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Abstract. A knowledge graph (KG) represents real-world entities as well as
their properties and relationships in a structured and often logic-based formalism.
Given the large amount of information and the diversity of data stored in KGs, op-
erations for analysis of such data akin to traditional OLAP operations are useful
to understand the contents of KGs along different dimensions. In this direction,
we recently proposed Knowledge Graph OLAP (KG-OLAP), a framework based
on contextualized description logics that allows to organize knowledge graphs
in a multi-dimensional structure – a KG-OLAP cube. For KG-OLAP cubes, we
defined operations for combination of knowledge from different cells and for
abstraction of knowledge within cells. Experiments with a proof-of-concept pro-
totype, however, revealed that the management of a centralized KG-OLAP cube
is impractical for large KGs. In this paper, we extend KG-OLAP in order to for-
malize the case in which knowledge is distributed across different repositories.
We hence formalize a distributed version of the multidimensional cube structure,
and we show how the operations can be adapted to this scenario.

1 Introduction

A knowledge graph (KG) represents real-world entities and their properties as well as
relationships between entities in a structured and often logic-based formalism KGs [8].
In recent years, many organizations aimed for the development of KGs for practical
purposes, necessitating the development of appropriate Knowledge Graph Management
Systems (KGMS) to leverage KGs. In particular, given the diversity of data stored in
KGs, operations for analysis of such data akin to traditional OLAP operations can be
useful to understand the contents of graphs and abstract their information along different
dimensions (see e.g., [1,7]).

In this direction, we recently proposed Knowledge Graph OLAP (KG-OLAP) [9],
a framework based on contextualized description logics that allows to organize KGs in
a multi-dimensional structure - a KG-OLAP cube. The main feature of the KG-OLAP
model, in contrast to traditional OLAP, where numerical measures are aggregated, is
that the cube cells in a KG-OLAP cube comprise knowledge facts. In this regard, each
cell is identified by the combination of different dimensions (e.g., time, location, im-
portance) with the members being hierarchically organized objects (e.g., 7-july-20 ≺
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july-2020, austria ≺ europe). The multi-dimensional model of KG-OLAP cubes is an
adaptation of the Contextualized Knowledge Repository (CKR) framework [11,3], a for-
mal approach for representing and reasoning with contexts in knowledge graphs based
on a description logic. The multi-dimensional structure of KG-OLAP cubes allows us
to formulate OLAP-like operations for the analysis of a cube’s contents: We defined
sets of operations for the combination of knowledge from different cells (contextual
operations) and for the abstraction of knowledge within cells (graph operations). The
KG-OLAP model and operations were implemented in a proof-of-concept prototype
and evaluated with respect to the real-world scenario of Air Traffic Management (ATM)
knowledge graphs [10].

A limitation of the model, especially when applied to large-scale KGs, lies in the
centralized view of the cube: in practical cases (like in the ATM scenario [10]), the
information may be distributed across different repositories and only part of it should be
integrated when applying analysis operations. Thus, the centralized view of KG-OLAP
might not be applicable to represent cases where single “nodes” in a distributed model
cannot have the entire vision of the knowledge and structure of the cube. Moreover,
experiments with the proof-of-concept prototype of KG-OLAP framework revealed that
the management of operations over a centralized cube is impractical for KG-OLAP
cubes with a large amount of data contents or a large number of cells.

In response to these needs, in this paper we introduce our ongoing work to ex-
tend the KG-OLAP model towards a distributed version of the framework, with the
aim of managing scenarios where knowledge from the model is partitioned in different
repositories. The benefit of this decentralized view is not only to be able to model the
integration and analysis of a distributed KG, but also to allow for larger contextualized
KGs to be divided into smaller units that can be managed by different processors. Thus,
while in this paper we focus on the formalization of the modeling and data analysis in
a distributed KG-OLAP model, we envision that such model can be useful also in im-
plementations in order to increase the performance of reasoning (e.g., by instance-level
materialization as in [9]) and analysis over large-scale KGs.

We present the distributed KG-OLAP model in Section 2. We define the syntax and
semantics of the distributed model by extending the KG-OLAP model presented in [9].
The proposed model can be seen as a formal specialization in the context of KGs of the
multi-dimensional model presented in [10] for the management of ATM information.
In Section 3 we adapt the contextual OLAP operations presented for single KG-OLAP
cubes to the distributed model, considering operations over the node structure and the
local organization of cells.

2 Distributed KG-OLAP Framework

As in the original KG-OLAP model [9], we build our extended KG-OLAP model on
definitions of the CKR framework [5,3] for a generic description logic language [2].
Intuitively, in our model we distribute the information of a KG-OLAP cube to different
nodes. Nodes are organized in a hierarchical structure (akin to the coverage structure of
contextual dimensions). Each node will contain a partial view of the KG-OLAP cube
(representing its local information, e.g., in ATM, for a specific airport or geographic
zone) and nodes from lower levels will inherit knowledge from the higher levels.



The multidimensional structure is expressed using a DL signature Ω, that we call
cube vocabulary, composed of the mutually disjoint sets NRΩ of atomic roles, NCΩ of
atomic concepts, and NIΩ of individual names. The vocabulary further specifies a set
F ⊆ NIΩ of cell names, a set D ⊆ NRΩ of dimensions, a set I ⊆ NIΩ of dimension
members, and for every dimension E ∈ D, a set DE ⊆ I of dimension members of E
(cf. dimensional structure in [11]). The cube language LΩ is a DL language over cube
vocabulary Ω. For every dimension A ∈ D, we define the role ≺A (the dimensional
ordering for A) as a strict partial order relation over dimension members DA. In the
following, we may also use non-strict orderings �A and direct successor relations ≺̇A.

In order to represent the points of the distributed structure of repositories, we con-
sider a set of nodes S ⊆ NIΩ . Similarly to dimensions, we consider a role ≺S which
defines a partial order over the nodes of S and describes the (hierarchical) relationships
across repositories. In the rest of the paper, we assume that each dimension and the node
structure S are ordered in a simple hierarchy (in particular supporting a notion of level,
see e.g., ranked hierarchies in [6,4]). We thus consider a set L ⊆ NIΩ of levels and a
relation lev associating each dimensional value to its level as defined in [9].

The notion of dimensional vector provides a local identifier for cells inside a given
repository. Let |D| = k, we define a dimensional vector as the set d = {A1 :=
d1, . . . , Ak := dk} where every dj is in the set of dimension members DAj of Aj, with
j ∈ {1, . . . , k}. We refer to the set of all dimensional vectors of cube vocabulary Ω as
the multidimensional space DΩ .

The distribution of the cube into different nodes affects the way in which we identify
and order cells inside the overall structure: intuitively, these need to depend both on the
node and local dimensional coordinates. Given a node and a dimensional vector, we
associate with such coordinates a cell name using the function cn : S × DΩ → F.
We require cn to be bijective, i.e., each cell name c is associated with a couple (s,d)
identifying the repository s and the point d in the dimensional space; conversely, c
can be interpreted as the unique identifier of the corresponding dimensional point d in
node s. Cells coverage now depends both on the ordering of nodes and the coverage of
dimensional vectors. Let d, e ∈ DΩ , we say that d � e iff dA � eA for each A ∈ D.
In the case of cells, given c1, c2 ∈ F, we say that c2 covers c1 and we write c1 � c2 iff
cn(s1,d) = c1 and cn(s2, e) = c2, s1 �S s2 and for every A ∈ D, dA � eA.

Knowledge represented inside cells is expressed in a DL language LΣ , called the
object language, which is based on a DL object vocabulary Σ = NCΣ ]NRΣ ]NIΣ .

The distributed KG-OLAP model can be represented by a distributed extension of
the CKR framework [3,5]. The contextual structure of a CKR is expressed by a meta-
vocabulary Γ , a DL vocabulary that contains a set of context names N ⊆ NIΓ , a set
of module names M ⊆ NIΓ , a set of context classes C ⊆ NCΓ including class Ctx, a
set of contextual relations R ⊆ NRΓ , a set of contextual attributes A ⊆ NRΓ , and for
every attribute A ∈ A, a set DA ⊆ NIΓ of attribute values of A. The role mod defined
over N ×M expresses associations between contexts and modules. Modules represent
pieces of knowledge specific to a context or context class; attributes describe contextual
properties (e.g., time, location, provenance) identifying a context (or class); the context
class Ctx defines the class of all contexts. It is then easy to relate the KG-OLAP cube
languageLΩ to the CKR meta-languageLΓ : we have that F ⊆ N (i.e. cells are a kind of
context), D ⊆ A (i.e. dimensions are a kind of contextual attributes) and cell coverage
is a partial order relation in R.



We can define as follows the extension of the CKR with distribution on nodes.

Definition 1 (distributed Contextualized Knowledge Repository). A distributed Con-
textualized Knowledge Repository (dCKR) over 〈Γ,Σ〉 is a family KS = {Ks}s∈S
where each Ks is a structure Ks = 〈Bs,Gs,KMs〉 such that:

– Bs is a set of direct ordering relations relative to node s of the kind z≺̇Ss or s≺̇Sz;
– Gs is a DL knowledge base over LΓ ∪ LΣ;
– KMs = {Km}m∈Ms where every Km is a DL knowledge base over LΣ , for each

module name m ∈Ms ⊆M.

Intuitively, this definition extends the definition of local CKRs with a setBs, containing
the direct relations of the node with other higher or lower nodes. In the following we
call KS a distributed KG-OLAP cube (or simply distributed cube) if its metaknowledge
is based on a cube language LΩ , following the above relations.

A dCKR interpretation is composed by a set of CKR interpretations for each node
of the distributed structure; in turn, each CKR interpretation, has a DL interpretation
for the global context and a DL interpretation for every local context.

Definition 2 (dCKR interpretation). A dCKR interpretation IS for 〈Γ,Σ〉 is a family
{Is}s∈S where each Is is a structure Is = 〈Ms, Is〉 such that: (i)Ms = 〈∆Ms , ·Ms〉
is a DL interpretation of Γ ∪Σ; (ii) for every x ∈ CtxMs , Is(x) = 〈∆Is(x), ·Is(x)〉 is
a DL interpretation over Σ. Moreover, the following conditions hold:

(i). for s ∈ S, for every c ∈ N, cMs ∈ CtxMs and, for every C ∈ C, CMs ⊆ CtxMs ;
(ii). for s, z ∈ S, ∆Ms = ∆Mz ; moreover, for every x ∈ CtxMs , ∆Is(x) = ∆Ms ;

(iii). for s, z ∈ S and a ∈ NIΣ , aMs = aMz ; moreover, for every x ∈ CtxMs ,
aIs(x) = aMs .

The conditions in this definition ensure that the interpretation of domains is consistent
across contexts and nodes. The interpretation of ordinary DL expressions in each DL
interpretation is defined, as in CKR, by the language of choice for the object language
(e.g., SROIQ-RL in [3]).

Given a distributed cube KS, let us consider the set BS of all bridge conditions
defined as BS =

⋃
s∈SBs. We consider B∗S to be the closure of BS with respect to the

node ordering relation. We then extend as follows the definition of KG-OLAP model [9]
with new conditions for the intended interpretation of the node structure.

Definition 3 (distributed KG-OLAP cube model). A dCKR interpretation IS is a
distributed KG-OLAP cube model of KS iff the following conditions hold:
– Local conditions: for each s ∈ S

1. for α ∈ LΣ ∪ LΓ in Gs,Ms |= α;
2. for 〈x, y〉 ∈ modMs with y = mMs , Is(x) |= Km;
3. for α ∈ Gs ∩ LΣ and x ∈ CtxMs , Is(x) |= α.
4. if c1, c2 ∈ F, and for every A ∈ D with d ∈ DA, Ms |= A(c1, d) and Ms |=

A(c2, d) then c1 = c2.
5. for d ∈ DΩ and cn(s,d) = c ∈ F, thenMs |= A(c, dA) for each A ∈ D with
dA ∈ DA.

– Global conditions:



6. if s ≺S z ∈ B∗S , then for each α ∈ LΣ ∪ LΓ in Gz ,Ms |= α;
7. given c1, c2 ∈ F with cn(s,d) = c1 and cn(z, e) = c2 where s �S z ∈ B∗S , if
Ms |= c1 � c2 andMs |= mod(c2,m) with m ∈M, thenMs |= mod(c1,m);

Intuitively, global conditions require that knowledge from the higher nodes is propa-
gated to nodes at the lower levels: if s ≺S z, condition (6) requires that axioms of the
global context Gz are propagated to Gs; condition (7) ensures that knowledge modules
associated to a higher cell c2 (inside the same or higher node) are also associated to cell
c1 in lower levels of the multi-dimensional structure.

Given KS and c ∈ N with cn(s,d) = c, an axiom α ∈ LΣ is c-entailed by KS

(denoted KS |= c : α) if Is(cMs) |= α for every model IS of KS. We say that an axiom
α is globally entailed by KS (denoted KS |= α) if: (i) α ∈ LΣ and KS |= c : α for every
c ∈ N, or (ii) α ∈ LΓ andMs |= α for every cube model Is in IS of KS.

Example 1. We demonstrate the idea of distributed KG-OLAP in the Air Traffic Man-
agement scenario. Figure 1 shows a “monolithic” KG-OLAP cube for the representation
of a contextualized KG in ATM: each cell contains the information relative to a specific
context, e.g., describing Flight Critical knowledge about Construction in 08-2020.
The dimensions are hierarchically ordered, e.g., Flight Critical and Restriction are
part of the Essential package of knowledge. Cells exist at multiple granularities within
the cube, e.g., the KG-OLAP cube contains Additional knowledge about Weather in
08-2020 but also Supplementary knowledge about Operational Control in 2020.

Figure 2 illustrates the distribution of such KG-OLAP cube for ATM in multiple
nodes. Instead of a single monolithic KG-OLAP cube for the entire relevant knowl-
edge, the knowledge is distributed across nodes for the knowledge of the Europe area,
the LOVV (Austria) flight information region and the LOWW (Vienna) airport. The
presented framework also allows for the redundant allocation of knowledge on dif-
ferent nodes, e.g., LOVV and LOVV’. Knowledge propagates, on the one hand, from
more general to more specific cells. For example, the knowledge from the Essential–
Closure–2020 context propagates to the Restriction–Closure–2020 context. On the
other hand, knowledge also propagates from more general to more specific nodes, e.g.,
the knowledge from the Essential–Closure–2020 cell at the Europe node propagate
to the Essential–Closure–2020 cell at the LOWW node. 3

3 Query operations for distributed KG-OLAP cubes

In this section we show how OLAP query operations can be defined for analyzing the
contents of distributed KG-OLAP cubes. In the following we only consider contextual
operations, namely operations that manipulate the structure of distributed cubes, while
graph operations, that is operations that modify the graph inside modules of a cell (and
thus do not depend on the organization of cells), can be defined similarly to the original
formulation in [9].
Slice and dice. The slice and dice operations allows for the selection of a set of facts
(i.e. a “slice” of the distributed cube structure) with specific coordinates for subsequent
manipulation. In the case of distributed cubes, we can now consider two distinct oper-
ations for the selection of “slices” of the multi-dimensional structure provided by the
node structure and dimensional space.
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Fig. 1. An individual three-dimensional KG-OLAP cube with the hierarchically ordered dimen-
sions Importance, Topic, and Time and cells at multiple levels of granularity

Fig. 2. An example of (a) the distributed KG-OLAP cube KATM, which corresponds to the federa-
tion of the individual cubes Europe, LOVV, LOVV’, and LOWW; (b) propagation of knowledge
along the hierarchy of nodes and the hierarchy of cells. The arrows represent the partial order
between nodes and contexts, respectively, e.g., LOVV �ATM Europe and c2 � c1.

A first operation, the node slice and dice, operates on the node structure and restricts
the structure to local cubes related to an input node.

Definition 4 (Node slice and dice). Given a distributed cube KS = {Ks}s∈S and an
element z ∈ S, we define the node slice and dice operation δ(KS, z) as a new distributed
cube KS′ = {Ks}s∈S′ such that S′ = {s ∈ S | s �S z or z �S s ∈ B∗S}.

The selection of cells inside a local cube (once the node has been fixed), defining a
local slice and dice, can be determined by the values of their dimensions, analogously
to the slice operation in [9]. Let us define the set of cells relative to a node s ∈ S as
Fs = {c ∈ F | cn−(c) = (s, e)}.



Definition 5 (Local slice and dice). Given a cube Ks = 〈Bs,Gs,KMs〉 and a dimen-
sional vector d which defines the dice coordinates, we define the local slice and dice
operation δ(Ks,d) as a new cube K′s = 〈Bs,G′s,KMs

〉 over 〈Γ ′, Σ〉, such that:

– For each A ∈ D, D′A = {e ∈ DA | e � dA or dA � e,with dA ∈ d};
– F′s = {c ∈ Fs | cn−(c) = (s, e), for each eA ∈ e, eA ∈ D′A} and other components

of Γ ′ are defined analogously to Γ ;
– G′ = GΣ ∪GΓ ′ (i.e., metaknowledge in G′ is equal to the formulas in GΓ that have

only symbols in Γ ′).

Note that while this dimension based slice is defined on a single node, it can be easily
extended to all the cubes in KS if the operation is applied over each s ∈ S.
Merge. Similarly, we can provide operations for merging information considering the
whole distribution structure and local cubes. The merge (or roll-up) operations combine
knowledge at a certain granularity by merging knowledge from a lower granularity. In
the case of distributed cubes, we can distinguish a node merge operation, that adds
to a given node the combination of knowledge coming from its more specific nodes,
and a local merge, which adds to cells of a given “dimensional level” l the roll-up of
knowledge from cells in lower levels (inside a local cube).

Similarly to [9], we can parametrize both operations with respect to the method met
that is used to combine the rolled-up knowledge. In the following definitions we con-
sider the cases in which met can be the union (∪) or intersection (∩) of such knowledge.

Definition 6 (Node merge). Given a distributed cube KS = {Ks}s∈S and an element
z ∈ S, we define the node merge operation ρmet(KS, z) as a new distributed cube
KS′ = {Ks}s∈S′ such that:

– S′ = S \ {s ∈ S | s ≺S z ∈ B∗S};
– M′z = Mz ∪ {mg(c) | c ∈ Fz} with each mg(c) a new module name;
– for each c ∈ Fz , mod(c,mg(c)) is added to G′z
– Union merge (met = ∪):

– Gz ∪
⋃
s≺Sz

Gs is added to G′z;
– for every cell c ∈ Fz with cn−(c) = (z,d), add module Kmg(c) to KM′

z
with union

of every module for c′ s.t. cn−(c′) = (s,d) for s ≺S z ∈ B∗S .
– Intersection merge (met = ∩):

– Gz ∪
⋂
s≺Sz

Gs is added to G′z;
– for every cell c ∈ Fz with cn−(c) = (z,d), add module Kmg(c) to KM′

z
with

intersection of every module for c′ s.t. cn−(c′) = (s,d) for s ≺S z ∈ B∗S .

Let us now consider the local merge operation, which is defined as a merge on the local
cells at a specific level of the dimensional structure. We define a level vector as a set
l = {l1, . . . , lk} s.t. for j ∈ {1, . . . , k}, lj ∈ LAj . We define restrictions of dimensional
space DΩ given w.r.t. a level vector l as follows. The subspace Dl

Ω identifies all the
vectors exactly at the level specified by the level vector l: Dl

Ω = {d ∈ DΩ | for d ∈
DA, lev(d, l) with l ∈ l}. Dl�

Ω defines the vectors above (or equal to) the specified level
vector: Dl�

Ω = {d ∈ DΩ | e � d,with e ∈ Dl
Ω}. Let µs(c) = {m ∈ M |Gs |=

mod(c′,m), c′ ≺ c}. The set µs(c) then contains all module names of the initial cube
associated to contexts c′ that are more specific than the input context c.



Definition 7 (Local merge). Given a local cube Ks = 〈Bs,Gs,KMs〉 and a level vec-
tor l, we define the merge operation ρmet(Ks, l) as a new cube K′s = 〈Bs,G′s,K′Ms

〉
over 〈Γ ′, Σ〉 such that:

– F′s = {c ∈ Fs | cn−(c) = (s,d),d ∈ Dl�
Ω };

– M′s = Ms ∪ {mg(c) | c ∈ F′s with cn(c)− = (s,d),d ∈ Dl
Ω} with each mg(c) a

new module name;
– Metaknowledge of G′s is restricted to Γ ′ and mod(c,mg(c)) for each c ∈ F′s with
cn(c)− = (s,d),d ∈ Dl

Ω is added to G′s;
– Union merge (met = ∪): knowledge module Kmg(c) for c is added to K′Ms

with:
Kmg(c) =

⋃
m∈µ(c) Km

– Intersection merge (met = ∩): knowledge module Kmg(c) for c is added to K′Ms

with: Kmg(c) =
⋂

m∈µ(c) Km

We remark that the operations over the distribution and dimensional structure have been
separated for a more clear presentation: however, in practice they could be easily com-
bined in a single operation that manipulates both levels of the KG-OLAP structure.

4 Summary and Future Work

In this paper we introduced a distributed version of the KG-OLAP model for the anal-
ysis of contextualized knowledge graphs. We first extended the KG-OLAP framework
presented in [9] to provide a decentralized definition for the multi-dimensional frame-
work structure. On the base of this, we then demonstrated how analytic operations on
KG-OLAP cubes can be extended to manipulate the newly defined distributed structure
of the framework. This paper represents a first step in the study of distributed KG-OLAP
cubes. As a next step, we need to develop reasoning methods for computing inferences
over the distributed structure, possibly by extending the materialization methods pro-
posed for KG-OLAP. In order to evaluate the possibilities provided by the distributed
framework, we will develop a proof-of-concept implementation of KG-OLAP cubes
in [9]. This will allow us to compare the current performance and scalability results
over centralized KG-OLAP cubes to the case of a distributed scenario. As previously
mentioned, we conjecture that distribution of a KG over multiple processors can be used
to enhance the performance of reasoning over large-scale KGs. We also plan to verify
the applicability of our model and operations to the real scenario of ATM information,
possibly by further developing our initial definitions.
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