
142 Judith Michael, Victoria Torres (eds.): ER Forum, Demo and Posters 2020

A Toolchain Transforming
Descriptive Domain-Specific Models into
Executable Browser-Based Applications

Matthias Sedlmeier1 and Martin Gogolla2

1 matthias.sedlmeier@mailbox.org
2 Database Systems Group, University of Bremen, Germany

gogolla@informatik.uni-bremen.de

Abstract. While model-driven software development methodologies are
still connected to non-agile approaches like the waterfall model, we aim
to enable developers to use model-based evolutionary prototyping within
agile software development techniques facilitating fast product incre-
ments through constant refinement. To reach this goal, we take advantage
of the yEd diagram editor for creating, storing and updating graphical
domain-specific models. With a defined transformation process carried
out by a specially developed pair of Ruby tools, we rapidly generate
working implementations from these models based on Ruby on Rails,
a widely adopted solution for web application design. Our toolchain at
hand, we demonstrate all steps required to provide executable browser-
based applications from our descriptive domain models managed in yEd
and suggest an agile software development approach.

Keywords: Domain-Specific Modeling · Graphical Modeling Language
· Model Management · Model Transformation · Code Generation · Evo-
lutionary Prototyping · Agile Software Development

1 Introduction

Modeling in general and Domain-Specific Modeling (DSM) are typically carried
out within an approach-specific model management environment, like Eclipse
[1], Epsilon [5] or Gemoc [3]. In contrast, this contribution advocates to employ
the diagram editor yEd (yworks.com) for managing DSM artifacts, in particu-
lar for model storage and update. By allowing users to develop models with a
well-known tool, we can realize a light-weight modeling approach for occasional
modelers as well as domain experts and in contrast to heavy-weight modeling
with, e.g., Eclipse. yEd models for browser-based information systems are trans-
formed through a well-defined transformation chain into working Ruby on Rails
(short Rails) implementations. Applications of yEd for modeling by computer
and domain experts have been discussed already within software development [6]
and ontologies [4], whereas [7], [2] and [10] deal with model-driven development
of web based respectively mobile applications.

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



A Toolchain Transforming Descriptive Domain-Specific Models 143

Our transformation chain involves two specially developed Ruby tools called
Tibet and Tor. Tibet parses the domain-specific yEd models and creates an in-
memory representation used by Tor to render the required Rails code artifacts.
This process includes several refinement steps programmatically defined in the
Ruby language and finishes with an executable application. We thus use Ruby as
our transformation language. We aim to support developers implementing evo-
lutionary prototyping within agile software development approaches supported
by fast, model-based product increments, which can be easily customized.

This contribution builds upon preceding work covering conceptual data mod-
els [8] and model-driven design with yEd [9]. It presents a work still in progress,
yet deployable. In Sect. 2 we explain some selected aspects of our DSM language
mainly based on ER and EER concepts complemented with UML class diagram
features. In Sect. 3 we discuss the transformation into a working implementa-
tion and suggest a possible agile software development approach based on our
toolchain. Section 4 concludes the paper.

2 Utilizing a yEd Palette as a DSM Language

Before introducing our graphical DSM language, we take a brief look at yEd,
a customizable general-purpose diagram editor serving as a front end for our
model management. yEd provides a comfortable user interface that developers
can utilize to specify requirements in the form of graphical domain-specific mod-
els stored as XML-based GraphML (Graph Markup Language) text files. Fig. 1
shows a yEd screenshot depicting six noteworthy parts. The window in part (1)
provides an overview of the model loaded allowing developers to zoom and browse
its contents. The window in part (2) holds automatically generated interactive
context views of selected model elements focusing on the element Neighbourhood,
Predecessors, Successors or Folder Contents in case of nested nodes. The Struc-
ture View in part (3) provides a searchable tree view of the model including
all nodes represented by their labels. The main edit window in part (4) enables
users to freely draw models providing various auxiliary features like guided or
automatic layout, graph transformations and element grouping. Additionally,
yEd ships with diverse palettes as shown in part (5), amongst others palettes for
BPMN, Entity Relationship schemas, Flowcharts and SBGN (Systems Biology
Graphical Notation). Developers can mix elements from different palettes and
define custom ones via the palette management feature. Detailed information
about elements are obtainable via the Properties View as shown in part (6).

Figure 2 shows an excerpt of our custom yEd palette for our DSM lan-
guage, for which we give an exemplary explanation. The upper part (1) depicts
various kinds of rectangular type nodes for modeling concepts on different ab-
straction levels. Developers are able to represent more concrete issues using the
EntityType, EnumerationType and RelationshipType. For describing more
abstract concepts, our palette offers the ClassType as well as the ModuleType

(both being different w.r.t. association and attribute inheritance).



144 Matthias Sedlmeier and Martin Gogolla

Fig. 1. Screenshot of yEd with DSM Example

Attributes are modeled utilizing oval nodes as displayed in the middle part (2)
supporting different kinds of roles and data types. For example, final attributes
labelled with f never change values after state initialization, while browse at-
tribute values will be searched, if the application end user wants to link an



A Toolchain Transforming Descriptive Domain-Specific Models 145

instance of the owning type via the user interface views. The definition of at-
tribute validation rules can be accomplished using constraint nodes as shown
in part (3). Nodes are connected via different edge types shown in the lower
part (4). Amongst other concepts, our modeling language supports attribution,
association, generalization and restriction edges.

Fig. 2. Tibet Palette Excerpt

We use our language to specify an example application, a basic content man-
agement system. The following description provides a short summary of some
selected aspects of the example model displayed in part (4) of Fig. 1, without
claiming to be exhaustive.

For the content management system to work, we model some basic concepts
like Site (a), Page (b) and NavigationEntry (c) as entity types with corre-
sponding attributes and associations. In our scenario, the entity type Site may
aggregate multiple Page instances and vice versa. Amongst others, the Page type
holds a title (d) and a content (e) attribute connected via attribution edges
decorated with semantic annotations (to be utilized in the transformation).

The content attribute is drawn with a dashed line making it optional, while
the annotation r on the lower left side defines, that it will be represented via a
rich text editor when rendered on the user interface views. The reflexive compos-



146 Matthias Sedlmeier and Martin Gogolla

ite association as defined for the NavigationEntry (f) type allows to represent
a potential hierarchy of navigation entries, which may be aligned on the user in-
terface views by position information stored via the GridPositionElement (g)
enumeration type. During transformation, additional attributes are augmented
to store name constants and language specific translations. Our example also
shows the inclusion of a module called UserMultipleOwned (h) by Page, Site
and NavigationEntry inheriting required associations to the User entity type
provided in another model file. Finally, (j) depicts a so-called supply relation
between Page and Comment defining, that if a Page instance is shown on the user
interface views, the end user is able to create a comment.

3 Transformation of the DSM language and
Execution Utilizing Ruby on Rails

The complete transformation chain consists of four main steps as depicted in
Fig. 3. Firstly, we use yEd to create and manage a descriptive domain-specific
model based on our custom palette (1). Secondly, we utilize one of our specially

Fig. 3. Transformation Chain

developed Ruby-based tools called Tibet to instantiate an in-memory represen-



A Toolchain Transforming Descriptive Domain-Specific Models 147

tation of the model. Tibet reads the domain-specific model, possibly spanning
several files, and parses the GraphML content. Through several refinement steps
it constructs a complete semantic model by performing well-defined operations
expressed in the Ruby language (2). Using the additional Tibet console module,
this structured process enables developers to manage model information, in par-
ticular to make meta queries for retrieving detailed information about the model
down to its low-level GraphML representation.

The Tibet API component provides an interface allowing developers to access
model information as done in the third step. Here we use our second specially de-
veloped Ruby tool called Tor implementing the necessary transformation logic to
generate code modules by using specific templates. These modules are integrated
unobtrusively into the derived Rails application instance and are complemented
by additional static modules shipped with Tor (3). Tor also provides a console
enabling developers to examine model details in the context of the generation
process and thus helps in managing the transformation. In the fourth step, all
necessary Rails modules are generated (4) and accessible via the Rails console.

Tor outputs the application data model components consisting of roughly two
parts. Firstly, so-called migration files are derived containing schema information
in a domain-specific language in order to initialize the database back end, in our
case a Postgres SQL database. Secondly, Tor renders corresponding model classes
based on the Rails ORM (Object-Relational Mapping) library implementing
the active record architectural pattern. Tor also generates model validation and
model access control layers as well as modules for reflection capabilities.

The application view components are also constructed from multiple gener-
ated files. On the one hand, Tor renders default HTML files, on the other hand,
it builds JavaScript based front end views utilizing the React framework (re-
actjs.org) in conjunction with the jQuery (jquery.com) and Bootstrap (get-
bootstrap.com) libraries providing extended DOM (Document Object Model)
manipulation features, user interface controls and layout mechanisms. As Tor
builds JavaScript modules using the modern ECMAScript 2015 language specifi-
cation (ecma-international.org/ecma-262/6.0), we use another open-source tool
called Webpack (webpack.js.org) in conjunction with Node.js (nodejs.org) to
transcompile the code and make it fully compatible with all modern browsers.

Additionally, Tor outputs application controller components connecting the
model and view layers by rendering controller actions. These actions are mapped
to corresponding HTTP request methods through extra generated routing defini-
tion files forming the application service endpoints. The data exchange between
the browser-based front end and the Rails application back end is mainly realized
with the widely-adopted JSON (JavaScript Object Notation) format.

Our toolchain at hand, we suggest a development process based on agile and
rapid methods utilizing evolutionary and incremental prototyping. We are in
the process of applying this approach to a larger case study covering the design
and generation of a browser application for the individual creation of report
templates and report instances for various documentation use cases. Dependent
on the overall project size, we break our system into smaller parts individually



148 Matthias Sedlmeier and Martin Gogolla

developed through multiple iterations. Each iteration starts with the creation
of a data model in yEd and the generation of a first prototype derived by our
toolchain. We then verify our requirements based on the prototype. We are able
to adjust or extend the model, if required, and repeat the generation process
until our expectations are met. Individual aspects, which cannot be expressed
in our modeling language, are added unobtrusively with the help of various
customization techniques. Our prototype evolves in each iteration until it is
stable and ready for being part of our system. This structured process centers
on the created model and is repeated until all increments of our system are
captured.

The presented toolchain enables developers to perform simple and direct
transformations from domain-specific models to executable applications. yEd as
a light-weight diagram editor is freely available running on all major platforms.
The latter also applies to Ruby, a widely-adopted and actively maintained open
source programming language offering an easy and intuitive access harnessed
by Rails, an established web application framework used by major platforms
like GitLab and Airbnb. The depicted development process liberates developers
from repetitive routine coding work and enables them to perform application
refinement through model refinement. The domain-specific models identify cen-
tral application concepts and represent a stable documentation. Our generation
process facilitates fast iterations, which can be immediately validated by all rel-
evant stakeholders. Thus, developers can take advantage of running evolving
prototypes, which users can immediately interact with leading to early accepted
increments and reducing the risk of project failure. Finally, if modularized prop-
erly, models and their increments are reusable in other projects.

4 Conclusion

We have demonstrated how we use yEd to create, store and update domain-
specific models and how a toolchain is capable of generating browser-based
client-server applications based on Ruby on Rails by applying corresponding
transformations on those models. Our underlying DSM language targets web in-
formation systems and offers a rich collection of modeling features borrowed from
(Extended) Entity-Relationship modeling and UML class diagram concepts. We
have also suggested a feasible agile development approach we are using in our
case studies.

As of now, our approach is limited to structural design. While some language
features induce special application behavior, currently behavior cannot be mod-
eled explicitly, but is projected in future tool versions. As already mentioned, we
are in the process of planning and performing a larger project covering the de-
sign and generation of a browser application for the individual creation of report
templates and report instances. The idea arose mainly from the need of flexible
checklist based reporting for FSC (Forest Stewardship Council) audits and home
inspection reports as recommended by InterNACHI (International Association
of Certified Home Inspectors). Last but not least, applicability and practicabil-



A Toolchain Transforming Descriptive Domain-Specific Models 149

ity of our approach will be further validated and improved through middle- and
large-sized case studies.

References

1. Allilaire, F., Bézivin, J., Bruneliere, H., Jouault, F.: Global Model Management in
Eclipse GMT/AM3. In: Eclipse Technology eXchange Workshop (eTX) - a ECOOP
2006 Satellite Event. Nantes, France (Jul 2006), https://hal.inria.fr/hal-01272277

2. Challenger, M., Erata, F., Onat, M., Gezgen, H., Kardas, G.: A Model-Driven En-
gineering Technique for Developing Composite Content Applications. In: Mernik,
M., Leal, J.P., Oliveira, H.G. (eds.) 5th Symposium on Languages, Applica-
tions and Technologies (SLATE’16). OpenAccess Series in Informatics (OA-
SIcs), vol. 51, pp. 11:1–11:10. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2016). https://doi.org/10.4230/OASIcs.SLATE.2016.11,
http://drops.dagstuhl.de/opus/volltexte/2016/6016

3. Combemale, B., Barais, O., Wortmann, A.: Language Engineering with the
GEMOC Studio. In: 2017 IEEE Int. Conf. Software Architecture Workshops, ICSA
Workshops. pp. 189–191. IEEE Computer Society (2017)

4. Falco, R., Gangemi, A., Peroni, S., Shotton, D.M., Vitali, F.: Modelling OWL
Ontologies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H.,
Papadakis, I., Tordai, A. (eds.) Semantic Web ESWC Satellite Events. LNCS,
vol. 8798, pp. 320–325. Springer (2014)

5. Kolovos, D.S., Paige, R.F., Rose, L.M., Williams, J.R.: Integrated Model Man-
agement with Epsilon. In: France, R.B., Küster, J.M., Bordbar, B., Paige, R.F.
(eds.) Modelling Foundations and Applications, 7th Eur. Conf. ECMFA. LNCS,
vol. 6698, pp. 391–392. Springer (2011)

6. López-Fernández, J.J., Garmendia, A., Guerra, E., de Lara, J.: An example is
worth a thousand words: Creating graphical modelling environments by example.
Software and Systems Modeling 18(2), 961–993 (2019)

7. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-Driven Develop-
ment of Web Applications with DyWA. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change. pp. 56–72. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

8. Sedlmeier, M., Gogolla, M.: Design and Prototypical Implementation of an In-
tegrated Graph-Based Conceptual Data Model. In: Thalheim, B., Jaakkola, H.,
Kiyoki, Y., Yoshida, N. (eds.) 24th Int. Conf. Information Modelling and Knowl-
edge Bases (EJC). Frontiers in Artificial Intelligence and Applications, vol. 272,
pp. 376–395. IOS Press (2014)

9. Sedlmeier, M., Gogolla, M.: Model Driven ActiveRecord with yEd. In: Welzer, T.,
Jaakkola, H., Thalheim, B., Kiyoki, Y., Yoshida, N. (eds.) 25th Int. Conf. Infor-
mation Modelling and Knowledge Bases (EJC). Frontiers in Artificial Intelligence
and Applications, vol. 280, pp. 65–76. IOS Press (2015)

10. Umuhoza, E.: Domain-Specific Modeling and Code Generation for Cross-
Platform Multi-Device Mobile Apps. CoRR abs/1509.03109 (2015),
http://arxiv.org/abs/1509.03109


