abstract. In this paper we present results for the Blood Glucose
Level Prediction Challenge for the Ohio2020 dataset. We have used
four variants of genetic programming to build white-box models for
predicting 30 minutes and 60 minutes ahead. The results are com-
pared to classical methods including multi-variate linear regression,
random forests, as well as two types of ARIMA models. Notably,
we have included future values of bolus and basal into some of the
models because we assume that these values can be controlled. Addi-
tionally, we have used a convolution filter to smooth the information
in the bolus volume feature. We find that overall tree-based GP per-
forms well and better than multi-variate linear regression and random
forest, while ARIMA models performed worst on the here analyzed
data.

1 INTRODUCTION

This paper describes our contribution to the Blood Glucose Level
Prediction Challenge (BGLPC) for the Ohio2020 dataset described
in [15]. We present a comparison among different algorithmic tech-
niques related to linear regression applied to this glucose prediction
problem, where we highlight four of them, based on tree-based Ge-
netic Programming (GP) [14]: GP, GP with offspring selection [1]
(GP-OS); and a single-objective as well as a multi-objective vari-
ant of Grammatical Evolution[16] denoted as GE and MOGE. In ad-
dition, we present three approaches based on classical methods. In
particular, we consider Random Forest [2], denoted as RF, a multi-
variate linear regression, denoted as LR, and two ARIMA models
[18], denoted as A-0 and A-1. All the methods will be briefly de-
scribed in the following section, as well as the pre-processing of data
we have performed. In data pre-processing several features where de-
rived from exising data and added to the dataset. The experimental
results will be analyzed in Section 3. We use root mean squared er-
ror (RMSE) and mean absolute error (MAE) as metrics to measure
the accuracy of our results. Finally, the conclusions will be drawn in
Section 4.
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2 ALGORITHMIC PROPOSAL

2.1 Data pre-processing

Data pre-processing proved to be challenging in this competition as
the exact rules of the competition were rather opaque especially re-
garding usage of future information and the difference between the
online and the offline case. The main pitfalls were: (i) the set of fea-
tures is different for the six data contributors, (ii) different sampling
rates for features, (iii) variance in the duration between sampling val-
ues (e.g. blood glucose values are usually sampled every five minutes
but not always), (iv) some missing values are encoded as zeros (e.g.
zero values for skin temperature).

In the ARIMA model we only used the glucose level. For all the
other models we used the following data pre-processing steps. We
prepared a Python script that we used for pre-processing training as
well as testing data. We used only the set features which are available
for all data contributors even though we built six individual models.
Correspondingly, we only used the following features: glucose level,
basal, bolus type, bolus dose, galvanic skin response (gsr), and skin
temperature. We used numerical encoding to encode the categorical
variable bolus type. For the skin temperature we removed all zeros
values. For the basal value we replaced all missing values with zeros.

We incorporated lagged variables for our models (e.g. the glucose
level five minutes ago). For this, we extended our dataset with lagged
features, whereby we used a maximum lag of two hours. So, for each
feature we produced 24 (120 min / 5 min) additional features. Hence,
we require values at multiples of five minutes. This is not the case
in the provided datasets. Therefore, we first prepared a intermediate
larger dataset with one row for every minute (equidistant sampling).
In this dataset, we had to fill missing values for glucose level, gal-
vanic skin response, and skin temperature. For the training data we
used linear interpolation to fill these gaps, for the test data we used
the last known value, since future values should not be used to predict
the glucose value. Using the sub-sampled and interpolated dataset
we prepared the lagged features and finally we reduced the number
of rows again by keeping only rows where we have a target glucose
value (either 30 or 60 minutes ahead).

In our modelling efforts for GP and GP-OS, we assume that the
basal value as well as the bolus type and dose can be controlled ex-
ternally. This assumes an application of the model as part of a model-
predictive controller for an insulin pump, whereby the goal is to op-
timize the automatic administration of insulin. Therefore, we have
included “future information” for the blood glucose prediction. The
variables that we assume to be controlled and known are: basal, bolus
type, and bolus dose. For these variables we included forward look-
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ing features up to the prediction horizon (6 features for 30 minutes
and 12 features for 60 minutes).

Finally, we added features for smoothed bolus dose values using
a convolution process. Even though the bolus dose is administered
almost instantaneously, the effect is not immediate. Instead, the un-
derlying dynamic uptake process has a longer-lasting diminishing ef-
fect. We used a convolution function (Bateman function) to produce
smoothed features for the bolus dose. For this smoothed bolus dose
we also prepared lagged features (backwards and forwards) using the
same scheme as described above.

2.2 Algorithms

After pre-processing the data as described above, we used machine
learning methods to find models that describe future values of glu-
cose after 30 minutes, ĝt+30 and after 60 minutes, ĝt+60, as a func-
tion of basal value (bv), bolus dose (bd), basis GSR value (gsr), basis
skin temperature (sk), bolus type (bt) and glucose level (gl):

ĝt+30/t+60 = f(bv(t− 60...t), bd(t− 60...t), ...) (1)

We used seven different algorithms to model the function de-
scribed in Equation (1). Linear Regression (LR) and Random For-
est (RF) are well known methods that are used as benchmarks for
our models. Additionally, we used two GP, two GE algorithms, and
two ARIMA models to predict the glucose value. Next, we detail our
proposals5.

2.2.1 Genetic Programming

Symbolic regression (SR) is a specific method of regression anal-
ysis, where the model is represented as a closed-form mathematical
expression [14]. A unique characteristic of SR is that the model struc-
ture does not have to be pre-specified. Instead, a SR solver (i.e. GP)
automatically constructs mathematical expressions from the set of
input variables (with their respective allowed time offsets) as well as
mathematical operators and functions.

We use genetic programming (GP), an evolutionary technique that
iteratively produces solutions for a given optimization problem. GP
is specifically designed to find programs that solve given tasks; when
applied to SR, these programs are formulas that are based on of
mathematical operators, variables, and constants. Being an evolu-
tionary algorithm, GP initially creates a randomly set of formulas
and then, over many generations, produces new formulas by means
of crossover and mutation operators. The improvement of these for-
mulas is reached by selection operators: in each generation the par-
ents for the new solution candidates are selected, and new individuals
can be inserted into the next generation either automatically or only
if they are selected by some kind of offspring selection. We used
the GP implementation in HeuristicLab 6 and created models with
a maximum size of 100 nodes and ten levels. We used GP in two
different variants:

• Standard GP (GP): 1000 individuals, tournament selection as par-
ent selection mechanism, elitism, termination criterion: 1000 gen-
erations.

5 Source files are available under request at absys@ucm.es
https://drive.google.com/drive/folders/
1TOGvl55iR10aqRFO8GoD2v6TQD4djiCE?usp=sharing

6 https://dev.heuristiclab.com

• Offspring selection GP (OSGP): 1000 individuals, random par-
ents selection, strict offspring selection (i.e., individuals are sent
to the next generation if they are better than their parents [1]),
elitism, termination criterion: maximum selection pressure 200
(i.e., as soon as the number of individuals that have to be cre-
ated so that 1000 successful ones are found in one generation has
reached 200000).

2.2.2 Grammatical Evolution

Grammatical Evolution (GE) [16] is a variant of GP which uses chro-
mosomes to encode the information of the individuals (trees). In GE,
a grammar is applied to perform the decoding process that generates
the trees which, in this case, will be the mathematical expressions
that represent prediction models of glucose values. Given that this
method uses chromosomes, it allows the application of classical ge-
netic operators such as crossover or mutation directly at the chromo-
some level, instead of the tree level, as happens in GP. We evaluate
two GE proposals:

• Standard GE: we follow the same implementation and grammars
of [12].The GE approach only considers one objective function,
which will be either RSME or MAE. We present here only the
results with RMSE, since they are significantly better with the pa-
rameters used.

• Multi-Objective GE (MOGE): we propose a multi-objective im-
plementation of GE where the underlying algorithm is the well-
known NSGA-II [9]. The MOGE approach considers RSME as
one of the objective functions and a custom objective function
called FCLARKE as the second objective. FCLARKE is based
on the Clarke Error Grid (CEG) metric, and was defined as shown
in Equation (2). In the expression, |E| represents the number of
points that belong to zone E of CEG, which is the most dangerous
one for the patient, |D| corresponds to the second most dangerous
zone, D, and |C| corresponds to zone C. Zone B was not included
in the formula because it represents a not very dangerous zone,
and A corresponds to the safe zone. A more detailed explanation
of FCLARKE can be found in [7].

. FCLARKE = 100 · |E|+ 10 · |D|+ |C| (2)

Prediction models with GE use information of the previous 60
minutes while MOGE models can use data from the previous two
hours. Additional configurations will be explored and presented at
the workshop. In all the experiments, both GE and MOGE, we per-
form 10 runs with 400 individuals over 1000 generations, random
initialization of the population (half-ramped) allowing a maximum
number of 5 wrappings using a crossover probability of 0.7 and a
mutation probability of 0.1. Executions were run on our Pancreas
Model Tool described in [13]. Unlike the GP description above, with
the two GE variants we only use information of the past and present.
We did not use all the generated features, but only those of every
15 minutes before. So, we use historical data from 120, 105, 90, 75,
60, 45, 30 and 15 minutes ago for MOGE and 60, 45, 30 and 15
for GE. We only consider the glucose level, basal, bolus type, bo-
lus dose, galvanic skin response, and skin temperature variables. We
would like to highlight that recent papers that combines GE with
other techniques, such as, data augmentation [17], random GE and
bagging [11] or clustering [8] achieved better results than the GE
configurations studied in this paper. We limit GE in order to follow
the instructions of the Challenge.
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2.2.3 ARIMA model

In addition to the GP and GE models, we have also fitted two auto-
regressive integrated moving average, ARIMA(p, d, q) models to es-
timate glucose values. Equation (3) presents the expression of an
ARIMA(p, d, q) model where gs is the actual value of the glucose
and εs is the random error at sample s, respectively, while p, q, and d
integers called the orders of the model. All our models only include
glucose values and do not use exogenous variables such as insulin
doses or carbohydrates.

ĝs =

p∑
i=1

αigs−i +

(
εs +

q∑
i=1

θiεs−i

)
+

d∑
i=0

φis
i (3)

We evaluate both off-line and on-line models. The off-line mod-
els are created using the training data for each patient. We define
192 models by sweeping the three ARIMA parameters as follows.
The auto-regressive order ranges in p ∈ [2, 10], the moving average
q ∈ [2, 10], and the integrative part uses the values d ∈ [0, 1], so
that 9× 9× 2 = 192. The basics behind the election of these ranges
is that the model takes into account glucose values up to 10 samples
(50 minutes) previous to the current time. The model’s coefficients
–up to p + q + d coefficients per model– are estimated using max-
imum likelihood given the univariate glucose time series, gs, on the
complete training dataset for each patient. Once the 192 models have
been estimated, we select two models per patient: the model with
the lowest RMSE at 30-minutes horizon and the one with the lowest
RMSE at 60 minutes.

Regarding on-line models, with each new glucose value in the test-
ing dataset, the procedure defines a 4-hour time window using the last
48 samples –including the last one–, and it estimates the 192 ARIMA
models over the time window using maximum likelihood. Again, the
192 models are created by sweeping the three ARIMA parameters, as
stated above. Next, we select the best model. Unlike off-line models,
now we cannot use future glucose values to select the model that will
provide the lowest RMSE in the future. Hence, we select the current
best model based on the history of the best models up to the cur-
rent sample. We have evaluated four different criteria to choose the
best model for 30-minutes predictions and six criteria for 60-minute
predictions.

• We select the values of (p, q, d) of the model with the lowest ab-
solute error 30 minutes ago to create the current model for 30-
minutes and 60-minutes predictions. Note that given the current
glucose value, we know the model with the lowest error 30 min-
utes ago.

• We select the values of (p, q, d) of the model with the lowest ab-
solute error 60 minutes ago in the prediction of the current glucose
to create the current model for a 60-minutes prediction.

• We select the values of (p, q, d) of the off-line model for 30-
minutes and 60-minutes predictions.

• We define an “ensemble” ARIMA averaging the value of p and q
for the six best models 30, 35, 40, . . . , and 55 minutes ago. We
use the rounded averaged values of p and q to create the current
model for 30-minutes and 60-minutes predictions.

• Similar approach than the previous item, but we average the pa-
rameters of the six best models 60, 65, . . ., and 85 minutes ago.
We use the rounded averaged values of p and q to create the cur-
rent model for a 60-minutes prediction.

• We select the model with the lowest Akaike Information Criterion
(AIC) value to estimate both, 30-minutes and 60-minutes predic-
tions. AIC is a criteria to compare models with different number

of parameters and select the models with better trade-off between
goodness-of-fit and the number of parameters of the model, a.k.a
parsimony.

In some cases, the procedure cannot bring the best model because
the parameters that provided the best estimation either 30 minutes or
60 minutes ago cannot produce a stable ARIMA model in the current
time. Due to this fact, the overall best-performing criteria is to choose
the current ARIMA model using the Akaike Information Criterion.

3 EXPERIMENTAL RESULTS

Table 1 presents the experimental results in terms of RMSE and
MAE for all the algorithms and for both 30 and 60 minutes pre-
diction horizons. For GP, GP-OS, and GE, predictions are obtained
with the models that obtained the lowest RMSE value in the train-
ing phase after 10 runs. The remaining 9 models were not evaluated
nor reported. For the MOGE, also 10 run were made in the training
phase, and from all the solutions of the 10 Pareto fronts, we also se-
lected the model with RMSE value, independently of the value of
the FCLARKE . Results represent the values for the predictions of
this selection. GE and MOGE were run just with the configuration
explained on section 2.2.2 and no parameters optimization was per-
formed.

Regarding GP and GP-OS results on table 1 may differ from those
reported in the submitted files. After analyzing the results we no-
ticed that at the beginning and the end of the data our results are
fluctuating. A few high and low predicted glucose values influence
the quality of the results a lot. We decided to remove those unnatural
values by more likely results (lower boundary: 40, upper boundary:
400). This procedure is only included in the results of this paper, not
in the submitted files.

#P RF GP GP-OS LR GE MOGE A-0 A-1
60 minutes - RMSE

540 44,06 37,13 39,97 38,87 41.16 40.94 47,26 57,40
544 28,08 28,45 28,77 28,40 33.46 29.64 35,61 45,63
552 27,24 26,08 25,91 28,90 31.04 29.85 27,18 34,39
567 37,76 35,99 35,82 36,19 39.68 37.82 47,53 51,16
584 38,11 37,84 34,63 37,12 38.17 37.84 41,05 48,03
596 29,58 27,56 27,12 27,77 30.31 28.65 33,33 42,36
Avg. 34,14 32,18 32,04 32,88 35.64 34.12 38,66 46,49

60 minutes - MAE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 31,62 27,83 30,33 29,65 32.01 31.76 31,71 39,35
544 20,37 20,13 20,35 21,17 26.77 22.50 23,38 29,96
552 20,47 19,78 19,51 22,42 23.56 23.08 15,28 19,56
567 27,65 26,06 25,87 27,14 30.26 28.50 30,60 35,11
584 29,18 27,45 26,09 27,74 29.08 28.82 26,24 32,83
596 21,70 20,26 20,07 20,89 22.82 21.27 21,44 21,44
Avg. 25,17 23,58 23,70 24,83 27.42 25.99 24,77 29,71

30 minutes - RMSE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 27,00 21,67 22,26 22,00 23.10 22.04 31,09 41,39
544 17,96 17,83 17,46 17,54 19.20 17.62 21,49 31,82
552 17,45 17,50 20,84 19,42 17.29 16.61 16,59 22,66
567 25,61 22,16 23,03 23,56 23.31 22.17 29,66 35,59
584 25,69 24,83 25,81 27,08 22.87 22.21 27,01 36,96
596 19,90 16,76 16,85 17,68 18.58 16.96 21,23 21,23
Avg. 22,27 20,13 21,04 21,22 20.73 19.60 24,51 31,61

30 minutes - MAE
#P RF GP GP-OS LR GE MOGE A-0 A-1
540 19,19 15,82 15,89 16,22 16.26 16.36 20,17 26,88
544 12,60 12,10 12,06 12,44 13.80 12.97 13,92 19,51
552 13,30 13,13 15,38 14,55 12.33 12.44 9,41 12,30
567 17,12 14,69 15,80 16,18 16.41 14.97 18,87 23,17
584 17,71 16,63 17,72 17,54 17.00 16.64 17,06 23,28
596 14,23 11,91 12,03 12,84 13.36 12.10 13,57 13,57
Avg. 15,69 14,05 14,81 14,96 14.86 14.25 15,50 19,79

Table 1. Quality of the models created for 30 / 60 minutes predictions. For
each modeling method we give error metrics (RSME, MAE) for 30 / 60

minutes predictions.

3



Table 2 shows the percentage of predictions on zones of the Clarke
Error Grid [6] for both time horizons. Results are ordered by higher
%A, then higher %B, lower %E, lower %D and lower %C. The first
thing that can be said is that, in terms of CEG, 30 minutes is not
very hard to predict. Most of the algorithms achieved excellent re-
sults with less than 3% of the predictions in the dangerous zones.
For a prediction horizon of 60 minutes, all the machine learning tech-
niques obtained less than 5% of dangerous predictions, and GP ap-
proaches seems to be the best option. However, a deeper analysis
for statistical significance in required. First, we depict in figure 1 a

Algorithm %A %B %C %D %E
30 minutes

GP 88.03 10.43 0.25 1.45 0.02
GP-OS 86.40 11.97 0.17 1.54 0.02
LR 86.03 12.23 0.25 1.65 0.02
RF 85.25 12.57 0.45 2.10 0.00
MOGE 87.52 11.29 0.00 1.19 0.00
GE 86.46 12.69 0.03 0.82 0.00
A-0 84,93 13,90 0,33 0,83 0.07
A-1 77.91 19.66 1.60 0.64 0.20

60 minutes
GP 69.90 26.56 0.26 3.32 0.03
GP-OS 69.90 26.73 0.21 3.13 0.05
LR 67.35 28.76 0.35 3.60 0.03
RF 67.57 28.73 0.30 3.61 0.00
MOGE 64.27 31.15 0.29 4.31 0.00
GE 60.82 34.66 0.29 4.24 0.00
A-0 62.25 36.08 1.66 1.66 0.36
A-1 54.37 39.53 4.50 0.97 0.63

Table 2. Average percentage of predictions on zones of the Clarke Error
Grid [6] for both time horizons. Results are ordered by higher %A, then

higher %B, lower %E, lower %D and lower %C.

graphical ranking (in terms of RMSE) of all the algorithms for each
patient and for 30 a 60 minutes prediction horizons. Each algorithm
is represented by its acronym and a different color, the closer the po-
sition to the name of id of the patient, the better, i.e the lower RMSE
on test files. GP is the best for all the patients in 30 minutes and for
4 out of 6 in 60 minutes. Looking for statistical significance, the first

Figure 1. A graphical view of the ranking of each algorithm for each
patient dataset. Clearly GP approach is the best as a general rule in terms of

RMSE.

plots we created are density plots, using a kernel density estimation
(KDE) of the distribution of the samples to visualize it. The objec-
tive is to visualize if the data meets the conditions for a parametric
test, which is not the case. Figure 2 shows that the data is not dis-
tributed according to a Gaussian distribution and, nor the variance
is the same for all the algorithms. Data distribution is multi-modal
and a non-parametric test is necessary. All the plots were obtained
with [4]. We use the graphical representation of the Nemenyi test
[10], that compares all the algorithms pairwise. This non parametric
test is based on the absolute difference of the average rankings of
the predictors. For a significance level α = 0.05 the test determines
the critical difference (CD) and if the difference between the average
ranking of two algorithms is grater than CD, then the null hypothe-

Figure 2. Density plots of the distribution of the RMSE results for all the
algorithms for 30 minutes (left). The distribution are clearly multi-modal and

a non parametric test is recommended. Similar plots were obtained for 60
minutes (right) and for MAE.

sis that the algorithms have the same performance is rejected. Fig-
ure 3 shows the graphical comparison where statistical differences
are demonstrated to be significant. Finally we follow the Bayesian

Figure 3. Nemenyi test for all the algorithms and RMSE (30 min, left, 60
min right) using the graphical representation of [10].

model of [3, 5] based on the Plackett-Luce distribution over rankings
to analyse multiple algorithms in multiple problems. Figure 4 shows
that GP and MOGE have the highest probability of being the best for
30 minutes, however there is not clear evidence for 60 minutes.

Figure 4. Bayesian model of [5] to analyse the algorithms in the set of
patients and RMSE. Figure represents the probability of being the best and

its standard deviation.(30 min, left, 60 min right)

4 CONCLUSION

The competition proved to be a very good test-bed for the mod-
elling approaches as it is concerned with real-world data. The large
amount of data for training proved to be challenging. For instance the
ARIMA training process took several days to complete.

The decision made by the organizers of the competition to disal-
low usage of all future data is in our point of view not ideal. If we
want to use prediction models for optimal blood glucose control it
is necessary to assume that we can control the bolus and basal for
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the forecasting horizon. Of course, a large amount of uncertainty re-
mains because of unknown events in the forecasting horizon such as
meals and higher activity or stress levels.

It would be interesting to try to improve the models by using all
the available data for each data contributor. We only used the inter-
section of features available in all data sets which however limits the
potential for specialization of models to individuals.
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