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Abstract.  The paper is dedicated to the important issue of developing new ap-

proaches to obtain bounds of the objective function in linear constrained com-

binatorial optimization problems. Two general schemes have been developed 

for finding these bounds, which are based on solving polyhedral and semi-

definite relations of the original problem. These schemes are adapted for three 

classes of combinatorial optimization problems, known by numerous practical 

applications. These are linear Boolean, permutation-based and signed  permuta-

tion-based problems. For these classes, the polynomiality of obtaining the 

bounds is justified, for which purpose analytical representations of admissible 

domains in the form of systems of nonlinear equations are constructed, and sep-

arating oracles for their convex hulls are found. 

Keywords: linear constrained combinatorial optimization, polyhedral relaxa-

tion, semi-definite relaxation, Boolean set, permutation matrix set,   multiper-
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1 Introduction and literature review 

A large number of real-world problems are modelled as linear combinatorial 

optimization problems [2],[11],[16],[17],[27],[30],[34].  

The vast majority of these problems belong to a class of np-complete ones 

[3],[11],[14],[16], which attracts the interest of researches over the world in studying 

general features of the class and single outing special classes of these problems that 

can be solved in polynomial time. In particular, this concerns estimates of the 

objective function.  

There is a wide class of practical problems that are effectively solved by heuristic 

methods [2], [10], [11], [12], [17],[32]. However, the question is still open about 

assessing the accuracy of heuristic solutions. It is especially difficult to solve this task 

for the discrete case [10],[17]. 

Therefore, this paper poses a goal to find new ways to assess the accuracy of 

solutions of linear combinatorial optimization problems. This task can be formulated 

as a problem of constructing a new upper bound for the objective function in a 

constrained linear minimization problem on a combinatorial set E  embedded into 

Euclidean space: 
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 = ,→z cx max  (1) 

 ,Ax b  (2) 

 ,  nx E R  (3) 

where  m nA R ,  nc R ,  mb R , and the number m  of additional constraints (2) 

is fixed. 

Let 
* * * *, = ,x z x cx  be an exact solution to the problem (1)-(3), 

** ** ** **, = ,x z x cx  be its approximate solution, while ,l uz z  be a lower and an 

upper bounds of z , respectively. Then, as a lower bound, **=lz z  can be chosen. 

Having solved the problem of finding the bound uz , it can estimated an absolute 

  and a relative error   of the approximate solution **x , namely:  

 
* ** **| | =| |=| |−   − −u l uz z z z z z , 

**
=

| |




z
.  

Building the upper bounds as accurate as possible is important in many aspects. 

First, it is an assessment of heuristic solutions' accuracy. Second, it is faster obtaining 

accurate solutions by Branch and Bound approaches or cutting-plane methods, since it 

allows reducing a search domain [11],[16],[17],[20],[27]. 

2 Materials and Methods 

This paper proposes a general method for constructing an upper bound for the 

objective function (from now on the estimate 1uz ) in problems of the type (1)-(3) on 

sets for which there exists a polynomial separating oracle for the polytope P  of the 

form  

 = { : },  P x P Ax b  (4) 

where  

 =P conv E  (5) 

is a combinatorial polytope corresponding to E . This oracle determines whether the 

given point x  of the space belongs to the polytope P'  and if not, generates the 

correct clipping of the point x  using the hyperface equation of the combinatorial 

polytope P  . Given that the number of additional constraints is fixed, the condition 
 Ax b  is checked in polynomial time. Accordingly, the existence of a polynomial 

separating oracle for P  is equivalent to the existence of such an oracle for P . It is 

the latter that we will seek during the presentation. The estimate of the estimate 
1uz  



 

is the value of the objective function obtained by solving the polyhedral relaxation of 

the original problem, which in this case is effectively solvable. 

A method is also proposed for constructing another upper bound for the objective 

function (hereinafter the bound 2uz ) for three classes of the class of combinatorial 

sets:  

 = {0,1} ;n
nB  (6) 

 ( ) = { :{ } = }; n
nkE G x x GR  (7) 

 ( ) = ( ) ,+
nk nk nE G E G B  (8) 

where (6) is a Boolean set embedded into Euclidean space (a Boolean bC -set [23]); 

(7) is the set of multipermutations embedded into Euclidean space (a multi-

permutation bC -set [24]); (8) is a set of signed multipermutations embedded into 

Euclidean space (a signed multi-permutation bC -set [19],[21],[23],[25]). Hereinafter 

1{ } = { , ..., }nx x x  for 1= ( , ..., )nx x x , 

 1= { } ,  ( ) = { } i i J i i Jn k
G g S G eR  (9) 

is a base of G , = {1, .., }nJ n , = { 1,1} − n
nB , 1 2•A A  is the Hadamard product of 

sets 1A  and 2A . 

The method for obtaining the estimate 2uz  is based on the use of continuous 

functional representations (f-representations) [24] of these sets or their images in the 

space of higher dimension. 

It is justified that, for the sets (6)-(8), we apply both the first and second 

approaches to solving the problem. 

Note that both proposed methods for obtaining estimates give a solution in 

polynomial time, which makes them practically applicable.  We assume that in the 

problem (1)-(3) all the coefficients of the additional constraints of the objective 

function are integer, and our combinatorial set E  is a subset of the integer lattice, i.e.  

 
1, , ( ) .  m n mA b S GZ Z Z  (10) 

We also assume that all linear functions of the additional constraints (2) take a 

polynomial in n  number of values within an admissible region, that is, (2) can be 

represented as:  

 ,  −   b A x b  (11) 

where 
 m nA Z , <m m , 

 mb Z ,  

, ,


+ +  m
ikZ Z  



 '
1 2{ } , = < < ... < = , .      −  T

i ij j J i i i i ik i mk ii
a x b b b b b b i J  (12) 

As noted earlier, another condition is the existence of a polynomial separation 

oracle for the polytope (4), i.e., one that determines whether a given point in space is 

a polytope of P . 

Thus, we consider a problem of the form (1), (3), (11), (12). 

2.1 The bound 
1uz  

The first solution method involves the transition from the solution of the problem (1), 

(3), (11), (12) to consideration of its polyhedral relaxation, i.e. to a problem of the 

form (1), (11), (12),  

 x P , (13) 

where P  is the combinatorial polytope (5). Denote the solution to this problem by 

0 0,x z . Note that this is a standard approach, which difficulty of the practical 

implementation is caused by the fact that an analytic form of most combinatorial 

polyhedra is unknown, and if it is known, it contains an exponential in n  number of 

constraints [26],[27],[34]. The upper bound is:  

 
1 0= .uz z  (14) 

In our case, this relaxation can be solved in real-time due to the existence of a 

separating oracle, by methods such as the ellipsoid method [27]. However, again, the 

practical implementation of this method is significantly difficult. 

We propose another approach, which is based on solving a set of linear problems 

forming a sequence of points that converges to solving the 
0x  relaxation problem. 

For that, we consider the linear problem (1) on the hypercube 1[ , ]n
ke e  with 

additional restrictions (11). This problem is solved by linear programming methods, 

and the resulting solution 
0x  is checked for membership in the polytope P  using the 

oracle. 

In order to accomplish this, we consider the linear problem (1) on the hypercube 

1[ , ]n
ke e  with additional restrictions (11). This problem is solved by linear 

programming methods, and the resulting solution 
0x  is checked for membership of 

the polytope P  using the oracle. 

If the point is invalid, then this oracle generates a constraint P , which can be 

added to the system (11), 

 

 1 ,  ke x ee e  (15) 



 

where e  is a vector of units. 

The resulting problem is solved by the linear programming method, and it is 

advisable to start from the point 0'x  and take one or several steps of the dual simplex 

method. 

This process continues iteratively until the vertex of the polytope is obtained, 

which is the desired point 0x . This method was tested on the multipermutation 

bC -sets and partial multipermutation bC -sets showing high computational efficiency 

[18]. 

We consider three classes of Euclidean combinatorial optimization problems. The 

first is the classical problem, which is formulated as a linear conditional optimization 

problem on a Boolean bC -set (6) (starting now Problem 1), the second is a linear 

conditional problem on the multipermutation bC -set (7) (linear permutation-based 

problem) (further referred to as Problem 2), and a conditional linear problem on the 

signed multipermutation bC -set (8) (a linear signed-permutation-based problem) 

(hereinafter Problem 3). The corresponding polyhedral relaxation problem has the 

form: (1), (11), (12), (13), where  

 = = = [0,1]n
n nP D convB  (16) 

is a unit hypercube in Problem 1;  

 = ( ) = ( )nk nkP P G convE G  (17) 

is a generalized permutohedron [34] in Problem 2;  

 = ( ) = ( ). 
nk nkP P G convE G  (18) 

is a generalized signed permutohedron [24], [31] in Problem 2; 

The polynomial solvability of the polyhedral relaxation of Problem 1 by linear 

programming methods is not in doubt, since the number of constraints nD  is 2n , and 

the number of additional ones is fixed. As a result, the point 
0 0=


x x . 

For Problems 2 and 3, the situation is much more complicated, since the 

corresponding polyhedra are defined, generally speaking, by a non-polynomial 

number of constraints, namely:  

 
| |

=1 =1 =1

( ) : = , , ;




    
n n

nk i i i i n
i i i i

P G x g x g J  (19) 

 
| |

1 1

=1

( ) : | | , .



− + − +



  nk n i n i n
i i

P G x g J  (20) 

Moreover, without loss of generality, it is assumed that the multiset 
1
+G R  is 

preordered in such a way that  



 1 2 ... ,   ng g g  (21) 

wherefrom 

 1 2< < ... < .ke e e  (22) 

(20) is a compact H-representation of the polytope ( )
nkP G , in which the signs in 

the modules are expanded in all possible ways, forming a system of linear constraints. 

The cardinality of the irreducible subsystems singled out in (19), (20) reaches 

values 2 1−n  and 4 2−n n , respectively. 

To justify the polynomial solvability of the polyhedral relaxation problem and the 

possibility of applying the indicated scheme for obtaining 1uz , we give oracles for 

each of these polyhedra.  

Theorem 1 [21],[31]. 1. A point  nx R , such that 

 1 ...   nx x  (23) 

satisfies a condition  

 1

=1 =1 =1 =1

( ) iff = , , .−       
j jn n

nk i i i i n
i i i i

x P G x g x g j J  (24) 

 

2. A point  nx R , such that  

 1| | ... | |   nx x  (25) 

satisfies a condition  

 1 1 1

=1 =1

( ) iff  | | , .
− + − + −    

j j

nk n i n i n
i i

x P G x g j J  (26) 

  

It is clear that ordering (23), (25) and checking (24), (26) can be done in 

polynomial time. Moreover, if the membership condition for the polytope is not 

fulfilled, a violated constraint is generated during this process, so a polynomial 

separating oracle is found. 

2.2 The bound 
2uz  

The scheme is based on the use of a concept of a multi-level finite point configuration 

(FPC, a finite discrete set mapped into Euclidean space) [7] and the Theta-rank 

[6],[8].  



 

Definition 1 [7]. A finite point configuration E  is k -level if, for every facet-

defining hyperplane H , there are k  parallel hyperplanes 1 2= { , , ..., }kH H H H  

with 1 2   kE H H H . 

A levelness of E , denoted by ( )Lev E , is the smallest k  such that E  is k -level.   

A concept of the Theta rank ( )Th E  of an FPC E  was introduced in [6] as a 

measure of the complexity of linear optimization over this set by polynomial 

optimization tools. Namely, if E  is given as a solution set to a system of polynomial 

equations, a semi-definite relaxation of a linear program over E  can be solved 

exactly in the time of order 
( )( )Th EO n . 

 It is easy to see that ( ) ( ) 1 −Th E Lev E , and this inequality turns into equality for 

2-level sets. This means that the time complexity of solving semi-definitete relaxation 

of the problem (1), (3), (11), (12) is bounded above by order 
( ) 1( )−Lev EO n  for E  

with ( ) > 2Lev E , and it is of order 
( ) 1( )−Lev EO n  for a two-level set E . This means 

that, if ( )Lev E  does not depend on E , then the relaxation is polynomially solvable. 

The result of solving this relaxation will be denoted 
* * * *, = ,
   

x z x cx . This 

optimization problem is convex; thus *z  is a new upper bound of *z  is achievable. 

It will be used as a second upper bound 2uz :  
2 *= .

uz z  

In order to apply this approach, a strict polynomial f-representation of E  has to be 

found. Also, inequality constraints in (2) (equivalently, (11)) has to be replaced by 

equalities, thus yielding a strict polynomial f-representation of E . 

To accomplish this, the following technique will be applied to each inequality 

T
i ia x b ,  mi J  in (2). First, assume that 0b . Represent + n

ib Z  as follows: 

0 1= 2 ... 2+ + +
ti

i ti
b y y y , where 2=i it log b , {0,1}jy , 0

ti
j J ,  mi J . By 

introducing 
0 Ty J  such that =


i

i Jm

T max t , the constraint (2) can be represented as a 

system of linear equations as follows:  

 = 0,+Ax Cy  (27) 

 1,+ Ty B  (28) 

where ( 1)
0= ( )

,
 +





m T

ij i Jm T

C c
j J

N , = ( 1, 2, ..., 2 , 0, ..., 0)− − −
ti

ijc ,  mi J . If 

there exists  mi J  such that < 0ib  then the corresponding constraint can be 

rewritten in the form of | |= 0+T
i ia x c . Applying the same technique to expand | |ic , 



we get = (1, 2, ..., 2 , 0, ..., 0)
ti

ijc ,  mi J , and the common result of the lifting into 

a higher dimension space given by (27), (28). 

Denoting = ( , )−AC A C ,  

 = ( , ),xy x y  (29) 

Problem 1 is rewritten as a problem of finding a vector xy  satisfying (1), (29), (1) 

 = 0,AC xy  (30) 

 .1 +nT
xy B  (31) 

For Problem 2, the extended reformulation is given by (1),(7),(28)-(30). Similarly, 

for Problem 3, it will be a problem (1),(8),(28)-(30). The two later extended 

formulations are ones on a Cartesian product of the Binary bC -set and a 

multipermutation or a signed multipermutation bC -set, respectively, whose levelness 

coincides with the one of ( )nkE G  and ( )
nkE G  due to ( ) = 2nLev B  and levelness 

properties [7]. 

2.3 Matrix bC -sets for evaluating 
2uz  

Let us consider an issue of obtaining in a reasonable time the bound 2uz  in 

Problems 1-3. 

We start with the Boolean Problem 1. The Boolean set nB  is two-level [7], and our 

feasible set is ( )Lev E -level, where ( )Lev E  is determined by the formula  

 ( ) = 2


 i
i Jm

Lev E max k , (32) 

where , ik i Jm  are determined by the formula (12). The levelness of our feasible 

set is independent of n , hence the computational complexity of semi-definite 

relaxation is bounded from above by  

 
( ( ) 1)( ).

 −Lev EO n  (33) 

Thus, the relaxation is polynomially solvable. 

In order to apply this relaxation, a strict f-representation of the Boolean set needs 

to be found. 

For instance, the well-known strict f-representation of a Boolean set by quadratic 

equations  

 
2 = 0,− i i nx x i J  (34) 



 

can be applied. Many other similar f-representation can be found in [21],[24]. 

For sets (7), (8), applying this technique does not give positive results, since these 

sets, generally, are not Lev -level, where Lev  does not depend on n  [21]. Therefore, 

for Problems 2,3, we offer a transition to considering an equivalent formulation in the 

space of higher dimension in the form of Problem 1. 

Now, we consider the multipermutation set (7) along with a set  

 = { : = , ' = }  T
k nnk

X B X n Xe e e  (35) 

of multi-permutation matrices [13], where  n
e R , ' k

e R  are vectors of units, 

= ( ) i i J k
n n  is a vector of ( )S G -multiplicities in G . Its special case is a multitude 

of permutation matrices [15],[22]:  

 = { : = = }  n n T
n X X Xe e eR  (36) 

corresponding to the case =n e  in (35). 

According to [13], between the sets (7), (35), there exists a bijective mapping  

 : = , Tx X e  (37) 

namely,  

  iff = ( ). T
nknk

x X E Ge  (38) 

Let us reformulate our problem in terms of new variables. So, for the objective 

function (1), we have:  

 

=1 =1

= = = ( ) →
k n

T T T
i i j

i j

z c x c X x e c maxe  (39) 

or  

 

=1 =1

= = , • →
k n

ij ij
i j

z C X c x max  (40) 

where = , ,  ij i j k nc e c i J j J . 

In the same way, constraints (1) are reformulated yielding  

 , ,•  i i mA X b i J  (41) 

where ,= ( ) , = , , ,  i i
i lj l j lj i lj m k nA a a e a i J l J j J . 

A new formulation of Problem 2 (further referred to as Problem 2.1) is: find a 

matrix X  such that (40), (41), 



 
nk

X  (42) 

hold. 

It can be shown that the polytope = 
nk nk

P conv  of multipermutation matrices is 

defined as follows 

 0 1, , ;   ij k nx i J j J  (43) 

 

=1

= , ;
n

ij i k
j

x n i J  (44) 

 

=1

= 1, .
k

ij n
i

x j J  (45) 

Hence, facets of 
nk

P  are parallel to coordinate planes, while set 
nk

 is two-level. 

Involving additional constraints (41) into consideration and taking into account an 

equivalence of Problem 2 and Problem 2.1, as well as (12), (32), we get that a 

levelness of a feasible domain of Problem 2.1 is given by (32). This implies that a 

semi-definite relaxation of Problem 2 in the extended space is polynomially solvable. 

To apply it, a strict representation of k nB  needs to be utilized. It can be, for 

example,  

 
2 = 0, , .−  ij ij k nx x i J j J  (46) 

Now, for obtaining the upper bound 
2uz  in Problem 2, Scheme 2 can be applied. 

A similar procedure is applicable for Problem 3 and the signed multipermutation 

bC -set. For that, we introduce a set of signed permutation matrices' set:  

 = { :| | = ,| | ' = },   k n T

nk
X T X n Xe e e  (47) 

where = { 1, 0,1}−T  is a ternary set, | | =X ne  implies that sum of absolute values 

of rows' coordinates equal to the corresponding multiplicity of ( )S G -elements, while 

| | ' =TX e e  means that the columns are zero ones except for a single element, which 

is either one or minus one. 

Next, we need to construct a strict f-representation of the set (47), more precisely, 

of its image in space 
k nR . The condition 

 k nX T  will be formalized, likewise 

(46) yielding:  

 
3 2( 1)( 1) = = 0, ,− + −  ij ij ij ij ij k nx x x x x i J j J .  (48) 

The rest of the constraints in (47) let us represent in a quadratic form:  



 

 2

=1

= , ;
n

ij i k
j

x n i J  (49) 

 2

=1

= 1, .
k

ij n
i

x j J  (50) 

As a result, we obtain a strict cubic f-representation of the set (47) of the form of 

(48)-(50). 

Notice, that columns of 
nk

X  form a vertex set of a cross-polytope [5], 

namely,  

 1
2( ) (1), (1) = ({0 ,1}) = ( (1))  − 

   • n
n ij i J n n n n nk

j J x B B B E vert PB ,  

where  

 

=1

(1) = (1) = { : | | 1}   
n

n
n n

i

PB conv B x xR  (51) 

is a cross-polytope. 

Set (1)
nB  is an example of a ternary permutation bC -set [23],[24]. It belongs to a 

family  

2 1( ) = ({0 ,1 }), , −
 −• n i i

n n n nB i B E i J  

whose convex hulls are given by  

 

=1

( ) = ( ) = { [ 1,1] : | | }.   − 
n

n
n n

i

PB i conv B i x x i  (52) 

Combining (51), (52), we obtain an H-representation of 

nk
P :  

 1 1, , ;−    ij k nx i J j J  (53) 

 

=1

| | 1, ; 
k

ij n
i

x j J  (54) 

 

=1

| | , . 
n

ij i k
j

x n i J  (55) 

Examine a levelness of 

nk

 based on (53)-(55). With respect to faces of 


nk
P  

parallel to coordinate planes, the sets is 3 -level. Toward normal vectors of facets 



=1

| |= 1
k

ij
i

x , it is two-level, while for a hyperpalne 

=1

| |=
n

ij i
j

x n , it is 2 in -level. 

Overall 
nk

 is l -level set, where  

 1= ( ) = 3, 2 , ..., 2 . knk
l Lev max n n  (56) 

Generalizing (32) for this case, we get that a levelness of the corresponding set E  

is given by:  

 ( ) = { , 3, 2 } 3
, 

 


i j
i Jm k

Lev E max k n
j J

. (57) 

(57) implies, that the semi-definite relaxation of Problem 3 utilizing the above 

strict f-representation of 
nk

 is polynomialy solvable if 1, ..., kn n  do not depend on 

n . 

Thus, we justified 
2uz  is always achievable in polynomial time for Problem 1 an 

Problem 2 and indicted a condition when the same is true for Problem 3. 

3 Discussion 

The results on semi-definite and polyhedral relaxation bounds can be further 

combined [9] in order to obtain more accurate lower bounds in z . One more direction 

for tightening the bound 
2uz  is to use Lagrangian dual bounds by Shor's r -

algorithms [28], [29]. The algorithms deal with quadratic optimization problems. 

Hence they are directly applicable to Problem 1 and Problem 2 while requiring one 

more step of lifting in higher dimension space for Problem 3 represented as a cubic 

optimization problem. No less important in numerical algorithms are effective ways 

to get upper bounds. Their obtaining associating with a search of a feasible solution 

means a possibility to finish a process as soon as a required accuracy is achieved. 

With this regards, it highly helpful an approaches presented in [33] and other sources 

[1], solving the problem as a polynomial optimization or a feasibility problem. 

4 Conclusion 

In this paper, two innovative approaches of mathematical modeling general 

permutation-based and signed permutation-based optimization problems as problems 

of polynomial optimization with equality constraints are presented and applied to 

justify a polynomial solvability of getting semi-definite bounds. They can be 

generalized into other classes of optimization problems and utilized in many other 

problems arising in combinatorial and continuous nonlinear optimization.  
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