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Abstract. The main stage in the computation of structures made of elastomers 

by the displacement-based finite element method (FEM) is a derivation of the 

stiffness matrices. Their properties define the existence, stability and conver-

gence of the FEM solutions, as well as the effectiveness of the method. At the 

same time, based on the FEM displacement-based methods for modelling elas-

tomers often have a slow convergence, especially for massive bodies having 

complex curvilinear forms. The slow convergence is typical for the cases, 

where the approximation of shifts cannot be accurately modelled by considering 

displacements of the finite elements as a rigid whole. To solve this problem, the 

paper proposes variational relations for the tetrahedral finite element, which are 

developed on the base of the moment scheme of the FEM (MS-FEM). A numer-

ical experiment shows that the results obtained by application of the MS-FEM 

outperform the solutions obtained by application of the conventional FEM 

scheme. 

Keywords. Finite-element method (FEM); Elastomers; Moment scheme; Tetra-
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1 Introduction 

Rubber and rubber-like materials (elastomers) are widely used in various industries. 

Due to the widespread use, there is a need for the new and effective methods of de-

sign and computation of the elastomers structures [1]. 

Elastomer structures are used in the various fields of industry and normally have 

complex geometry, e.g. plates, discs, couplings, dampers, suspension brackets, bear-

ings, rings, hinges, including the rubber seals for movable and fixed joints. Numerous 

examples of the use of thin-layer rubber-metal elements in technology are presented 

in the paper [2], as well as in [3; 4]. As a rule, modern design structures include vari-

ous materials, where elastomers have undergone heavy loads. Therefore, the design 

should take into account the rigidity, strength, heat generation and cyclic deformation. 
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Rubber-like materials have a specific structure, based on multiple repeating of 

identical layers, where the length is tens of thousands times greater than the transverse 

dimensions. This causes the flexibility of the molecular chains, which leads to the 

appearance of highly elastic properties [5]. As a result, elastomers have the following 

features: 

1. An ability under the influence of external (constant or changing in time) loading 

to experience significant deformations without destruction. 

2. Weak compressibility of the elastomer, which causes specific methods of the 

computations in comparison with conventional materials. 

3. In the case of deformation and highly elastic state, the equilibrium between force 

and displacement is established over a period of time. 

Although physical studies of elastomers started over a hundred years ago, the com-

putation methods of the stress and strain states are still under development. This is 

caused by the complexity of nonlinear differential equations that describe the solution 

[6]. 

The implementation of numerical methods needs improvement of the computation 

schemes and development of new effective algorithms. One of the problems arouses 

in the boundary values of the Poisson coefficient, which leads to the degeneration of 

the matrix of the system of equations. There are different directions to find a solution. 

The first direction is characterized by the analysis of nonlinear problems (geomet-

ric nonlinearity, large deformations) based on the combination of the penalty methods 

and FEM [7-9]. The second direction is based on a reduced integration [10], where the 

displacement fields and values responsible for the poor compressibility of the elasto-

mers are approximated by various functions. As a rule, the degree of the polynomial 

for the second function is less (on one unit) as for the first function. The third direc-

tion develops mixed variational principles, in which independent displacement and 

strain fields or displacement and stress fields were approximated [8]. The basis of this 

method is the principle of variation of the components of displacement and average 

stress. This variation principle is widely used in the design of the structures, made of 

elastomers. 

A. Sakharov proposed so-called moment scheme of the finite element method [11]. 

The approximating function is decomposed into a Taylor series and the members that 

respond to the displacements and dummy shifts in deformation are subsequently re-

jected. This allows users to take into account the basic properties of rigid displace-

ments for isoparametric and curvilinear finite elements of isotropic elastic bodies. 

However, the exact equations of deformation and displacement are replaced by ap-

proximate ones. 

In the mechanics of elastomers, there is also a problem of choosing an optimum 

computational scheme, based on the specific methods of computational mathematics 

[17, 18]. To check the effectiveness of a particular computational scheme, the ob-

tained intermediate and final results should be investigated for compliance with the 

mechanical sense of the problem [19, 20]. This is a necessary part of the method, as 

rounding errors and instability of computing algorithms can significantly alter the 

result.  



Thus, analysis of the published works indicates that there are still open issues relat-

ed to the problems of the mechanics of elastomers [12-15]. Existing approaches re-

duce the methods to a system of simplified hypotheses (considering a three-

dimensional problem as a two-dimensional; assuming linearity of deformation; in-

compressible or weakly compressible material etc.) and often present the method in a 

form not efficient for computations [16]. Significantly, these issues are related to the 

spatial representation of the FE. To solve this problem, the paper proposes variational 

relations for the tetrahedral finite element, which are developed on the base of the 

moment scheme of the FEM. The proposed method is based on our previous work 

[12]. 

2 Derivation of variational relations for the tetrahedral FE 

Let’s us derive the formulas of the stiffness matrix for the tetrahedral finite element 

(Fig. 1). 

 

Fig. 1. The distribution of nodes in a linear tetrahedral element 

We write the approximation of displacement in the first (correspondingly Fig.1) di-

rection for four nodes (1) 
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where ),,( zyxNi is determined by the formula (2) 
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The formulas for the second and third directions (3), (4) 
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The shape functions for each face of tetrahedral FE (Fig. 1), given in the basic co-

ordinate system, are determined by the formulas (5) 
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Formulas for the deformations   of tetrahedral FE are defined as follows (6) 
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The components of the stress tensor will have the following form (7) 
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Functions that define the geometry for a similar FE in the basic coordinate system 

have the form (8) 



 


===

===
4

1

3

3

4

1

2

2

4

1

1

1 ;;
i

i

i

i

i

i

i

i

i zNzzNzzNz  (8) 

 

The Jacobean transition from the basic to the local coordinate system is defined by 

the formula (9) 
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where 
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where i is the number of nodes;  iz1  - abscissae of the ith node;  iz2 - ordinates 

of the ith node;  iz3 - applications of the ith node. 

 

Let’s define the coordinates of the nodes of the linear tetrahedral element: 
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The approximating function of displacement for a tetrahedral finite element can be 

represented as (11) 
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where 
pqr

k
w ' - decomposition coefficients, 

pqr - a set of power coordinate func-

tions, defined by the formula (12) 
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The components of the deformation tensor are decomposed into the Maclaurin se-

ries in the vicinity of the origin (13) 
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In the decomposition of the deformation components, along with the coefficients of 

the deformations, there are also the coefficients of the rigid turns. This is a common 

reason for the slow convergence of the FE. In the proposed approach, we will dismiss 

these members of the series. After transformation of a given finite element, the strain 

tensors will have the following form (14) 

 

'

100

100

'

000

1111

k

k be  ==
; '

010

010

'

000

2222

k

k be  ==
; '

001

001

'

000

3333

k

k be  ==
; 

)(
2

1 '

010

100

'

'

100

010

'

000

1212

k

k

k

k bbe  +== ; )(
2

1 '

001

100

'

'

100

001

'

000

1313

k

k

k

k bbe  +== ; 

)(
2

1 '

001

010

'

'

010

001

'

000

2323

k

k

k

k bbe  +== .     (14) 

 

A function that corresponds to the geometry of a finite element is represented as 

follows (15) 
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Let's calculate the coefficients 
'kb . To do this, we differentiate the function 

'кz  

(16) 
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The transformation matrix A is the formula (17) 
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Matrix  s

ijF
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 has the following form (18) 
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submatrices of the matrix  эs

ijF  are defined as (19) 
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The matrix of the power functions for the formula of displacements  ijklH  lets 

present in the form (20) 
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The next step is to derive a formula to find specific energy of deformation for the 

volume change function. The matrix of connections of nodal displacements and the 

matrix of power functions  sF


  have the following form (21) 
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The matrix of power functions for the volume change formula  H  lets present in 

the form (23) 
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Finally, substituting the formula (24) by the formulas (17-23), we can obtain the 

values of the stiffness matrices for the tetrahedral finite element using the constants of 

 , , and coordinates 
ij

k
z ' . 



3 Experimental Study: Compression of a Rubber Sprocket  

The following example compares two methods: the classical FEM and proposed 

MS-FEM, based on the moment scheme. For the modelling, FORTU-FEM system 

was applied [21-23].  

Let’s consider the elastic cam coupling with a sprocket, intended for coaxial con-

nection of shafts of mechanisms, e.g. a reducer and the electric motor (Fig. 2).  

 

 
a) 

 
b) 

Fig. 2. a) Rubber sprocket; b) A sprocket in the elastic coupling 

This coupling is made of two half couplings, on the inside is equipped with a hub-

cam, between which the rubber sprocket is enclosed. Sprocket teeth work on com-

pression.  

When the torque is transmitted in each direction, half of the teeth work. The effi-

ciency of the rubber sprocket is determined by the magnitude of the buckling stress. 

Sprockets for elastic cam couplings are designed to connect coaxial cylindrical 

shafts in torque transmission from 2.5 to 400 N/m and to reduce dynamic loads. The 

sprocket parameters for the computational experiment are presented in Fig. 3. 

The object will be calculated with a torque direction counterclockwise.  

The load force is applied to each tooth at points as far away from the center of the 

sprocket.  

Characteristics of the material were taken from the standard ТМКЩ-С 7338-90. 

The finite element discretization in this study was done by tetrahedral and parallel-

epiped elements (Fig. 4). 



 

Fig. 3. Sprocket parameters for the computational experiment 

  

a) b) 

Fig. 4. FE discretization of a rubber sprocket 

a) tetrahedral FE; b) parallelepiped FE 

 

Fig. 5. shows a distribution of displacements in different directions. 

 



   
a         b     c 

Fig. 5. Distribution of displacements in directions: a) X-axis; b) Y-axis; c) Z-axis 

 

Table 1 presents the results of the computation of the load, applied to each sprocket 

at the top point. The torque for the study was counterclockwise and was equal to 

10N/m. The object in the case of conventional FEM is decomposed into finite ele-

ments that have in total of 15169 nodes (74154 FE), in the case of MS-FEM - 15169 

nodes (12359 FE). 

Table 1. Sprocket rating results 

Poisson's 

ratio,   

Young's 

Module, Pa 

Maximum sprocket dis-

placement, conventional 

FEM scheme, 10-5 m 

Maximum sprocket 

displacement, MS-

FEM, 10-5 m 

0.470 90000 4.784  4.221  

0.473  90000 4.685 4. 145 

0.478 100000 5.103 4.999  

0.480 100000 5.035  4.837  

0.482 100000 5.012  4.821  

0.488 100000 5.001  4.801  

0.490 100000 4.957 4.789  

0.492 100000 4.942  4.752  

0.496 100000 4.901  4.723  

0.499 110000 5.309  5.123  

0.4999 110000 5.267  5.089  

 

To check the efficiency of the proposed computation scheme, it was compared with 

other methods in the FORTU-FEM system (Fig. 6).  

A numerical experiment shows that the results obtained from the FEM using the 

Lagrange variational principle, with a Poisson coefficient varying from 0.470 to 

0.4999, outperform the solutions obtained using the conventional FEM scheme. The 

application of MS-FEM for the computation of structures made of compressible mate-

rials gives the numerical results close to the analytical solutions. 

 



 

Fig. 6. Results of computations with different schemes. 

Dependences on displacement (10-5 m) from the Poisson coefficient  

4 Conclusion 

The paper present variational relations for the tetrahedral FE based on the moment 

scheme of the finite element method. The results allow us to take into account the 

basic properties of rigid displacements for isoparametric and curvilinear finite ele-

ments, where the deformation components depend not only on derivatives of rigid 

rotations but also on translational and rotational displacements of the whole elements. 

In future work, the proposed method will be used for computation of elastomer struc-

tures in the stress and strain states.  
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