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Abstract. The article describes a new implementation of MST3 cryptosystems based 

on the generalized Suzuki 2 - groups. The main difference in the presented implemen-

tation is the presence of many-stage recovery of parts of the message from the en-

crypted text. The presented implementation of a cryptosystem has lower costs of key 

data. The complexity of the cryptanalysis and the size of the message for encryption 

depend of the power a generalized Suzuki 2 - groups.  
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1 Introduction 

Current is the development of efficient cryptographic cryptosystems that can with stand 

quantum attacks. It is believed that the advent of quantum computers and the presence 

of quantum algorithms for factoring integers and discrete logarithms will lead to hack-

ing of known cryptosystems with a public key.  

The idea of constructing public-key cryptosystems on the basis of an intractable 

word problem was proposed by Wagner and Magyarik in [1]. The basis is the use of 

permutation groups. Since the 2000s, several dozen cryptosystems in group construc-

tions have been proposed [2÷5]. 

The development of the idea of Wagner and Magyarik is the proposal of Magliveras 

[6]. Magliveras proposed a symmetric cryptosystem based on a special type of factori-

zation of finite groups named logarithmic signatures for finite permutation groups. The 

idea of using a logarithmic signature was investigated by Lempken et al. and developed 

in the construction for random covers in [7].  

In this scheme, the public key consists of a tame logarithmic signature as well as 

some random numbers, and the secret key is design of random cover and sandwich 

transformation of the cover [8].  

The intractability assumptions of this scheme are group factorization problem on 

nonabelian groups.  



Magliveras cryptosystem based on the Suzuki group is known as MST3. Further 

improvements to this scheme were made by Svaba and van Trung in [9]. They intro-

duced a secret cover of a random cover. A digital signature scheme based on MST3 

cryptosystems was proposed and explored in [Hong].  

Using two Suzuki parametric groups to build the MST3 cryptosystem leads to se-

curity and complexity of the assessment, proportional to the square of the measurement 

of the final field.  

A further increase in security is possible by expanding the group. The MST3 cryp-

tosystem based on the three-parameter group of automorphisms of the functional field 

of the Hermite curve [14] and the small Ri group has security and complexity estimates 

proportional to the cube of the dimension of the finite field [15].  

In this paper will be presentation MST3 cryptosystems based on the multi-parame-

ter generalized Suzuki 2 - groups.  

2 The generalized Suzuki 2 - groups  

The construct a generalizations of Suzuki 2-groups was proposed by Hakai in [16] at 

research conjugacy classes and characters for a family of groups satisfying Bannai con-

dition. Construction of groups.  

Let 
qF , 2nq =  is the finite field, and   is an automorphism of F . Define for a 

positive integer l  and 1 2, ,..., la a a F  the following matrix 
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and 

 1 2( , ) ( , ,..., ) |l l i qA n S a a a a F =  . 

The each element of ( , )lA n   can be expressed uniquely and it follows that 

( , ) 2nl

lA n  = and ( , )lA n   define a group of order 2nl . If 2l = , this group is isomor-

phic to a Suzuki 2-group ( , )A n  . 

Group operation is defined as a product of two matrices 
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Identity element is unit diagonal matrix 1(0 ,0,...,0)S .The inverse element is deter-

mined by the inverse of the matrix. The direct calculations can to show that 
1 2

1 2 3 1 2 1 1 3 2 1 1 2 1 1 1 1( ,..., ) ( ( ),..., ...).l l lS a ,a ,a a S a ,a a a ,a a a a a a a a a a    −
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Put ( , )lG A n = . The group G  is nonabelian group and has nontrivial center  

( )  (0 0 ..., ) qZ G S , , c c F=  . 



Since the center ( )Z G  is elementary abelian of order q, it can be identified with 

the additive group of the field 
qF . Assume that   is the Frobenius automorphism of 

2, :F x x → . All the involutions of G  are in the center ( )Z G . Define 

 1(0,...,0, , ,..., )i i i lG S a a a+= . 

The elements ig G  have order 2l i−
. 

Let 𝐺/𝐺𝑖 ≙ 𝐴𝑖−1(𝑛, 𝜃). Thus iG  is a normal subgroup of ( , )lA n  . Simple show 

that group iG  for ( 1) / 2i l +  is abelian. This holds by direct calculations. 

Let F  , λ is a generator of F 
 and is fixed and define mapping

: ( , ) ( , )l lA n A n  →  by 

( )1 2 1 1 2 2( , ,..., ) ( , ,..., )l l lS a a a S a a a   =  

where 

1 , =  2

2 , = ( )
2

2

3 ,  = …, 
12 1i

i 
− += . 

Then mapping   is an automorphism of 
( , )lA n 

 and if 
( , ) 1n i =

, then   permutes 

1 1/i i iG G G+ +−
 transitively. For the fixed finite field, the group 

( , )lA n 
 order is greater 

than classical Suzuki 2 - group. A larger group order gives an advantage to cryptosys-

tem secrecy, and definition over small fields gives an advantage for the implementation 

in general. 

3 MST cryptosystems  

The basic idea of MST cryptosystems is to surjective mapping input message into an 

element of group using a conversion key. Formalization of computations is given by 

the following definition [12]. Definition 1 (cover (logarithmic signature) mappings). 

Let  1,..., sA A =  be a cover (logarithmic signature) of type 1 2( , ,..., )sr r r  for G  with 

,1 ,2 ,, ,...,
ii i i i rA a a a =   , where 

1

s

i im r==  . Let 1 1m =  and 
1

1

i

i j jm r−

==   for 2,...,i s= . 

Let   denote the canonical bijection 

𝜏:ℤ𝑟1 × ℤ𝑟2 ×. . .× ℤ𝑟𝑠 → ℤ𝑚, 

( )1 2

1

, ,...,
s

s i i

i

j j j j m
=

=  . 

Then the surjective (bijection) mapping 𝛼′:ℤ𝑚 → 𝐺 induced by is 

( )
1 21 2'

sj j sjx a a a =     

where ( ) ( )1

1 2, ,..., sj j j x −= . 

More generally, if  1,..., sA A = is a logarithmic signature (cover) for, then each 

element g G ∈ can be expressed uniquely (at least one way) as a product of the form  

1 2 sg a a a=    , 

for i ia A  [7]. 



Let G  is ultimate nonabelian group with nontrivial center Z , such that G  does not 

decompose over Z . Suppose that Z is quite large, such that the search is over Z  is 

computational impracticable.  

The cryptographic hypothesis, which is the basis for the cryptosystem, is that if 

1 2 ,[A ,A ,...,A ] : ( )s i ja = =  – accidental cover for a "large" matrices S  at G , then 

search for the layout 
1 21 2 sj j sjg a a a=   for any element g G  relatively   is, in gen-

eral, not a solvable problem. There are several encryption algorithms for MST cryp-

tosystems. One of the latest versions of MST3 presented in [13] has the following im-

plementation.The main steps of the encryption algorithm. Public and private key cal-

culation step: 

• generating a tame logarithmic signatures 
1 2[ , ,..., ] : (b )s ijB B B = =  the class 

( )1 2 sr ,r ,...,r  for ℤ;  

• generating a random cover 
1 2 ,[A ,A ,...,A ] : ( )s i ja = =  the same class as і   

for some subset J  from G  such that 
1A ,..., A \s G Z ;  

• generating a set of elements 0 1, ..., \st t t G Z ;  

• definition of the homomorphism to calculate𝑓: 𝐺 → ℤ;  

• calculating 
1

1: ( ) ( ( ) )ij i ij ij ih t f a b t −

−= =  for 1,...,i s= , 1,..., ij r= . 

Will get public key – ( ( ), ( ), )ij ija h f = =  and private key – 0( (b ), (t ,...., t ))ij s =  

Encryption step. Set a random number R Z . Let the message to be encrypted 

Z
xZ . Calculate 

1 '( )y R x=  , 
1

2 0( ) ( '( )) '( ) sy R t f R b R t −= = . 

Transmit 
1 2( , )y y y= . 

Decryption step. For decryption we have the cipher text 
1 2( , )y y y= , private key 

0( (b ), (t ,...., t ))ij s =  and the function of the homomorphism :f G → .  

Let's calculate 
1 1

2 1 0( ) ( )sR y t f y t − −= . Checking is determined by the fact that 
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Recover R  with ( )R  using 1 − , because   is simple. 

Calculate 1

1'( )x R y −=  . 

Complexity analysis.The main costs of implementation in the MST3 cryptosystem 

are determined by the volume a logarithmic signature over the finite field of the group 

representation.  

The long-term key is defined by a logarithmic signature array   and vectors 

0 1, ..., \st t t G Z .  



Let type a logarithmic signatures over the finite field 
qF , 2nq =  is ( )1 ,..., sr r  and 

1 2s n

i ir= = .  

Suppose that the values ir  are approximately equal /2n s

ir = , then the size V  of the 

logarithmic signature will have an estimate 
/2n ss . For 5122q =  and 

5 6 7 82 , 2 , 2 , 2s =  we 

obtain, respectively, 
21 14 11 102 , 2 , 2 , 2V =  of the 512 bit strings.  

The large size of the logarithmic signature is a drawback to the practical 

implementation of the MST3 cryptosystem.  

On the other hand, the large size of the logarithmic signature determines the 

potentially very large entropy of the long-term key for cryptographic transformations. 

Security Analysis. Message x  masked by a logarithmic signature on the arrays

( )ija = , ( )ijh =  which is calculated for a random number R .  

The function of the homomorphism 𝑓: 𝐺 → ℤ moves the group element to the center 

of the group. The random values R  are actually a session keys. Calculation 
1 1

2 1 0( ) ( )sR y t f y t − −=  and the subsequent recovery of R  is possible due to the 

commutativity of the center.  Commutative calculations in the center reduce the secrecy 

of the MST3 cryptosystem based on Suzuki 2-group to evaluate  2( )q . 

4 MST3 cryptosystems based on the generalized Suzuki 2 - 

groups 

We apply the above construction to build the MST3 cryptosystem based on the gener-

alized Suzuki group.  

Very large generalized Suzuki groups can be constructed over a finite field of fixed 

dimension. This allows to achieve a compromise between practical implementation and 

the cryptosystem secrecy. Description of the Scheme. Let’s consider basic encryption 

steps in MST3 cryptosystem based on the generalized Suzuki group. 

Key Generation: 

Input: a large group  1 2( , ) ( , ,..., ) |l l i qA n S a a a a F =  , 2nq =  with the center Z  

Output: a public key  , ( , )k kf    with corresponding private key 

( )0( ) ( ), ,...,k k s kt t 
  , 1, / 2k l= . 

Choose a tame logarithmic signatures 

( ) ( )1( ) ( ) ( /2 ),..., 0,..,0, ,0,...,0k k s k ij ij l kk
B B b S b +
 = = =   of type ( )1( ) ( ),...,k s kr r , 1,i s= , 

( )1, i kj r= , 
( / 2 )ij l k qb F+  , 1, / 2k l= . The tame logarithmic signature is defined as a bi-

jective and factorizable map of ( )k R . Select a random cover  

( ) ( )(1) (2)

1( ) ( ) ( ) (l/ 2 ),..., 0,...,0, ,0,...,0, ,0,...,0k k s k ij ij k ij kk
A A a S a a  +
 = = =   

of the same type as  , where ( , )ij la A n  ,  (1) (2)

( ) ( ), \ 0ij k ij k qa a F , 1,i s= , ( )1, i kj r= , 

1, / 2k l= . 



Choose 
0( ) 1( ) ( ), ,..., ( , ) \k k s k lt t t A n Z , 

( ) 1( ) (k)( ,..., )i k i k ilt S t t= , (k)ijt F  , 0,i s= ,

1,j l= , 1, / 2k l= . Let’s s( ) 0( 1)v vt t += , 1, / 2 1v l= − . 

Construct a homomorphism f  defined by 

( )1 /2 1 1 /2( ,..., ) (0,...,0, ' ,..., ' )l l l lf S a a S a a a a+= = = . 

Compute ( ) ( )( )( )1

1( ) ( ) ( 1)( ) ( ),...,k k s k ij i k ij ij i kk k k
h h h t f a b t −

−
 = = =  , 1,i s= , 1, ij r= , 

1, / 2k l= , where ( )( )( ) ( ) ( )( )(1)

/2/2
0,...,0, ,0,...,0ij ij ij ijk k l kl k

f a b S a b
++

= + . 

Output public key  , ( , )k kf   , and private key 
 

( )( ) ( ), ,...,k 0 k s kt t 
  , 1, / 2k l= . 

Encryption: 

Input: a message / 2 1lx G + , and the public key  , ( , )k kf   , 1, / 2k l= . 

Output: a ciphertext ( )1 2,y y  of the message x . 

Choose a random 2 /2( , ,..., )1 lR R R R= , 𝑅1, 𝑅2, . . . , 𝑅𝑙/2𝑙
∈ ℤ|𝐹𝑞|

. 

Compute: 

( ) ( ) ( ) ( ) ( )

( ) ( )( ( ) ( ) ( ) )
1 1 1 2 2 3 3 /2 /2

(1) (1) (1) (2) (2)

1 1 2 2 /2 /2 /2 1 1 /2 1 /2

' ' ' ' '

, ,..., , ,..., .

l l

l l l l l l l

y R x R R R R x

S a R a R a R a R x a R x

    

+ +

=  =    

= + + + + + +
 

The components of ( )  in the formula are determined by cross-calculations in the 

group operation of the product. 

Compute: 

( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) )
2 1 1 2 2 /2 /2

(1) (1)

/2 1 1 /2 1 1 /2 /2

' ' ' '

, ,..., , ,..., .

l l

l l l l l l

y R R R R

S a R R a R R

   

 + +

= =  

=    + + + +
 

Here, the ( )  components are determined by cross-calculations in the group opera-

tion of the product of 
( ) ( ),...,0 k s kt t , 1, / 2k l= . 

Output ( )1 2,y y . 

Decryption: 

Input: a ciphertext ( )1 2,y y  and private key ( )( ) ( ), ,...,k 0 k s kt t 
  , 1, / 2k l= . 

Output: the message / 2 1lx G +  corresponding to ciphertext ( )1 2,y y . 

To decrypt a message x , we need to restore random numbers 2 /2( , ,..., )1 lR R R R=  

The parameter ( )(1)

1 1a R  is known from the 1y  as the first parameter and it is included 

in the / 2 1l +  component of 2y , because ( ) ( )(1) (1)

/2 1 1 1 1la R a R+ = . Compute:  

( ( ) ( ) ( ) ( ))

(1) 1

1 2 /2 0(1) 2 ( /2)

(1) (1)

/2 1 1 /2 1 1 /2 /2

( , ,..., )

0,...,0, ,..., .

l s l

l l l l l l

D R R R t y t

S a R R a R R 

−

+ +

= 

= + +
 

( )

( ( ) ( ) ( ) )

(1)

1 2 /2 1

(1)

/2 1 1 /2 2 2 /2 2 2

( ) ( , ,..., )

0,...,0, , ,... .

l

l l l

D R D R R R f y

S R a R R 



+ + +

=

= + +
 



Restore 1R  with ( )/ 2 1 1l R +  using ( )
1

/2 1 1l R
−

+ , because   is simple.  

For further calculations, it is necessary to remove the components of the arrays 

( )1 1' R  and ( )1 1' R  from ciphertext ( )1 2,y y . 

Compute: 

( ) ( ) ( ) ( )

( ) ( )( ( )

( ) ( ) )

1(1)

1 1 1 1 2 2 3 3 /2 /2

(1) (1) (1)

2 2 3 3 /2 /2

(2) (2)

/2 1 /2 2 2 /2 2 /2

' ' ' '

0, , ,..., ,

, ,...,

l l

l l

l l l l l l

y R y R R R x

S a R a R a R

x a R x a R x

   
−

+ + +

=  =    

= + +

+ + + + +

 

( ) ( ) ( )

( ( ) ( ) ( ) ( ) )

1(1)

2 1 1 2 2 2 /2 /2

(1) (1)

/2 2 2 /2 2 2 /2 /2

' ' '

, ,..., , ,..., .

l l

l l l l l l

y R y R R

S a R R a R R

  

 

−

+ +

= = 

=    + + + +
 

Repeat the calculations  

( ( ) ( ) ( ) ( ))

(2) 1

2 /2 0(2) 2 ( /2)

(1) (1)

/2 2 2 /2 2 2 /2 /2

( ,..., )

0,...,0, ,...,

l s l

l l l l l l

D R R t y t

S a R R a R R 

−

+ +

= 

= + +
 

( )

( ( ) ( ) ( ) )

(2) (1)

2 /2 1

(1)

/2 2 2 /2 3 3 /2 3 3

( ) ( ,..., )

0,...,0, , ,... .

l

l l l

D R D R R f y

S R a R R 



+ + +

=

= + +
 

Restore 2R  with ( )/ 2 2 2l R +  using ( )
1

/2 2 2l R
−

+ .  

Repeating iteratively calculating after / 2l  steps, we obtain the recovery of 

2 /2( , ,..., )1 lR R R R=  and the message x  from 1y . 

Example. We will show the correctness of the obtained expressions in the following 

simple example. Fix the generalized Suzuki group 4 ( , )G A n =  over the finite field 

qF , 102q = . Assume that   is the Frobenius automorphism of 
2, :qF   → . 

Let’s define  4 1 2 3 4( , ) ( , , , ) | i qA n S a a a a a F =  . 

Group operation is defined as a product of two matrices 

1 2 3 4 1 2 3 4

2 2 4 2 4 8

1 1 2 1 1 2 3 2 1 1 2 3 4 3 1 2 2 1 3 4

( , , , ) ( , , , )

( , , , ).

S a a a a S b b b b

S a b a a b b a a b a b b a a b a b a b b

=

+ + + + + + + + + +
 

The inverse element is determined as  
1 2 2 4 2

1 2 3 4 1 2 1 1 3 2 1 1 2 1 1

2 4 2 8 2 4 2

4 3 1 2 2 1 1 1 3 2 1 1 2 1 1

3 2 4 2 4 8

1 2 1 3 2 1 1 2 4 3 1 2 2 1 3

( , , , ) ( ( ),

( ) ( ( )))

( ' , ' ' )

S a a a a S a ,a a a ,a a a a a a a

a a a a a a a a a a a a a a a

S a ,a a ,a a a a a a a a a a a a

− = + + + +

+ + + + + + + =

+ + + + + +
 

where 3

2 2 1'a a a= + , 2 4

3 3 2 1 1 2' 'a a a a a a= + + . 

Let`s construct a tame logarithmic signatures 

( ) ( )1( ) ( ) ( /2 ),..., 0,..,0, ,0,...,0k k s k ij ij l kk
B B b S b +
 = = =   of type ( )1( ) ( ),...,k s kr r , 1,i s= , 

( )1, i kj r= , ( / 2 )ij l k qb F+  , 1, / 2k l= .  

We have 4l = , 1, 2k = . Let`s define two arrays as follows 



( ) ( )1 1(1) (1) (3)1
,..., 0,0, ,0s ij ijB B b S b  = = =  , 

( ) ( )2 1(2) (2) (4)2
,..., 0,0,0,s ij ijB B b S b  = = =   

and 
(3) (4),ij ij qb b F . 

Logarithmic signatures 1  and 2  in a group representations define 
(3)ijb  and 

(4)ijb

coordinates. Types ( )1( ) ( ),...,k s kr r and logarithmic signatures 1  and 2  are chosen in-

dependently. Let`s logarithmic signatures 1  and 2  have a same type 

( ) ( )1( ) ( ) 1,..., ,...,k s k sr r r r= .  

As an example, ( ) ( )2 2 3 3

1,..., 2 , 2 ,2 ,2sr r = . Arrays 
(3)ijb , 

(4)ijb consist of four subar-

rays with a number of rows equal to ir . You can select any fragmentation of arrays 

with the condition 
1

s

i ir q= = . In our case we have 10

1 2s

i ir= = . Each row 
ijb  it`s an 

element of the field 
qF . 

The construction of arrays of logarithmic signatures is presented in [17]. 

First stage is to generate a tame logarithmic signature with the dimension of corre-

sponding selected type ( )1( ) ( ),...,k s kr r and finite field 
qF .  

In our case ( ) ( )2 2 3 3

1( ) ( ),..., 2 ,2 ,2 ,2k s kr r = , 102q =  and 

1( ) 2( ) 3( ) 4( ), , ,k k k k kB B B B  =   . Since 1  and 2  have a same type 

( ) ( )1( ) ( ) 1,..., ,...,k s k sr r r r=  we will get the same k , 1, 2k =  on the first stage. 

Let's set a tame logarithmic signature with entries Bi.  

 
β(1)= B1 00 00 000 000 

10 00 000 000 

01 00 000 000 

11 00 000 000 

B2 00 00 000 000 

00 10 000 000 

00 01 000 000 

00 11 000 000 

B3 00 00 000 000 

00 00 100 000 

00 00 010 000 

00 00 110 000 

00 00 001 000 

00 00 101 000 

00 00 011 000 

00 00 111 000 

B4 00 00 000 000 
00 00 000 100 

00 00 000 010 

00 00 000 110 
00 00 000 001 

00 00 000 101 

00 00 000 011 
00 00 000 111 



 

Let 673R = . We obtain the following basis factorization for a given type 

( ) ( )2 2 3 3

1( ) ( ),..., 2 ,2 ,2 ,2k s kr r =  in the form of ( ) ( )1 2 3 4, , , 1,0,2,5R R R R R= = , where 

2 4 7

1 2 3 42 2 2 673R R R R+ + + = . 

Let`s calculate the vector of the logarithmic signature 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4( ) 4

1000000000 0000000000 0000010000

0000000101 1000010101

kR B R B R B R B R = + + + =

+ + +

=

 

To calculate ( )
1

R
−

 it is enough to select groups of bits in the vector according to 

the type   

( ) ( ) ( )
1

1 2 3 410 00 010 101 , , , 1,0,2,5R R R R R
−
= = =  

and recover R .  

Bits positions in a logarithmic signature vector ( )R  are uniquely associated with 

subarrays 
( )i kB and bit values at these positions with the row number of the subarray 

( )i kB . To increase the security of arrays k  various cryptographic transformations can 

be used. For example, simple ones like adding noise vectors, permutations of strings in 

subarrays iB , merge of arrays iB , their permutation, matrix transformations. 

In our example, we use noising of β(1) and merge of arrays iB . This allows to con-

struct two different logarithmic signatures 1  and 2 . Perform random noising of β(1) 

in accordance with the above mentioned rule 

 
β(2)= B1 00 00 000 000 

10 00 000 000 

01 00 000 000 

11 00 000 000 

B2 11 00 000 000 

10 10 000 000 

10 01 000 000 

01 11 000 000 

B3 10 10 000 000 

01 11 100 000 

01 00 010 000 

00 10 110 000 

11 01 001 000 

10 01 101 000 

01 11 011 000 

00 10 111 000 

B4 01 00 110 000 
00 11 010 100 

11 00 011 010 

10 01 000 110 
01 10 101 001 

01 10 010 101 

00 11 100 011 
11 01 001 111 

 



Here the noise bits are in bold. For ( )1,0,2,5R =  we get the logarithmic signature 

vector 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4

1000000000 1100000000 0100010000 0110010101 0110000101

R B R B R B R B R = + + + =

+ + + =
 

Let`s define a highest group of bits in the vector for the calculation of ( )
1

R
−

 in  

accordance with type ( ) ( )
1

0110000 101 , , ,5R
−
= →     and by the combination of 

101 we will recover 4R . Select the sixth row from the array 4B  and deduct it from the 

original vector 

( ) ( )
1

0110000101 0100010000 0010 010 101 , , 2,5 .R
−
= + = →    

Repeat this procedure until the last subarray of the logarithmic signature and restore 

( ) ( )1 2 3 4, , , 1,0,2,5R R R R = . Apply the merge procedure for the subarrays 1 2 3 4, , ,B B B B  

within a rule of ( )1 1 4,C B B= , 2 2C B= , 3 3C B= . The first logarithmic signature 1  

has the type ( ) ( )5 2 3

1(1) (1),..., 2 , 2 ,2sr r =  and imagine these permutations on the next map 

1

1 2 3 4

4 1 2 3


 
=  
 

. In the field representation 1  has the following form 

β1= B1(1) {25,103,380,332,666,173,820,814,385,525,195, 

261,787,364,151,830,81,908,528,765,612,47, 

588,442,258,705,330,846,751,397,989,136} 
 

B2(1) {77,154,10,957} 

B3(1) {154,232,309,620,849,654,578,404} 

The numerical values of arrays determine the degree indicators of the generating 

element of the field i = , whose binary representation are strings β1. Representation 

of 0 defines single element
0  of the field 

qF . Similarly, we construct the second log-

arithmic signature 2 . We represent these permutations by a mapping of the form

2

1 2 3 4

1 4 2 3


 
=  
 

. We got a new type ( ) ( )2 5 3

1(2) (2),..., 2 , 2 ,2sr r =  of a logarithmic 

signature 2 . 2  has the following form in the field representation 

β2= B1(2) {00,0,1,77} 

B2(2) {258,705,330,846,751,397,989,136,577,45, 

1009,592,704,921,941,187,680,667,643,84, 

295,869,978,903,233,214,468,548,852,465, 

333,475} 

B3(2) {154,232,309,620,849,654,578,404} 

Arrays of logarithmic signatures 1  and 2  in the group representation, defines the 

coordinates 
(3)ijb  and 

(4)ijb , respectively 

( ) ( )1 1(1) (1) (3)1
,..., 0,0, ,0s ij ijB B b S b  = = =  , 

( ) ( )2 1(2) (2) (4)2
,..., 0,0,0,s ij ijB B b S b  = = =  . 



Construct random covers k , for the same type as 1  и 2  

( ) ( )(1) (1)

1 1(1) (1) (1) (3)1
,..., ,0, ,0s ij ij ijA A a S a a 

 = = = 
 

( ) ( )(2) (2)

2 1(2) (2) (2) (4)2
,..., 0, ,0,s ij ij ijA A a S a a 

 = = =  , 

where ( , )ij la A n  ,  (1) (2)

( ) ( 2), \ 0ij k ij k qa a F+  , 1,i s= , ( )1, i kj r= , 1, 2k = .  

Each cover k  defined by only two arrays ( )(1) (2)

( ) ( 2),ij k ij ka a +  with non-zero entries. 

Let`s generate random covers 1 , 2 .  

α1= A1(1) {(15,40),(3,400),(215,82),(990,633), 

(1017,597),(212,67),(788,14),(101,35), 

(876,505),(12,15),(21,44),(72,590), 

(4,319),(161,431),(41,30),(181,1008), 

(87,938),(427,713),(112,37),(611,147), 

(8,42),(188,652),(98,744),(366,96), 

(251,388),(349,726),(170,833),(110,897), 

(429,616),(331,647),(298,801),(221,529)} 

 

A2(1) {(717,101),(21,95),(977,1344),(170,195)} 

A3(1) {(454,865),(335,550),(881,677),(458,704), 

(644,233),(689,439),(329,934),(188,457)} 

and 

α2= A1(2) {(111,1010),(51,349),(756,953),(337,527)} 

A2(2) {(210,243),(309,833),(221,133),(889,126), 

(535,129),(909,565),(728,441),(572,375), 

(15,637),(71,228),(215,9),(108,553), 

(473,240),(348,570),(369,731),(213,416), 

(648,799),(451,606),(713,587),(909,436), 

(520,314),(19,52),(564,871),(11,531), 

(449,277),(392,688),(265,1002),(78,93), 

(223,924),(558,748),(372,975),(513,185)} 

A3(2) {(204,882),(69,633),(779,354),(988,754), 

(2277,553),(419,894),(291,632),(551,15)} 

Choose random 
0( ) 1( ) ( ), ,..., ( , ) \k k s k lt t t A n Z , 3s = , 4l = , 1, 2k =  and 3(1) 0(2)t t= . 

Let for the first logarithmic signature we have 

t0(1)=(117,960,531,471) 

t1(1)=(332,801,14,522) 

t2(1)=(158,432,254,173) 

t3(1)=(1003,389,195,56) 

t-1
0(1)=(117,541,917,223) 

t-1
1(1)=(332,158,398,295) 

t-1
2(1)=(158,19,206,894) 

t-1
0(1)=(1003,329,199,962) 

and for the second logarithmic signature 2  
t0(2)=(1003,389,195,56) 

t1(2)=(448,674,345,179) 

t2(2)=(221,33,309,992) 

t3(2)=(649,712,760,702) 

t-1
0(2)=(1003,329,199,962) 

t-1
1(2)=(448,689,655,108) 

t-1
2(2)=(221,15,1021,692) 

t-1
3(2)=(649,23,656,14) 

The next step is to calculate the arrays 1  и 2 . By the condition of the example, 

we obtain 



( ) ( )( )( )1

1 1(1) 3(1) ( 1)(1) (1)1 1 1
,..., ij i ij ij ih h h t f a b t −

−
 = = =   

( ) ( )( )( )1

2 1(2) 3(2) ( 1)(2) (2)2 2 2
,..., ij i ij ij ih h h t f a b t −

−
 = = =   

Construct a homomorphism f  defined by ( )1 2 3 4 1 2( , , , ) (0,0, , )f S a a a a S a a= . 

For example, let ( ) ( )1 1(1) 2(1) 3(1), , 1,1,5 673R R R R= = =  and 

( ) ( ) ( ) ( ) ( )1 1(1) 2(1) 3(1) 516,578,850,374673 1 1 5h h h S = = . 

Let ( ) ( )2 1(2) 2(2) 3(2), , 2,6,2 354R R R R= = = . Compute 2   

( ) ( ) ( ) ( ) ( )2 1(2) 2(2) 3(2) 487,227,651,318354 2 6 2h h h S = = . 

Encryption 

Input: a message 3x G , ( )3 40,0, ,x S x x= , and the public key  , ( , )k kf   , 

1, 2k = . 

Output: a ciphertext ( )1 2,y y  of the message x . 

Let ( )0,0,299,824x S= .  

Choose a random 2( , )1R R R= , 
2, ,

q
1 F

R R  .  

Let 6731R =  и , 2 354R = . 

Compute 

( ) ( ) ( ) ( )1 1 1 2 2 139,814,393,699' ' 'y R x R R x S  =  =   =  

( ) ( ) ( ) ( )2 1 1 2 2 30,766,734,871' ' 'y SR R R  = =  = . 

Output ( )1 139,814 ,,393,699y =  ( )2 30,766,734,871y = . 

Decryption 

Input: a ciphertext ( )1 2,y y  and private key ( )( ) ( ), ,...,k 0 k s kt t 
  , 1, 2k = . 

Output: the message 3x G  corresponding to ciphertext ( )1 2,y y . 

To decrypt a message x , we need to restore random numbers 2( , )1R R R= . 

Compute  

( ) ( )(1) 1 1

1 2 0(1) 2 (2) 0(1) (2)30 .( ,766,734,871 0,0,459,233, ) s sD R R t y t t tS S− −= = =  

( ) ( ( ) ( ) ( ) )
( ) ( ) ( )

(1) (1)

1 2 /2 1 /2 1 1 /2 2 2 /2 2 2

0,0,459,233 0,0,139,814 0,0,235,950 .

( ) ( , ,..., ) 0,...,0, , ,...l l l lD R D R R R f y S R a

S

R R

S S

 

+ + +

=

= = + +
 

We get ( ) 235

1 1 0 0 0 0 1 1 1 1 0 0)(R = = . 

Recovery of 1R  was done earlier ( ) ( )1 2 3, , 1,1,5R R R R= = . 

For further calculations, it is necessary to remove the components of the arrays 

( )1 1' R  and ( )1 1' R  from ciphertext ( )1 2,y y . 

Compute:  



( ) ( ) ( )

( ) ( )

( )

1(1)

2 1 1 2

1
516,578,850,374 30,766,734,871

516,97,108,579 30,766,734,871

487,227,651,318

'y S S

S S

S

R y
−−

=

=

= =

 

Repeat the calculations  

( ) ( )(2) (1) 1 1

2 0(2) 2 (2) 0(2) ( /2)487,227,651,318 0,0,0,233( ) s s lD SR t y t t tS− −= = =  

( ) ( ) ( )

( ) ( ) ( )

1(1)

1 1 1

1

1 139,27,959,977 139,814,393,699

139,787,0,148 139,814,393,699 0,693,299,784

'y S S

S S

R y

S


− −


=

= = =
 

( ) ( ) ( )( )

( ) ( ) ( )

(2) (1)

2 1 0,0

4

,0,233 0,693,299,784

0,0, ,

( ) ( )

0,0.0,0,233 0,0 0,69 443

D SR D R f y f S

SS S

 = =

=

=
 

Restore 2R  with ( ) ( )444

2 2 1 1 1 1 1 1 0 0 1 1R = = .  

Perform inverse calculations ( )
1

2 2R
−

. Select bit groups in vector ( )R  according 

to type ( ) ( )2 2 3 3

1(2) ( 2,..., 2 ,2 ,2 ,2s kr r = . We use the same calculations as in the example 

for ( )
1

1 1R
−

, and we get  

11|11|110|011  R2=(*,*,*,6) 

 00|11|100|011  row from β(2) 

11|00|010|000  R2= (*,*,2,6) 

 01|00|010|000  row from β(2) 

10|00|000|000  R2= (*,0,2,6) 

 11|00|000|000  row from β(2) 

01|00|000|000  R2= (2,0,2,6) 

( ) ( ) ( )
1

2 1 2 3 4' 11 00 010 011 ', ', ', ' 2,0,2,6R R R R R
−
= = = .  

The resulting vector along with the concatenation of array entries 
2(2) 4(2),B B  due to 

their merging, we write in the following bit representation 

( ) ( )  ( ) ( )
1

2 2' : 2,0,2,6 2,6 0,2 01,01100,010R 
−
= → = . 

The transition from bit to numeric gives the desired value 

( ) ( )2 1(2) 2(2) 3(2), , 2,6,2R R R R= = . Receive a message 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 2 2 1 1 1

.0,693,0,418 139,787,0,14 ,

' ' '

0,0,299,828 139,814 39 9 43,69

x R

S S S

R y R y

S

  
− − −

= 

= =

= 
 

Output: the message ( )0,0, 299,824x = . 

Security Analysis. An attack on the cryptosystem is possible by solving the 

( )1

1 2 /2 0(1) 2 ( /2) 1( , ,..., )l s lR R R t y t f y −=   equation by selecting  0( )kt  and 
( )s kt  vectors. 

There are / 2l  such vectors.  

The success of an attack is determined by the selection of 
0( )kt  and 

( )s kt  vectors and 

has complexity proportional to the / 2l  power of the group ( , )lA n   due to the non-

commutativity of the generalized Suzuki group. Brute force attack is possible by 



selection 
2 /2, ,...,

q
1 l l F

R R R  . The complexity is determined by the value / 2l , finite 

field power 
qF  in proportion to / 2 ql F . Complexity analysis. Fix the generalized Su-

zuki group ( , )lG A n =  and the logarithmic signature for the type ( )1 ,..., sr r  over the 

finite field 
qF , 2nq = . Suppose that the values ir  are approximately equal /2n s

ir = .  

Early show that the size of the logarithmic signature has the estimate 
1/

( , )
ls

lV ls A n = . For 642q = , 
512( , ) 2lA n  = , 8l =  and 

3 4 52 , 2 , 2s =  we obtain, 

respectively, 
14 11 102 , 2 , 2V =  of the 64 bit strings.  

5 Conclusions 

The proposed design of the MST3 cryptosystem based on the generalized Suzuki 

group provides potentially higher privacy and optimizes the cost of key data. The differ-

ence from the well-known MST3 construction is the iterative key recovery from calcu-

lations in the large normal subgroup of the generalized Suzuki group. 
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