
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0). ICST-2020

A Method to Improve FPGA Project Checkability for

Safety-Related Applications

Oleksandr Drozd[0000-0003-2191-6758], Oleksandr Martynyuk[0000-0003-1461-2000],

Kostiantyn Zashcholkin[0000-0003-0427-9005], Mykola Kuznietsov[0000-0002-3043-5924],

Julia Drozd[0000-0001-5880-7526], Anastasiya Troynina[0000-0001-6862-1266]

Odessa National Polytechnic University, Ave. Shevchenko 1,

65044, Odessa, Ukraine
drozd@ukr.net, anmartynyuk@ukr.net, const-z@te.net.ua,

koliaodessa@ukr.net, yuliia.drozd@opu.ua,

anastasiyatroinina@gmail.com

Abstract. FPGA-designing (Field Programmable Gate Array) with LUT-

oriented (Look-Up Table) architecture enjoys well-deserved recognition in the

field of safety-related applications, where important tasks are solved to ensure

the functional safety of high-risk objects to prevent accidents. These tasks are

assigned to safety-related systems, which are the development of ordinary com-

puters with the division of operating mode into normal and emergency ones and

increased requirements for functional safety provided using fault-tolerant solu-

tions. Under these conditions, FPGA designing encounters the problem of hid-

den faults that can accumulate in memory bits of LUT units in normal mode

and reduce the fault tolerance of the FPGA project with the beginning of the

most responsible emergency mode. This problem is due to the limited checka-

bility of FPGA projects, which is due to memory bits addressed only in emer-

gency mode. The method of improving the checkability of FPGA projects based

on the version redundancy of their program codes is proposed. The work of

FPGA projects is organized with a periodic change of program code versions

for addressing in normal mode to all used memory bits. The method is shown in

the example of the FPGA project designed for the iterative array multiplier,

where it determines all versions of the program code and selects their minimum

number to maximize the checkability of the project.

Keywords: safety-related system, normal and emergency modes, FPGA pro-

ject, LUT-oriented architecture, problem of hidden faults, checkability, memory

bits of LUT unit, program code version.

1 Introduction and Related Works

FPGA-designing (Field Programmable Gate Array) is a promising direction in the

development of digital components of computer systems. In turn, the development of

computer systems receives the highest priority in the domain of safety-related

applications. Therefore, we can observe the priority development of safety-related

systems based on FPGA-designing [1, 2].

mailto:drozd@ukr.net
mailto:anmartynyuk@ukr.net
mailto:const-z@te.net.ua
mailto:koliaodessa@ukr.net
mailto:yuliia.drozd@opu.ua
mailto:anastasiyatroinina@gmail.com

Safety-related systems play an important role in the sustainable development of

mankind, allowing you to increase productive capacity and protect the environment

from it, including the person himself. This process is based on the balance of quantita-

tive and qualitative growth of high-risk objects, on the one hand, and the improve-

ment of technologies implemented into Instrumentation and Control safety-related

systems, on the other scale. High-risk objects are represented by power plants and

power networks, high-speed land, and air transport with a powerful supporting infra-

structure. Humanity cannot abandon a such development and increases the total ca-

pacity of these facilities, as well as the complexity that limits their observability and

controllability. Safety-related systems are aimed at ensuring functional safety in the

complex: both own and high-risk objects to prevent accidents and reduce losses if the

accident cannot be prevented [3, 4].

The risk can be represented by the product of two factors: the cost of the accident

consequences and the probability with which it can occur [5, 6]. The first factor is

constantly growing along with the capacity of high-risk objects. Risk deterrence is

possible only through a second factor, the reduction of which can be achieved only by

improvements in safety-related systems.

Functional safety, for which failures belong to the main challenges, is based on the

use of fault-tolerant solutions, including multi-version technologies. They are aimed

at counteracting failures for a common cause, which follows from copying circuit and

software solutions [7].

It should be noted that the attributes of observability and controllability are im-

portant not only for the high-risk object, but also for the functional safety of the con-

trol system, which can also be complicated in the process of its improvement. These

attributes form the basis of testability and testable design of the digital components

for computer systems [8-10].

Testability evaluates the digital circuit from the position of its suitability for test-

ing, i.e. detection of faults in operation pauses. This feature characterizes testability as

the simplest form of checkability, which is completely determined by the structure of

the circuit, i.e., is structural checkability. In the operating mode, the checkability of

the circuit additionally depends on the input data on which the circuit operates, and

therefore becomes functional as well. Safety-related systems divide the operating

mode into normal and emergency. For modern systems, this separation leads to dif-

ferent inputs in these modes and, as a result, to different functional checkability. This

difference creates a problem of the hidden faults, which can accumulate in normal

mode due to the lack of input data necessary for their manifestation. The problem

starts in emergency mode on new input data, which detects accumulated faults in the

amount exceeding the capabilities of fault-tolerant circuits [11, 12].

This problem creates a distrust of the fault tolerance of the components used in

safety-related system. We can observe this in the use of dangerous imitation modes

that recreate emergency conditions. Such an increase in checkability is carried out

with emergency protection turned off, which has become one of the causes of the

Chernobyl disaster. The danger of imitation modes has also been proved more than

once by their unauthorized activation due to faults or human factor [13, 14].

A safe solution to the hidden fault problem can be obtained through a resource-

based approach that examines the integration of models, methods and means that

make up information computer resources into the natural world [15, 16].

According to this approach, resources are structuring according to the features of

the natural world and two such features are most distinguished: parallelism and fuzzi-

ness. The objective structuring process can be traced to the development of floating-

point formats, which transformed the codeword into its representation using two

components: mantissa and exponent in the default number system [17, 18].

We can see this process also using the example of improving personal computers.

They constantly increased the parallelization of circuit solutions in the processing of

approximate data and made a jump from several floating-point pipelines in Pentium

processors to several thousand such pipelines parallel working in the graphics proces-

sor [19].

The resource-based approach identifies replication and diversification levels in re-

source development. At the replication level, the integration of resources into the

natural world occurs by copying them in conditions open to fill resource niches: mar-

ket, technological, environmental and others. This process proceeds without re-

strictions from the natural world. The desire of resources for integration stimulates

increased productivity in copying them. In the natural world, such cloning aims to

survive through a higher birth rate than mortality.

The copy process ends when the resource niches are being closed. Typically, re-

source niches are closed at peak productivity. Clones perish. Their survival is possible

only through the manifestation of features that raise them to the next level in resource

development – diversification. Integration at this level takes place in close contact

with the natural world, which structures resources according to its own features. Un-

der these conditions, productivity is inferior to the priority of adequacy to the natural

world, that is, trustworthiness.

The development of resources in today's computer world is more responsive to the

level of replication and reflects the shortcomings of this lower level. Software prod-

ucts are copied to create new programs. Such copying clogs software products with

redundant data and functions that the new software does not need. However, this rep-

lication process continues under conditions of open resource niches in productivity

and memory capacity of the modern computer systems [20, 21], but is limited in mo-

bile systems with the development of green technologies [22].

Hardware is also mainly at the replication level, which is represented by matrix

structures. Arithmetic blocks are designed based on a pipeline organization of calcula-

tions, which belongs to the level of diversification. However, sections of modern

pipelines contain matrix structures of parallel shifters and adders, iterative array mul-

tipliers and dividers, which perform arithmetic operations with data represented in

parallel codes [23, 24].

These codes are parallel from the position of simultaneous availability of all their

bits for data processing, which in matrix structures is performed both in parallel and

in series. The iterative array multiplier of n-bit binary codes performs an operation in

one clock cycle on a matrix of n2 operational elements, each of which, due to succes-

sive connections, is used only for 1.6% and 0.8% of the time for n = 32 and 64, re-

spectively [25, 26].

A further disadvantage of matrix structures is the large energy consumption. The

static component of energy consumption is determined by the large dimensions of the

matrices. The dynamic component depends on the number of signal transitions, the

main part of which refers to parasitic [27, 28].

The main disadvantage of matrix structures is manifested in safety-related systems

and is associated with the problem of the hidden faults. This problem is inherent only

in these systems. Ordinary computers do not experience such a problem since the

fault remains hidden throughout the operating mode.

The resource-based approach analyzes the problem of the hidden faults as a growth

challenge. In safety-related applications, the systems rise to the level of diversifica-

tion, in operating mode, input data and checkability. Components of the systems are

lagging because they are designed using matrix structures at the replication level [29,

30].

Thus, the problem of the hidden faults must be solved as a challenge of growth by

improving components to the level of their systems. The solution should be sought

while maintaining matrix structures that have dominated in development of resources

over several decades, including FPGA designing [31, 32].

The paper aims to develop a method to improve the checkability of FPGA projects

with a LUT-oriented (Look-Up Table) architecture to eliminate hidden faults with the

use of multi-version programming for the finished project. The basis of this method

was discussed in [33, 34] for a single LUT unit. The proposed paper discloses the

features of the method in its application to the FPGA project. Section 2 describes the

main provisions of the method and the limitations arising from its application to the

finished project. Section 3 demonstrates these features of the method application us-

ing the example of designing the iterative array multiplier.

2 Main Provisions of the Method

The method proposes to organize the operation of the FPGA project on several ver-

sions of program code, which change at a given periodicity, for example, every week.

The purpose of the version change is to move the bits addressed in the LUT unit

memory only in emergency mode to the place of the bits used during normal mode.

Such an organization of the operation can be effective for components with slightly

variable normal mode inputs and can serve as an alternative to manual regulation,

which is used in practice for such components to improve their checkability. Manual

regulation is performed for safety-related systems in power blocks of nuclear power

plants no more than once in six months. The disadvantage of manual regulation is to

change the input data only within the values allowed in the normal mode. Thus, faults

occurring only in emergency mode are not detected, i.e. remain hidden.

The method is based on the features of FPGA projects with a LUT-oriented archi-

tecture that has version redundancy of program code, that is, the finished project can

be programmed using different versions of program code. All versions completely

retain the functionality of the project and do not make changes to its hardware com-

ponent.

The LUT unit is the generator of the logical function of several variables that come

to its inputs. For four variables, the LUT unit contains 4 inputs A, B, C and D. The

function description is written to the LUT memory of the unit as program code in the

FPGA programming process of the project [35, 36].

The version redundancy of the program code is inherent in each pair of LUT units

for which the output of the first unit is the input of the second one. This pair provides

two versions of program code without any influence on other LUT units of the FPGA

project that are not connected to the output of the first LUT unit of the pair.

The versions differ in the initial or inverse value of the signal that propagates be-

tween the LUT units of the pair. The inverse signal value is provided by inverting all

memory bits of the first LUT unit. The inversion thus obtained at the input of the

second unit is compensated by changing the bit locations in the memory of the second

LUT unit of the pair [37, 38].

The source data for this operation is the memory bit numbers of the LUT unit and

the version numbers of its program code.

For four variables, the memory of the LUT unit contains program code composed

of 16 bits, which can be numbered from 0 to 15. The whole set of versions of the

second LUT unit of the pair is determined by the number of inputs used. For the four

inputs connected to the outputs of the first LUT units, the second LUT unit of the pair

can create 16 versions, which expediently to number with hexadecimal characters

from 0HEX to FHEX. The binary code of these numbers contains 4 bits, which take the

values "0" and "1" for the initial and inverse signal values at the inputs A, B, C and D

of the LUT unit, respectively. The lower bit of the binary code corresponds to the A

input.

The 0HEX version is the source code of the LUT unit. Versions 1HEX, 2HEX, 4HEX and

8HEX are described by binary codes 0001BIN, 0010BIN, 0100BIN and 1000BIN which indi-

cate inverting of one input of A, B, C or D, respectively. These versions divide the

program code into 24 – X of the same disjoint fragments 1, ..., 24 – X, consisting of 2X

bits, where X accepts the values of 0, 1, 2 and 3 for the inputs A, B, C and D, respec-

tively.

The bit location change is performed by the location change of each odd fragment

with the next adjacent fragment.

Binary codes 0001BIN, 0010BIN, 0100BIN and 1000BIN are basic for obtaining any

other nonzero code of the same size with the use of logical addition operation or addi-

tion on modulo two. The operation of the bit change can also be performed in a step-

by-step sequence of such operations with the individual LUT inputs of the unit. The

sequence of steps is irrelevant.

For example, the program code ABBAHEX = 1010 1011 1011 1010 BIN of the initial

version 0HEX can be converted to the version BHEX = 1101BIN by performing opera-

tions with the sequential use of versions 1HEX, 2HEX and 8HEX or 8HEX, 2HEX and 1HEX.

In the first case, the program code will be divided into separate bits – fragments,

and the initial version will be transformed into the 1HEX version by places of neighbor-

ing fragments:

1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 BIN;

0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 BIN.

The 2HEX version requires splitting the received program code into bit pairs and

changing the locations of neighboring pairs:

01 01 01 11 01 11 01 01 BIN;

01 01 11 01 11 01 01 01 BIN.

The 4HEX version requires splitting the program code into fragments of eight bits

and changing the places of neighboring fragments:

01011101 11010101 BIN;

11010101 01011101 BIN.

 In the second case, the program code goes through the following sequence of

transformations:

10101011 10111010 BIN;

10111010 10101011 BIN;

10 11 10 10 10 10 10 11 BIN;

11 10 10 10 10 10 11 10 BIN;

1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 BIN;

1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 BIN.

In both cases, the result is the same:

1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 BIN = D55DHEX.

As a result of the permutation, bits 0, ..., 15 of the source program code swapped

places with the following bits: 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4.

The initial data for the method is the data that arrives at the project FPGA inputs in

normal and emergency mode, as well as a description of the digital circuit indicating

the connections of the LUT units and their program codes.

The software implementation of the method performs simulation of the digital cir-

cuit operation on the input data of both modes and for each LUT unit determines the

NU set of memory bits used in normal mode and the EA set of bits addressed only in

emergency mode.

For each Z  EA bit, the method determines the VZ set of all possible V  VZ ver-

sions of program code, which provide exchange of places with bits of the NU set.

From each non-empty VZ set, one version is selected so that the number of different

selected versions is minimal. The obtained set of versions ensures in normal mode the

use of all bits of the LUT memory, addressed only in emergency mode, under the

condition of non-empty VZ sets. An empty VZ set indicates that there is no version

that allows you to swap the Z  EA bit with the bit addressed in normal mode. Such

LUT memory bits can accumulate hidden faults and pose a potential threat to func-

tional safety of the FPGA project in emergency mode. The method determines all

such bits and refers them to the EN-R set.

 The proposed method is limited in the ability to increase the checkability of the

FPGA project and reduce many hidden faults by the presence of empty VZ sets. Such

sets are inherent in LUT units that are not second units of any pair and therefore can-

not create versions of their program code. The number of versions may also be insuf-

ficient for second LUT units if some inputs are connected to inputs of the FPGA pro-

ject. The method determines all bits that do not have versions for permutation to the

NU set.

The second LUT units of the pair are fully provided with program code versions if

all their used inputs are connected to the outputs of the first LUT units. In the case of

unused inputs, the number of versions is halved for each such input. But at the same

time, the used LUT memory of the unit is halved, which is provided by a full set of

possible versions with complete elimination of hidden faults.

The possibilities of the method can be expanded if the inputs of the FPGA project

are outputs of LUT units of other projects, that is, they can obtain initial and inverse

signal values and thus create additional versions of program code.

3 Case Study of the Method

An experimental test of the method was carried out using the example of

improving the checkability of the FPGA project implementing an iterative array

multiplier of 4-bit binary codes. The iterative array multiplier was designed using the

CAD Quartus Prime 18.1 Lite Edition on the Intel Max 10 FPGA 10M50DAF672I7G

chip [39, 40]. The iterative array multiplier is implemented on 30 LUT units

generating functions of four variables. LUT units use 111 inputs, 67 of which are

connected to project FPGA inputs and reduce the number of possible program code

versions. Only 2 LUT units create a complete set of possible versions.

The program implementation of the method, executed on Delphi 10 Seattle demo

version [41], arranges the list of LUT units in the direction of their connection from

the inputs to the outputs of the FPGA project and sequentially performs the functions

of LUT units in this order on all values of input words composed of multiplier bits.

The simulation performs 8 experiments for different values of threshold S, which

divides the input words into those used in normal and emergency mode. Multipliers

that do not exceed the threshold make up the input words processed in normal mode.

The plurality of NU and EA memory bits generated during the simulation process

for each LUT unit serve to find versions that enhance the checkability of the FPGA

project according to the proposed method. In addition, the method determines

memory bits for which it is not possible to create versions that move them from the

EA set of the NU one.

The results of the FPGA simulation of the project are shown in the main program

panel (Fig. 1).

The main panel contains keys that show the threshold range S from 2 to 9 and the

unit LUT number 11. Pressing these keys allows you to change the threshold values

and number of the LUT unit in increments of 1 in a circle.

The panel below shows the memory bit matrices and their values in the selected 11

LUT unit for all threshold values. This LUT unit does not use input B and,

accordingly, the right half of the memory. Input A is the input of the FPGA scheme of

the project and reduces the number of possible versions by half. Inputs C and D are

connected to the outputs of the previous LUT units and allow to create 4 versions of

program code.

The bits of the sets NU and EA are colored blue and yellow, respectively. The

values of the bits of the EA set are shown in red and blue for cases where there is or is

no version for eliminating the hidden fault. The matrix below shows the number of

versions used and their set, starting with the initial 0HEX version.

In the case of threshold S = 2, the matrix contains only one bit 0 used in normal

mode and 3 bits 4, 8, 12, which are addressed only in emergency mode. They can

swap places with bit 0 using 4HEX, 8HEX, CHEX versions for observation in normal

mode. Bits 1, 5, 9, 13 of the next matrix column belong to the set EN-R, since they are

not provided with versions for their movement to the NU set.

Increasing the threshold contributes to increasing the plurality of NU bits and

reducing the EA set. For threshold S = 3 and S = 4, the number of additional versions

is reduced to one: CHEX or 8HEX. Bits 1, 5, 9, 13 still do not have versions for

observation in normal mode and belong to the EN-R set.

Fig. 1. Main panel of the program

The S threshold values from 5 to 7 allow all bits of the EA set to be moved to the

NU set using one additional version: 4HEX or 8HEX.

Threshold S = 8 and S = 9 refers all memory bits to the NU set and does not require

the use of additional versions of program code.

Below the memory matrices, the main panel shows the overall results of the

experiments conducted based on the analysis of all LUT units for each value of the S

threshold.

The string "MoV" shows the maximum number of versions used in the LUT units

of the entire project FPGA schema. The string "T" contains the total number of EA

bits that can accumulate hidden faults in the initial FPGA project. This number

decreases from 297 to 61 with an increase in threshold S. The last two lines "NoR"

and "NoL" show the total number of EN-R bits for all LUT units and only for the

second LUT units of the pair. These values decrease from 227 to 7 and from 156 to 0,

respectively.

The improvement in project FPGA checkability can be estimated by the ratio of the

number of bits ΔT = T – NoT for which the risk of hidden faults is eliminated to the

total number T of bits addressed only in emergency mode. For example, in the case of

S = 2, the amount ΔT = 297 – 227 = 70, and the improvement of the checkability is

equal to 70/297 = 23,6%.

For threshold values 2 – 7, the method increased the checkability of the FPGA

project by an average of 27.5% from 13% (S = 3) to 44% (S = 5).

If it is possible to invert the signals at the project FPGA inputs, all memory bits of

the LUT units are provided with versions to eliminate hidden faults and the

checkability reaches 100%.

4 Conclusions

FPGA designing in the safety-related application domain encounters a problem of

the hidden faults that can accumulate in memory bits of the LUT units during normal

mode and reduce the fault tolerance of an FPGA project with a LUT-oriented

architecture as well as functional safety of the safety-related systems in the most

responsible emergency mode. This problem shows insufficient functional checkability

of FPGA projects. The checkability deficiency is manifested in LUT units whose

memory contains bits that are not observed during the normal mode, since they are

used only in emergency mode. Fault tolerant FPGA components of safety-related

systems become fail-safe only if they are checkable.

Treating the problem of the hidden faults as a growth challenge opens the way for

it to be solved by increasing the level of FPGA components in their checkability to

the level of diversification of the safety-related applications using multi-version

technologies.

The proposed method uses the version redundancy of program code inherent in

FPGA projects with a LUT-oriented architecture to increase their checkability by

organizing work on several versions of the program code. All versions completely

retain the functionality of the FPGA project and its hardware implementation. The

method generates and selects versions that swap bits addressed only in emergency

mode with bits observed during normal mode.

The method allows to eliminate non-checkable bits in the memory of all LUT units

of the FPGA project when its inputs are connected to outputs of the LUT units of

previous circuits.

The program implementation of the method was tested on the FPGA project of the

iterative array multiplier. Simulation results showed an average of 27.5% increase in

FPGA project checkability.

References

1. Jung, J., Ahmed, I.: Development of FPGA-based reactor trip functions using systems

engineering approach, Nuclear Engineering and Technology, pp. 2-11 (2016)

2. Andina, J.: FPGAs: Fundamentals, Advanced Features, and Applications in Industrial Elec-

tronics. CRC Press, USA, Boca Raton (2017)

3. IEC 61508-1:2010. Functional Safety of Electrical / Electronic / Programmable Electronic

Safety Related Systems – Part 1: General requirements. Geneva: IEC (2010).

4. Smith, D., Simpson, K.: The Safety Critical Systems Handbook, 5th Edition, Butterworth-

Heinemann (2019)

5. Choe, S., Leite, F.: Assessing safety risk among different construction trades: Quantitative

approach, Journal of Construction Engineering and Management 143(5), 04016133 (2017)

6. Ivanchenko, O., Kharchenko, V., Moroz, B. et. al.: Risk Assessment of Critical Energy

Infrastructure Considering Physical and Cyber Assets: Methodology and Models. In: 10th

IEEE International Conference IDAACS, Lviv, Ukraine, pp. 225-228 (2018)

7. Kotzanikolaou, P., Theoharidou, M., Gritzalis, D.: Cascading Effects of Common Cause Failures

in Critical Infrastructures. In: International Conference on Critical Infrastructure Protection

(ICCIP), Washington, DC, USA, pp.171-182 (2013)

8. IEEE Std1500-2005 Standard Testability Method for Embedded Core-based IC (2005) doi:

10.1109/IEEESTD.2005

9. Kondratenko, Y.P., Kozlov, O.V., Topalov, A.M., Gerasin, O.S. Computerized system for

remote level control with discrete self-testing. In: CEUR Workshop Proceedings Open Ac-

cess, vol. 1844, pp. 608-619 (2017) http://ceur-ws.org/Vol-1844/10000608.pdf

10. Romankevich, V.: Self-testing of multiprocessor systems with regular diagnostic connec-

tions. Automation and Remote Control, vol. 78, 2, 289-299 (2017).

11. Drozd, A., Drozd, J., Antoshchuk, S. et. al.: Objects and Methods of On-Line Testing: Main

Requirements and Perspectives of Development. In: IEEE East-West Design & Test Symposi-

um, Yerevan, Armenia, pp. 72-76 (2016) doi: 10.1109/EWDTS.2016.7807750

12. Drozd, O., Antoniuk, V., Nikul, V., Drozd, M.: Hidden faults in FPGA-built digital compo-

nents of safety-related systems. In: 14th IEEE International Conference TCSET, Lviv-

Slavsko, Ukraine, pp. 805-809 (2018) doi: 10.1109/TCSET.2018.8336320

13. Gillis, D.: The Apocalypses that Might Have Been (2007) [Online]. Available:

https://www.damninteresting.com/the-apocalypses-that-might-have-been/

14. Blakemore, E: The Chernobyl disaster: What happened, and the long-term impacts (2019) [Online].

Available: https://www.nationalgeographic.com/culture/topics/reference/chernobyl-disaster/

15. Drozd, J., Drozd, A., Al-dhabi, M.: A resource approach to on-line testing of computing

circuits. In: IEEE East-West Design & Test Symposium, Batumi, Georgia, pp. 276-281

(2015) doi: 10.1109/EWDTS.2015.7493122

16. Drozd, A., Drozd, J., Antoshchuk, S. et. al.: Green Experiments with FPGA. In: Green IT

Engineering: Components, Networks and Systems Implementation, SSDC, vol. 105, Springer

International Publishing, Berlin, pp. 219-239 (2017) doi: 10.1007/978-3-319-55595-9_11

17. IEEE Std 754™-2008 (Revision of IEEE Std 754-1985) IEEE Standard for Floating-Point

Arithmetic. IEEE 3 Park Avenue New York, NY 10016-5997, USA (2008)

18. Synopsys. DWFC Flexible Floating-Point Overview, no. August, pp. 1-6 (2016)

19. Ghorpade, J., Parande, J., Kulkarni, M., Bawaskar, A. GPGPU processing in CUDA archi-

tecture. Advanced Computing: An International Journal (ACIJ), vol. 3, 1, 105-120 (2012)

20. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., Bobrovnikova, K.: A technique

for the botnet detection based on DNS-traffic analysis. In: CN 2015. CCIS, vol. 522, pp.

127-138. Springer, Heidelberg (2015)

21. Hovorushchenko, T, Pomorova, O. Ontological approach to the assessment of information

sufficiency for software quality determination. SEUR-WS, vol. 1614, pp. 332-348 (2016)

http://ceur-ws.org/Vol-1844/10000608.pdf
https://doi.org/10.1109/TCSET.2018.8336320
https://www.damninteresting.com/the-apocalypses-that-might-have-been/

22. Hahanov, V., Litvinova, E., Chumachenko, S.: Green Cyber-Physical Computing as Sus-

tainable Development Model. In: Green IT Engineering: Components, Networks and Sys-

tems Implementation, SSDC, vol. 105, Springer International Publishing, Berlin, pp. 219-239

(2017) doi: 10.1007/978-3-319-55595-9_4

23. Palagin, A., Opanasenko, V.: The implementation of extended arithmetic’s on FPGA-based

structures. In: International Conference IDAACS, Bucharest, Romania, pp. 1014-1019 (2017)

24. Chernov, S., Titov, S., Chernova, L. et. al.: Algorithm for the simplification of solution to discrete

optimization problems. Eastern-European Journal of Enterprise Technologies 3 (4), 1-12 (2018)

25. Neeraja, B., Sai Prasad Goud, R.: Design of an area efficient Braun multiplier using high

speed parallel prefix adder in cadence. In: IEEE International Conference on Electrical,

Computer and Communication Technologies, Coimbatore, India (2019)

26. Drozd, J., Drozd, A., Antoshchuk, S. et. al.: Effectiveness of Matrix and Pipeline FPGA-

Based Arithmetic Components of Safety-Related Systems. In: 8th IEEE International Confer-

ence IDAACS. pp. 785-789. Warsaw, Poland (2015) doi: 10.1109/IDAACS.2015.7341410

27. Velegalati, R., Kaps, J.-P.: Glitch Detection in Hardware Implementations on FPGAs Using

Delay Based Sampling Techniques. In: Euromicro Conference on Digital System, Design

Los Alamitos, CA, USA (2013) doi: 10.1109/DSD.2013.107

28. Vasantha, K., Sharma M., Lal Kishore K.: A Technique to Reduce Glitch Power during

Physical Design Stage for Low Power and Less IR Drop. In International Journal of Com-

puter Applications (0975 – 8887), vol. 39, 18, 62-67 (2012)

29. Tanasyuk, Y., Perepelitsyn, A., Ostapov, S.: Parameterized FPGA-based implementation of

cryptographic hash functions using cellular automata. In 9th IEEE International Conference

DESSERT, Kiev, Ukraine, pp. 238-241 (2018) doi: 10.1109/DESSERT.2018.8409133

30. Drozd, O., Kharchenko, V., Rucinski, A. et. al.: Development of Models in Resilient Computing.

In: 10th IEEE International Conference on Dependable Systems, Services and Technologies,

Leeds, UK, pp. 2-7 (2019) doi: 10.1109/DESSERT.2019.8770035

31. Amano, H.: Principles and Structures of FPGAs. Springer, USA, New-York (2018)

32. Vanderbauwhede, W., Benkrid, K.: High-performance computing using FPGAs. USA,

New-York: Springer (2016)

33. Drozd, A., Antoshchuk, S., Drozd, J. et. al.: Checkable FPGA Design: Energy Consumption,

Throughput and Trustworthiness. In: Green IT Engineering: Social, Business and Industrial Ap-

plications, SSDC, vol. 171, Springer, Berlin, pp. 73-94 (2019) doi: 10.1007/978-3-030-00253-4_4

34. Drozd, O., Kuznietsov, M., Martynyuk, O., Drozd, M.: A method of the hidden faults elim-

ination in FPGA projects for the critical applications. In: 9th IEEE International Conference

DESSERT, Kyiv, Ukraine, pp. 231-234 (2018) doi: 10.1109/DESSERT.2018.8409131

35. Cyclone Architecture. Cyclone Device Handbook, Volume 1. Altera Corporation (2008)

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyc/cyc_c51002.pdf

36. Intel FPGA Architecture (2019) https://www.intel.com/content/dam/www/ programma-

ble/us/en /pdfs/literature/wp/wp-01003.pdf, last accessed 2019/07/30

37. Drozd, A., Drozd, M., Kuznietsov, M.: Use of Natural LUT Redundancy to Improve

Trustworthiness of FPGA Design. In: CEUR Workshop Proceedings. 1614, 322-331 (2016)

38. Zashcholkin, K., Drozd, O. The Detection Method of Probable Areas of Hardware Trojans

Location in FPGA-based Components of Safety-Critical Systems. In: IEEE International

Conference DESSERT, Kyiv, pp. 212-217 (2018) doi: 10.1109/DESSERT.2018.8409130

39. Intel Quartus Prime Standard Edition User Guide. https://www.intel.com/content

/dam/www/programmable/us/en/pdfs/ literature/ug/ug-qps-getting-started.pdf.

40. Max.10 FPGA Device Architecture (2017) https://www.intel.com/content/dam

/www/programmable/us/en/pdfs/literature/hub/max-10 /m10_architecture.pdf.

41. Delphi 10 Seattle: Embarcadero https://www.embarcadero.com/docs/datasheet.pdf

https://doi.org/10.1109/DESSERT.2019.8770035
https://doi.org/10.1109/DESSERT.2018.8409131
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyc/cyc_c51002.pdf
https://www.intel.com/content/dam/www/%20programmable
https://www.intel.com/content/dam/www/%20programmable
https://www.intel.com/content%20/dam/www/programmable/us/en/pdfs/%20literature/ug/ug-qps-getting-started.pdf
https://www.intel.com/content%20/dam/www/programmable/us/en/pdfs/%20literature/ug/ug-qps-getting-started.pdf
https://www.intel.com/content/dam
https://www.embarcadero.com/docs/datasheet.pdf

