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Abstract. Data Quality is one of the main challenges in any type of Big Data 
System. Timeliness is one of the main factors in real-time Big Data. Limiting 
data quality evaluations to data sources may be insufficient in Big Data Systems 
with high Velocity and Variability. On the other hand, real-time Data Quality 
evaluations throughout the Big Data Pipeline can be costly (i.e., latency intro-
duced by Data Quality Evaluations). This paper identifies four categories –
embedded, parallel, in-line, and independent– of approaches for Big Data 
Quality Evaluation available in the literature. A real-time Big Data System 
based on the SmartCambridge Real-Time Data Platform is deployed and used 
as basis to implement a representative case for each one of the four categories 
identified. An application for bus catching dynamic prediction is used as case 
study to quantify the impact of these Data Quality Evaluations in the Real-Time 
Data Platform in terms of latency introduced in the system. Results suggests 
that the impact of Data Quality Evaluations differ depending on the type of 
method used, and that the main factors are the data transfers between Data 
Quality modules and the data processing algorithms, the synchronisation of 
messages, and the complexity of the Data Quality algorithms. 
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1 Introduction 

Smart cities provide intelligent services over six axes (i.e., economy, mobility, envi-
ronment, people, living, and governance) to improve the quality of life of citizens [1]. 
Social Network, meteorology, and IoT are often used as sources of real-time data for 
smart commuting (e.g., traffic, public transport), pollution analysis (e.g., quality of air 
and water, noise levels) among others. Most smart cities applications have to deal 
with high-volume, high-velocity, and/or high-variety data [2]. 

Real-Time Big Data systems collect and process data from different streaming 
sources like sensors, smart tags, networks, and other systems (e.g., meteorological, 
social networks, etc.) while minimising the latency. Data is often integrated with non-
real-time data of spaces, assets, products, and processes to make timely and informed 
decisions.  
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Each one of these sources have different data quality levels depending on factors 
like errors in the readings, granularity in time and space of the data, quality of com-
munication networks, and data processing capability [2]. All these factors affect 
Timeliness, which can be defined as the minimum acceptable latency in a decision-
making process [3]. Timeliness is one of the main factors that affect the decision qual-
ity in Real-Time Big Data systems [4], [5]. Timeliness is also one of the dimensions 
that define Data Quality, commonly defined as “fit-for-use” [6]. If decision is made 
on outdated data, it is considered as poor-quality and will likely be suboptimal [1], 
[2], [7]–[10]. 

A myriad of Big Data Quality Evaluation alternatives coexists in the literature. 
Many conduct the evaluation of Data Quality on a subset or a sample of the data [11]–
[13] which can help optimising the time to evaluate Data Quality but may reduce the 
significance and trust of the evaluation. A number of approaches suggest to evaluate 
data quality separately from the main Big Data pipeline in order to avoid impacting 
the latency [14]–[16]. However, it has been proven that data quality errors can be 
introduced at different points in the analytics pipeline [17]. A Big Data analysis may 
perceive data sources as trusted if these data sources scored good quality levels in the 
past, but this trust may be outdated. Introducing data quality evaluation steps (i.e., 
real-time evaluation) may enhance timeliness, and thus, decision-making, but may 
also incur cost every time the pipeline is executed. Extra cost is introduced in terms of 
a) additional latency inserted in every new evaluation step added to the system, b) 
additional memory load to temporarily store data for its quality evaluation, c) concur-
rent computation demand to evaluate data quality at the same data is being processed 
by Big Data analyses, or d) higher complexity of Big Data analyses hindering mainte-
nance.  

This paper introduces a classification of methods for Big Data Quality Evaluation 
approaches: Embedded, Parallel, In-line, and Independent. An implementation of each 
type of evaluation approaches is implemented into a Real-Time Big Data System 
(Intelligent City Platform [18]). The implementations are tested using a smart city 
application for Bus catching prediction as a case study. The latency introduced by 
each implementation is quantified to measure the impact of the different Big Data 
Quality evaluation categories. The results of each category are compared, and the 
benefits and drawbacks of each alternative are analysed. 

Section 2 contextualizes the concept of Data Quality for Big Data and extracts four 
categories of methods for Big Data Quality evaluation from the literature. A research 
method based on latency quantification and benchmarking is presented in section 3. 
Section 4 describes the framework and the case study used to benchmark the different 
categories of Big Data Quality evaluation methods. The results of the benchmark are 
shown in section 5. Section 6 provides conclusions. 

2 Data Quality Evaluation in Big Data 

Gartner defines Big Data as “high-volume, high-velocity and high-variety information 
assets that demand cost-effective, innovative forms of information processing for 
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enhanced insight and decision making” [19]. Some authors have introduced Value, 
and Veracity to the set [20], [21]. Big Data is often managed through Big Data Pipe-
lines (Collection, Preparation/Curation, Analysis, Visualisation, and Access) [22]. 
[23] differentiates between data quality (i.e., assessed at the time data is collected) 
and information quality (i.e., assessed at the time data is being used). 

[17] proved that even that Data Quality is reduced in the same rate as the Volume 
increases, and Variety exponentially reduces the Consistency of data. [17] also identi-
fied that many errors are introduced during the traditional Big Data Pipeline and not 
all data defects may be filtered. Thus, it highlights the compromise between filtering 
data defects versus the use of a quality-based trust factor for the Big Data Analysis in 
a very much needed multiphase data quality evaluation. Most approaches conduct the 
evaluation of Big Data Quality during the Data Collection phase [11]–[13], [24] or 
during Data Preparation/Curation phase [5], [7], [16], [25]–[27]. For instance, data 
miners focus on accuracy and outliers removal as the most important factors that de-
fine data quality [28], [29]. [30] measures the quality of integration of different data 
schemas which affect the quality of the data used in the Big Data Analysis phase. [14] 
proposes a framework to evaluate quality of Big Data after each phase of the tradi-
tional Big Data Pipeline and acknowledges that different Data Quality dimensions 
apply to some/all phases of the Big Data Pipeline. 

[31] proposes an ontology-based data quality measurement and monitoring frame-
work for data streams, including content (i.e., semantics of the data flowing in the 
stream), queries (i.e., aggregation and integration), and application (i.e., context-
dependent quality requirements). [3] analyses the quality measures for image-based 
crowd-sourced big data, emphasising the time related dimensions over the rest in real-
time Big Data systems. [15] centres its attention in the timeliness of the Big Data 
Analysis providing a method to measure the freshness of data. Some of these authors 
emphasize the trade-off between Data Quality and performance for real-time data in 
their approaches. [31] affirms that while performance must ensure real-time pro-
cessing, sufficient quality of computed results must be achieved. [11], [12] suggests 
boosting performance by sampling the available data for quality evaluation, and then 
use regression to extrapolate results. Sampling may help to reduce the overall latency 
of the Big Data Pipeline and keep performance, but control mechanisms like sampling 
must be tuned to preserve the balance between performance and sufficient data quali-
ty evaluation [31].  

2.1 Classification of methods for Big Data Quality evaluations 

This section introduces one of the contributions of this paper: a classification of the 
methods available in the literature for Big Data Quality evaluation. Considering the 
above, four categories of methods have been identified:  

1. Embedded: These methods evaluate quality during the Data Processing step by in-
corporating quality constraints to the Big Data Analysis. It allows tighter connec-
tions to the business applications (e.g., most Machine Learning regression algo-
rithms include outlier removal) at the cost of higher complexity in maintenance of 
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the system and lower flexibility. These methods are used when adequate levels of 
Data Quality are essential to either filter out defective data or annotate it for further 
analysis. 

2. Parallel: In this type of methods the evaluation is conducted concurrently in a sep-
arate data flow from the Big Data Analysis. Performance is often the main driver 
of the Big Data Analysis (e.g., high-Velocity or high-Volume data that must be 
rapidly processed), but quality also plays a key role. Hence, quality evaluation 
must not introduce any latency in the main data processing flow. Quality evalua-
tion results are used as risk indicators (i.e., analysis metadata) that can be checked 
after the Big Data Analysis is finished (e.g., when the Data Quality levels are not 
sufficient, the risk of using the results of a Big Data Analysis on the same data to 
make a decision is high). These methods are commonly used to monitor Data Qual-
ity in in Data Stream applications. 

3. In-line: These methods evaluate data quality before the Big Data Analysis, but in 
the same data flow. These scenarios are more commonly known as data curation, 
and they prioritise the identification and correction or filtering of data defects. 
Used in Big Data systems supporting vital decision-making and performance being 
secondary. These methods include data profiling, assurance, lineage, data tagging, 
and filtering.  

4. Independent: These methods conduct the evaluation in an unconnected data flow 
and usually before the main Big Data Pipeline is even executed. It the least disrup-
tive approach as the evaluation is conducted independently from the Big Data 
Analysis. The main drawback is that these approaches are not designed to evaluate 
the data on-the-go as it flows throughout the Data Pipeline. Thence, the Data Qual-
ity levels do not normally consider the message being processed in real-time by the 
Big Data Analysis, but rather historical data. The results of the data quality evalua-
tions are often stored as metadata of the data sources, or in a metadata repository 
when evaluations are more granular and/or it comes from different sources. This 
category includes methods for data linage, data source evaluation, data provenance, 
data cataloguing. 

Table 1 classifies the Big Data Evaluation methods in the literature according to 
these 4 categories (some methods can be classified into more than one category). 

Table 1. Classification of methods from the literature 

Embedded [9], [14], [25], [26], [28] 
Parallel [13]–[15], [24], [31], [32] 
In-Line [3], [7], [13]–[16], [21], [25]–[27], [29], [30], [32] 
Independent [5], [11], [12], [16], [17], [24], [25], [29]–[31], [33] 

3 Research method 

This paper uses the term “real-time” to refer to an unobstructed flow of incoming data 
through a Big Data system. We use a publish-subscribe Real-Time system that man-
age fast-paced data (also referred as Data Streams) and prioritise the minimization of 
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end-to-end latency (i.e., Velocity). It is important to highlight that in this system, the 
messages passing are handled asynchronously. This means that the messages are not 
directly available in the memory of the subscriber when a module publishes them, but 
when the subscriber has utterly received them. 

The impact of Data Quality in this type of Big Data Systems will be analysed by 
measuring and comparing the latency introduced by Embedded, Parallel, In-Line, and 
Independent methods for Big Data Quality Evaluation. Not all the alternatives from 
the literature are benchmarked, but rather, a custom implementation applicable in the 
selected framework (see section 4) representing each one of the identified categories. 
The impact is always quantified in terms of latency introduced in the normal flow of 
data, but it varies depending on the addressed category. Fig. 1 visually shows the 
formulas to calculate the latency. 

 

Fig. 1. Latency introduced by the four categories of methods 

Given a data quality method DQmethod that evaluates the quality of a message m, 
and a data processing task DP that processes the message m:  

 Embedded: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡஽ொ௠௘௧௛௢ௗ_௙௜௡௜௦௛௘ௗ − 𝑡஽௉_௠_௔௥௥௜௩௘ௗ , with 𝑡஽ொ௠௘௧௛௢ௗ_௙௜௡௜௦௛௘ௗ 
being the time when the algorithm of the DQmethod finishes, and 𝑡஽௉_௠_௔௥௥௜௩௘ௗ be-
ing the time when the message m arrives to the data processor DP. As the 
DQmethod is embedded into the DP, the data transfer does not introduce latency. 
Hence, the latency is always a positive number, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ∈  (0, ∞).  

 Parallel: In this approach, the data processing tasks are not directly impacted by 
the data quality evaluation algorithms as they run concurrently. Both may impact 
each other in the cases when they share infrastructure. Notwithstanding, it is neces-
sary to introduce a MsgIntegrator MI to integrate the processed data and the data 
quality evaluation results. Consequently, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡ெூ_௠ವೂ_௔௥௥௜௩௘ௗ −
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𝑡ெூ_௠ವು_௔௥௥௜௩௘ௗ  , with 𝑡ெூ_௠ವೂ_௔௥௥௜௩௘ௗ  being the time when the message mDQ from 

DQmethod arrives to the MsgIntegrator, and 𝑡ெூ_௠ವು_௔௥௥௜௩௘ௗ being the time when 
the message mDP from the data processor DP arrives to the MsgIntegrator MI. 
Thereby, the latency could be negative if mDQ arrives before mDP, latency ∈
(−∞, ∞).  

 In-line: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡஽௉_௠_௔௥௥௜௩௘ௗ − 𝑡஽ொ_௠_௔௥௥௜௩௘ௗ , with 𝑡஽௉_௠_௔௥௥௜௩௘ௗ  being the 
time when the message m arrives to the data processor DP and 𝑡஽ொ_௠_௔௥௥௜௩௘ௗ being 
the time when the message m arrives to the DQmethod. The DQmethod is executed 
before the DataProcessor. As a result, the latency includes the duration of the 
DQmethod itself plus data transfers. The latency is a positive number, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ∈
 (0, ∞).  

 Independent: These alternatives run the DQmethod independently in a different 
timeline (time0) and store the result in a DQ metadata repository. DQ levels are 
used during the normal flow of data (time1). Thus, the latency introduced depends 
only on the duration of loading the data quality levels from the data quality 
metadata repository. Then, the latency is defined as 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡஽ொ௟௢௔ௗ_௙௜௡௜௦௛௘ௗ −

𝑡஽௉_௠_௔௥௥௜௩௘ௗ  , with 𝑡஽ொ௟௢௔ௗ_௙௜௡௜௦௛௘ௗ  being the time when data quality levels have 
been loaded from the data quality metadata repository, and 𝑡஽௉_௠_௔௥௥௜௩௘ௗ being the 
time when the message m arrives to the data processor DP. Thence, the latency is a 
positive number, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ∈  (0, ∞).  

The formulas have been defined with the objective of quantifying the entire latency 
introduced by each DQ approach. This means that the formulas include not only, the 
time to run the DQmethod algorithm itself, but also the time to transfer the messages, 
loading the data quality metadata from repositories, or synchronising messages for 
integration. In this manner, the latencies can be compared between different catego-
ries. The implementation of these formulas is described in the following section 
alongside the depiction of the Big Data System that serves as a framework for the 
implementation, and the case study used for the benchmark.  

4 Framework and Case Study – Smart Cambridge iCP 

The Smart Cambridge Intelligent City Platform (iCP) gathers data from sensors in-
stalled around the Cambridge region. A Data Hub is used to ingest, process, visualise, 
and provide access to collected data in real-time. The main purpose of the iCP is to 
explore the future of transport around Cambridge, including how traffic congestion 
can be reduced and air quality improved. Implemented applications include car parks 
surveillance and status (Cameras and barriers counters), traffic status (traffic lights, 
traffic monitoring cameras), public transport (busses GPS, train schedules), and air 
quality (Air quality sensors, including CO2). A new LoRa (Low Power Long Range) 
network has also been established in collaboration with the University of Cambridge 
to transfer the data flowing in from multi-purpose sensors to the Data Hub. One of the 
main drivers of the iCP is data availability and visualisation to enable the creation of a 
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city level digital twin. This information is visualised in smart panels in some build-
ings at the University of Cambridge and is publicly available at [34]. 

The architecture of the Data Hub proposed by [18] is implemented as a framework 
to benchmark the latency introduced by the identified types of Big Data Quality Eval-
uation approaches in section 2.1. The core architecture [35] of the Data Hub is depict-
ed in Fig. 2. The design of the architecture is based on the real-time publish-subscribe 
model and it is implemented using Java and Vertx [36]. Latency between messages 
input to output is in the range of milliseconds. The main modules in this architecture 
are described below: 

 

Fig. 2. Architecture of the Real-Time Data Platform for the Data Hub in iCP [35] 

 EventBus: serves as a route of push communication between the different modules. 
It has different topics that the modules can subscribe and publish to. A topic is an 
address in the EventBus (e.g., buses/sensors/, is a topic for all the sensors in the 
buses). 

 FeedHandlers: subscribe to different data sources (e.g., vehicle position data) and 
publishes it on the EventBus. In some cases, the format of incoming data may be in 
a different format. Thus, the FeedHandlers can parse incoming data into a format 
that the platform can easily manage and understand (i.e., JSON). FeedHandler also 
archives every post of binary data as a timestamped file in the server filesystem. 

 FeedMakers: Often, it is not possible to subscribe to data sources from legacy sys-
tems. Most cases these systems store data in relational data bases, XML, Excel 
files, etc. In those cases, a FeedMaker will query data from those sources periodi-
cally (typically minutes) store it raw in the file system, and parse and publish it as a 
message on the EventBus.  

 MsgFilers: are general-purpose modules that subscribe to messages on the Event-
Bus and persist them in the filesystem. FeedCSV is a specific type of MsgFiler that 
stores the bus position data in CSV format. 
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4.1 Data Quality Evaluation in the Real-Time Data Platform 

Two new modules called DQAnalyser and MsgIntegrator were developed to ena-
ble Data Quality Evaluation in the Real-Time Data Platform, and an additional mod-
ule named DataProcessor responsible for the data processing tasks (i.e., Big Data 
Analysis). These modules are used to implement the formulas to calculate the latency 
introduced by data quality. Fig. 3 shows how these modules implement those formu-
las for each one of the four categories. 

 

Fig. 3. Implementation of the four categories for Big Data Quality Evaluation in the Real-Time 
Data Platform from iCP 

 DQAnalyser: analyses data quality of messages flowing in a particular topic in the 
EventBus. DQAnalyser can be configured to either attach the data quality score to 
the message or store it as metadata in a data-quality-metadata repository. DQAna-
lyser can persist the messages with the Data Quality score in the file system and 
publish it back to the EventBus. DQAnalyser creates DQIndicators to configure the 
algorithm for the DQmethod that calculates the data quality score of the messages. 
Thus, new algorithms can be easily incorporated. 

 MsgIntegrator: acts like a funnel, reading messages from multiple topics in the 
EventBus and publishing them back to a common topic. MsgIntegrator can also 
synchronise the messages from the subscribed topics and integrate them. 

 DataProcessor: dedicated to reading messages from one or multiple addresses in 
the EventBus and from the filesystem and conduct processing tasks on them. The 
DataProcessor can publish the processed messages back in the EventBus or store 
them in the filesystem. DataProcessors can be configured to be data quality aware, 
in which case, they read from a data-quality-metadata repository. Data Processors 
can also call DQIndicators that implement DQmethod algorithms 
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4.2 Case study: Bus catching prediction 

A bus catching prediction application is used as a case study to generate data on the 
latency introduced by each one of the four types of alternatives for Big Data Quality 
(Embedded, Parallel, In-line, Independent). The application reads the user position 
and predicts whether the user can catch the next bus to arrive to the desired bus stop. 
It uses the data from buses geolocation, routes, and schedules from the iCP platform, 
plus the geolocation from the user. Then calculates the likelihood of the user arriving 
to the bus stop before the next bus and suggests the user to either take the next bus or 
wait for the following one. Fig. 4 shows the general data flow and decision-making 
process of the application. Given that the application itself is not the main goal of the 
case study, the decision has been simplified to facilitate understanding. 

 

Fig. 4. Bus catching prediction application data flow and decision-making 

Some data quality concerns arise from the decision-making process of this applica-
tion. As it uses asynchronously collected real-time data, there is always a delay be-
tween the last geolocation position submitted by a given bus and its real geolocation 
position. This is an example of Timeliness of data, as it creates a time window in 
which it is safe to make the decision using the last bus position reading. Given that the 
purpose of this case study is to quantify latency, the DQ evaluation has been simpli-
fied. 

5 Analysis of the Impact of Data Quality in Real-Time Big Data 

1000 messages from buses were ingested to analyse the impact (i.e., in terms of laten-
cy) of the different categories for Big Data Quality Evaluation: Embedded, Parallel, 
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In-Line, and Independent. Table 2 compares the latency introduced by these four 
categories in the system. Fig. 5 visualises the latency introduced while processing the 
1000 messages in chronological order and its distribution. These experimental results 
were obtained from taking timestamps for each method as defined in section 3.  

Table 2. Aggregated Indicators on the latency introduced by the four categories for Big Data 
Quality Evaluation 

Latency Aggregated 
Indicators (in ms) 

Embedded Parallel In-Line Independent 

Average 0,980 5,838 1,221 0,447 

St. Dev. 2,903 28,695 1,299 1,330 

Mode 0,000 0,000 1,000 0,000 

Min 0,000 -23,000 0,000 0,000 

Max 79,000 175,000 10,000 22,000 

 

 

Fig. 5. Latency introduced by the four categories of approaches for Big Data Quality. a) Chron-
ological order; b) Distribution of latency introduced in milliseconds 

Fig. 5 shows that counter-intuitively, the impact of Parallel evaluation is higher on 
some occasions. It is also possible to see that the latency frequently stays below 1ms. 
Table 2 confirms these facts. Even that there are some occasions when the latency of 
the DQmethod can be nullified (i.e., negatives data points in the graph), the indicators 
show that the impact of synchronising the messages from the DataProcessor and the 
DQAnalyser can be huge in an asynchronous systems when compared to the other 
alternatives. Latency introduced by each type of method depends on different factors: 
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 Embedded: No DQAnalyser module is necessary in this case, DQIndicator mod-
ules are called from the DataProcessor. DQIndicator modules are responsible for 
calling the right DQmethod (for this case study, the Timeliness evaluator; see sec-
tions 4.1, and 4.2). In this implementation, the calls from the DataProcessor and 
the DQAnalyser also follow the publish-subscribe paradigm as all the modules 
work asynchronously, avoiding waits and locks. Hence, the latency can be defined 
as a function of the complexity of the DQmethod used for the evaluation plus the 
data transfers depending on the framework, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑂(𝐷𝑄𝑚𝑒𝑡ℎ𝑜𝑑)[+𝑑𝑎𝑡𝑎௧௥௔௡௦௙௘௥].  

 Parallel: The implementation of this approach in this paper includes a MsgIntegra-
tor responsible for collecting, synchronising, and integrating the messages mDP and 
mDQ from the DataProcessor and the DQAnalyser respectively (see section 4.1). 
Therefore, the latency can be defined as a function of the syncronisation phase, as 
the MsgIntegrator needs to wait for the last message to arrive: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =

𝑠𝑦𝑛𝑐൫𝑚஽௉, 𝑚஽ொ൯ =  ฬ𝑡ெூ೘ವುೌೝೝ೔ೡ೐೏
−  𝑡ெூ೘ವೂೌೝೝ೔ೡ೐೏

ฬ. 

 In-Line: Similarly to embedded alternatives, the DQAnalyser needs to evaluate the 
quality of the message m before it enters the DataProcessor (see sections 3, and 
4.1). Thereby, the latency can be defined as a function of the data transfers plus the 
complexity of the DQmethod used for the evaluation, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
 𝑂(𝐷𝑄𝑚𝑒𝑡ℎ𝑜𝑑) + 𝑑𝑎𝑡𝑎௧௥௔௡௦௙௘௥ .  

 Independent: In the implementation of this approach for the case study, the 
DataProcessor queries a metadata repository with the data quality information on 
the topics in the EventBus (see sections 3, and 4.1). Consequently, the latency can 
be defined as a function of the data transfer (i.e., data querying from the metadata 
repository), 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑑𝑎𝑡𝑎௧௥௔௡௦௙௘௥ .  

Table 3. Impact of the factors introducing latency for each approach 

Embedded  Parallel  
DQmethod < data transfer 546 Slower DQmethod 247 
DQmethod > data transfer 241 Slower DataProcessor 71 
DQmethod = data transfer 222 Equal 683 

Inline  Independent  
DQmethod < data transfer 573 DQ metadata import slow 269 
DQmethod > data transfer 233 No latency introduced by import 740 
DQmethod = data transfer 196   

Table 3 shows which of the aforementioned factors supposed the larger portion of 
latency the 1000 messages analysed. None of the approaches for Big Data Quality 
Evaluation seems to be best in all cases. Generally, for Embedded and In-line ap-
proaches, the latency introduced in the system by the Data Quality algorithms –
represented by the DQmethods– can be calculated as a function of the complexity of 
the algorithms themselves. Regardless of the complexity, the algorithms will likely 
process individual messages, ergo the latency will remain low. Even for the Inde-
pendent evaluation approach, where the algorithm typically processes entire Big Data 
sources, the evaluation happens in an independently from the main data flow, causing 
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no impact in it. As a result, the latency due to the Data Quality algorithms alone can 
remain low. 

In the cases where multiple messages are necessary to evaluate Data Quality, the 
complexity of the algorithms can cause a larger impact. In such cases, it is likely that 
the DataProcessors need to analyse multiple messages as well, making Parallel and 
Independent (historical data) evaluations may be more appropriate. Even that the 
Parallel evaluation approach suffers from synchronisation delays, the latency due to 
synchronization of Big Data Analysis and Data Quality results would be much lower.  

Latency of data transfers between modules can differ from system to system. Gen-
erally, it can be represented as a function directly proportional to the number and 
duration of data transfers between modules. In the case study, the latency introduced 
by data transfers remained relatively comparable to the latency of the DQmethods, 
albeit it drove the main cost of the latency functions. This can be exacerbated in the 
cases when the modules of the platform are distributed over a network rather than in 
the same server –like in the case study. Considering that one of the main advantages 
of asynchronous systems is the ability of distributing the modules over a network, it is 
possible to assert that the latency of the data transfer will drive the main impact of the 
Data Quality in real-time Big Data Systems since more transfers are added to enable 
it. In such cases, the Embedded methods may be more appropriate since the data 
transfer factor for those methods will likely be local or inexistent. 

6 Conclusions 

Multiple new technologies are being used to ingest data in scales never seen in the 
past. From IoT to Social Networks, these technologies are generating data in volumes, 
shapes, and at paces that set special requirements. Big Data Systems need to meet 
those requirements in order to ingest, process, and providing insights on that data. 

Data quality is one of the main challenges when creating these insights. Literature 
has addressed data quality dimensions like accuracy, completeness, or Consistency 
more frequently in Big Data. Nonetheless, current DQ measures are simplistic for 
real-time spatiotemporal data where recognising a DQ issue requires multiple mes-
sages with an implied latency. Timelines is being identified as one of the most im-
portant dimensions of data quality when it comes to real-time Big Data systems. Thus, 
making decisions based on outdated data will utterly drive to incorrect insights.  

One of the contributions of this paper is a classification of the methods available in 
the literature for Big Data Quality evaluation, from the performance of the real-time 
systems angle. The identified categories include Embedded, Parallel, In-line, and 
Independent methods. A second contribution is a benchmark of the different types of 
methods from the classification in terms of the latency introduced in a real-time Big 
Data system. The following actions have been conducted to enable this comparison. 
First, four formulas have been designed to quantify the latency of the four categories. 
Secondly, A real-time Big Data System has been deployed to serve as a framework. 
Third, one method representing each category has been implemented in the aforemen-
tioned framework. Fourth, the methods have been executed using data from a bus 
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catching prediction application in order to measure the latency. Finally, the results 
have been analysed and the categories have been compared. 

Results suggests that the impact of Data Quality Evaluations differ depending on 
the category of the method used. The main factors driving the impact in terms of la-
tency are the data transfers between Data Quality and the Data Analytics algorithms, 
the synchronisation of messages, and the complexity of the Data Quality algorithms. 
The nature of the Big Data system will strongly influence the design of the Big Data 
Quality Evaluation [3], [31], [32]. Each Big Data system has different characteristics 
(i.e., V’s) as well as different priorities or needs (e.g., analysis performance in terms 
of latency or amount of processed data). For instance, Big Data Analysis using fast-
paced data (i.e., Velocity is high), the Data Quality evaluation will get outdated as 
new data is analysed in the system. These aspects constraint how the data quality 
measures can be executed. 
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