CEUR-WS.org/Vol-2718/paper09.pdf

Solvers for Mathematical Word Problems in Czech

Jan Kadlec, Daniel Prusa

Czech Technical University, Faculty of Electrical Engineering
Karlovo ndm. 13, 121 35 Prague 2, Czech Republic
{kadlej24,prusa}@fel.cvut.cz

Abstract: We study the task of an automatic evaluation of
mathematical word problems, which belongs to the cate-
gory of natural language processing and has become pop-
ular in recent years. Since all the so far published meth-
ods were developed for inputs in English, our goal is to
review them and propose solutions able to cope with in-
puts in the Czech language. We face the question whether
we can achieve a competitive accuracy for a natural lan-
guage with flexible word order, and with the assumption
that only a relatively small dataset of training and testing
data is available.

We propose and evaluate two methods. One relies on
a rule-based processing of dependency trees computed by
UDPipe. The other method builds on machine learning. It
transforms word problems into numeric vectors and trains
SVM to classify them. We also show that it improves in
a combination with a search for predefined sequences of
words and word classes, achieving 75% accuracy on our
dataset of 500 Czech word problems.

1 Introduction

The research in an automatic evaluation of mathemati-
cal word problems has nowadays a good practical moti-
vation. This motivation comes from the fact that a nat-
ural language is the easiest way how many people can
express themselves. Hence, it is useful to have methods
that analyze assignments described by words, transform
them into an internal representation, calculate results and
present them in a descriptive form. This is exactly what
is aimed by computational knowledge engines like Wol-
framAlphaﬂ Mathematical word problems can be seen as
one of the most complicated text assignments. Moreover,
the complexity of translating a mathematical text into sym-
bolic math scales with the difficulty of math involved in
the problem solution. Hence, from a scientific point of
view, word problems represent a very suitable domain for
research.

The interest in automatic evaluation of word problems
dates back to 1963. It was identified in [4]] as one of the im-
portant challenges for artificial intelligence in upcoming
decades. A first attempt to implement an automatic solver
was done by Bobrow within his diploma thesis [2]. The

Copyright (©2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

Ihttps://wolframalpha.com

next development was not so rapid since this initial study
until 2014 when Kushman et al. published their solution
based on semantic interpretation and information extrac-
tion [9]]. Several other works then followed.

The survey [12]] suggests that three different princi-
ples for solving word problems automatically can be dis-
tinguished. The simplest approach works with patterns
which are sequences of words. Each pattern represents
one type of word problems. Classification is done by de-
tecting the sequences in inputs. The approach is used e.g.
by WolframAlpha. It might be problematic to use it for
languages with flexible word order.

The second approach relies on syntactic analysis. Syn-
tactic dependencies among words are used to extract infor-
mation from a given word problem. A disadvantage might
be a dependence on linguistic tools. System ARIS [3] is
an example of this type of solver.

The most efficient approach is to apply machine learn-
ing. Kushman et al. [9] use machine learning together with
information extraction and semantic interpretation. The
role of the machine learning part is to estimate parame-
ters of a probabilistic model. Huang et al. [6]] apply neural
networks and reinforcement learning. Their method works
without an explicit information extraction and is even able
to solve types of word problems that were not present in
the training dataset. On the other hand, the method fails
sometimes because of generating numbers not involved in
the input instance.

We can compare the accuracy of the methods since both
were evaluated on dataset Alg514 [9] consisting of 514
word problems. The method from [9]] achieved 70% ac-
curacy while the method from [6] achieved 82.5% accu-
racy. However, it is a known fact that the accuracy of
all solvers drops significantly down when they are applied
to instances from a large and much more diverse dataset.
One such a dataset, Dolphin18K consisting of 18.000 word
problems, was introduced in [[7]. None of the solvers eval-
uated in [7]] and [6] was able to solve correctly more than
34% instances from this dataset. This shows that solving
math word problems automatically is a really challenging
task.

All the systems discussed above were developed for
word problems in English. It is therefore natural to ask
how the used principles would work for inputs in other lan-
guages, especially if the language is in some sense more
difficult for analysis, for example, due to more flexible
word order.

https://wolframalpha.com

In this paper, we present a study of methods suitable for
processing word problems in Czech, but we also present
some new linguistically independent ideas. As no suit-
able annotated data has existed so far, it was necessary to
build a new dataset. We have collected 500 word problems
intended for the first three classes of elementary schools.
These word problems can be solved by substituting num-
bers from the problem to an arithmetic expression. Hence,
the problems are not so complex as some of those in
Alg514 and Dolphin18K that also include problems whose
solution requires to assemble and solve systems of equa-
tions. Nevertheless, we consider our dataset to be suffi-
cient for an initial study, which can serve as a step towards
methods processing more complex word problems. Fur-
thermore, a solver working reliably on the considered do-
main might be appreciated by the youngest pupils, espe-
cially if there is a possibility to provide them a step by
step explanation of how to solve a given problem. This
should justify enough the focus of our research.

We touch all three principles discussed before and pro-
pose two solvers. The first one is based on a support vec-
tor machine (SVM) classifier and it is further extended
by incorporating the patterns-based classification to han-
dle some of the easier inputs. The advantage of this solver
is that it does not require any knowledge of semantic (un-
like the system from [5]]). The accuracy achieved on the
created dataset is 75%. The second solution builds on syn-
tactic analyses. It first calls UDPipe [11] to create syn-
tactic dependency trees for all sentences, then it traverses
the trees, tries to retrieve information on logical entities
encoded in the problem, processes the question part and
computes the result. Unlike the first solution, the extracted
information could be used to output details on how to solve
the problem. On the other hand, the accuracy is much
worse when compared to the first solution.

The collected dataset and implementation of the pro-
posed methods are freely available{ﬂ

The content of the paper is structured as follows. Sec-
tion [2] describes our dataset of 500 word problems in
Czech. The next three sections describe and evaluate the
proposed principles. Section [3] discusses how to extract
and use patterns, Section[z_f] explains the use of SVM, Sec-
tion 5] focuses on retrieving information from dependency
trees produced by UDPipe. Finally, Section [(] summarizes
the achieved results, gives additional thoughts on the pre-
sented methods and outlines possible future work.

2 WP500CZ dataset

We have created a dataset called WP500CZ comprising
of 500 word problems taken from the schoolbook [10].
We have further divided the whole dataset into train-
ing and testing subsets, denoted WP500CZ-train and
WP500CZ-test, respectively, each comprising 250 word
problems. The word problems were transformed into an

“https://github.com/hkad98/problem_solver

electronic form partially by using OCR, but manual edit-
ing and several corrections of OCR outputs were also
needed. Each word problem was annotated by the ex-
pected answer (a non-negative integer) and also the arith-
metic expression used to derive the answer.

Let us list four samples from the dataset, together with
their English translations:

W1 Jana md 4 pastelky nové a 3 pastelky staré. Kolik
pastelek md Jana?
(Jane has 4 new crayons and 3 old crayons. How
many crayons does Jane have?)

W, Pavel md 120 K¢. Ota md 80 K¢ Kolik korun maji
dohromady?
(Paul has 120 CZK. Otto has 80 CZK. How many
Czech korunas do they have together?)

W3 Petr precetl 9 knih. Eva pteletla 6 krdt vice knih.
Kolik knih Eva precetla?
(Peter read 9 books. Eve read 6 times more books.
How many books did Eve read?)

Wi Maminka koupila 20 tvarohovych koldcki a 15
makovych koldcku. Déti 8 koldcii snédly. Kolik
koldcu ziistalo?

(Mom bought 20 cheesecakes and 15 poppy seed
cakes. The children ate 8 cakes. How many cakes
are left?)

Word problem W is represented in a text file as follows.

Jana ma 4 pastelky nové a 3 pastelky staré.
Kolik pastelek ma Jana? | 7 | NUM1 + NUM2

As it can be seen, there are three parts separated by
the pipe characters. The first part is a word problem, the
second part is the answer and the third part is the expres-
sion solving the problem. Variables in the expression are
strings of the form NUMx where x is the order number of
the referenced numeric value in the assignment.

Note that this approach has some limitations. For ex-
ample, it does not allow to reference numbers expressed
by words like day (has 24 hours) or June (has 30 days).
However, our dataset does not contain word problems re-
laying on these translations of words to numbers.

A word problem itself consists of two parts — a word
problem assignment (WPA-part) and a question (QUE-
part). Each word problem in WP500CZ fulfills that its
QUE-part is a simple sentence asking for one detail and
the expression which gives the answer is exclusively com-
posed of addition, subtraction, multiplication and division
operations.

Task 1. Given a word problem W, the goal of an auto-
matic word problem evaluation is to find an expression E
solving W.

Remark 1. We say that W is of type E.

https://github.com/hkad98/problem_solver

140 A

1201

100 A

80 A

60

40

201

NUM2
NUM1
NUM2
NUM2
/ NUM2

ﬁﬁﬁﬁﬁ

NUM1 *
NUM1 + NUM1 *
NUM1 + NUM1 -
NUM1 + NUM
NUM1 + NUM2
NUM1 + NUM2 - NUM3
NUM1 - NUM2
NUM1 - NUM2 + NUM3
NUM1 - NUM2 - NUM3
NUM1 / NUM2
NUM2 + NUM3
NUM2 - NUM1
NUM2 - NUM3
NUM2 / NUM1
NUM3 - NUM1 - NUM2

NUM1 * NUM2 -
NUM1 + NUM2 + NUM1

NUM1 + NUM2 + NUM3

Figure 1: Histogram of word problem types in WP500CZ.

Types of the word problem in WP500CZ and their fre-
quencies are depicted in Figure|[I}

As it can be seen, approximately one-third of the in-
stances are of type NUM1 4+ NUM?2, one-third are of type
NUMI1 — NUM2, and the remaining instances are of 11
different types (note that these types include NUM2 —
NUMI, which is considered as a type different to NUM1 —
NUM?2). This corresponds to the distribution of word
problem types in [10].

3 Pattern-based classification

In this section, we describe a classification of word
problems based on patterns extracted from a training
dataset. This approach is able to handle reliably a
subset of instances (we will show that the patters ex-
tracted from WP500CZ-train apply to 54% instances of
WP500CZ-test). For this reason, we later combine the
method with machine learning.

A pattern is a sequence of word lemmas and classes.
Patterns are extracted from WPA-parts and QUE-parts
separately and we call them WPA-patterns and QUE-
patterns, respectively. Given a word problem W, it
matches a WPA-pattern (QUE-pattern) P if the WPA-part
(QUE-part) of W contains a subsequence of words whose
lemmas/word classes are in the one-to-one correspondence
with the elements of P, preserving the order of the ele-
ments.

To illustrate the form of patterns, we give two exam-
ples of WPA-patterns followed by two examples of QUE-
patterns.

NOUN a NUM krat madlo NOUN | NUM1 / NUM2
(NOUN and NUM times little NOUN)
bjt o NUM NOUN vysoky | NUM1 + NUM2

(to be NUM NOUN high)

kolik NOUN zbyt NOUN v NOUN | NUM1 - NUM2
(how many NOUN to left NOUN in NOUN)
kolik NOUN NOUN zbyt | NUM1 - NUM2

(how many NOUN NOUN to left)

Note that each line contains a pattern separated by the pipe
character from the expression used for classification when
the pattern is matched. In addition, NOUN and NUM
in the pattern part represent word classes (noun and nu-
meral).

‘We propose an algorithm which obtains the patterns au-
tomatically. Let us describe how it extracts e.g. WPA-
patterns. Let .77, ..., .7 be the partition of training dataset
by word problem types (i.e., each .#; consists of word
problems of the same type). Maps Z,..., P are al-
located to collect the found patterns (stored as keys) and
their number of occurrences (stored as values). All these
maps are initially empty. In the end, each &; contains pat-
terns extracted from .%;.

The algorithm has three phases. First, it process the sub-
sets .%; one by one. For each .7}, it iterates through all
pairs U,V € .%;, U # V. Let u and v be the WPA-part of
U and V, respectively. Moreover, for a sequence of words

X = (x1,...,X,), let £(x) be the sequence (x},...,x) where
NOUN if x; is a noun,
= ADJ if x; is an adjective,
i) NUM if x; is a numeral,

the lemma of x; otherwise.

A longest common subsequence of £(u) and £(v), denoted
P, ,, is found. If &7; does not yet contain P, ,, the sequence
is inserted to Z7; and its number of occurrences is set to 1.
If P, , is already in #;, the number of occurrences of P, ,
is incremented.

In the second phase, the algorithm discards sequences
that were not detected frequently. It iterates through sets
Z; and deletes from &; each sequence P for which the
number of occurrences does not exceed 7 -|%;| where T €
(0,1) is a suitable constant.

Finally, the third phase of the algorithm discards every
sequence P which is shared by two distinct sets &7;, &;.

In terms of the time complexity, the first phase is the
most demanding. Let us assume that the number of words
in the WPA-part as well as QUE-part of considered word
problems is at most N. Moreover, let . = U, ..
Since the basic dynamic programming algorithm finding
the longest common subsequence for two sequences of
length at most N works in O (N?) time [3], the time com-
plexity of the first phase, denoted T (.¥), satisfies

Ti(#) =0 ()i:l ("?')1‘”) =0 (Nz,g ﬂz)

=0 (N*|.7)7).

When WPA-patterns are available, they are ordered into a
sequence Pwpa = Py, ..., B, which fulfills that a pattern
P; is a proper subsequence of a pattern F; if and only if
J > i. Analogously, the extracted QUE-patters are ordered
into a sequence Xqug with the same property. If a word
problem W with a WPA-part u and QUE-part v is given,
the pattern-based classification iterates through elements
of PquE until it finds a pattern Poug that matches u, or the
end of PquE is reached. If Poug is found, the classifica-
tion result is the expression assigned to Poug. Otherwise
the algorithm iterates through Pwpa and tries to find a
pattern Pypa matching v, which again determines the clas-
sification result. No result is returned if Poug neither Pypa
is found.

3.1 Experiments

The described procedures work with lemmatized inputs.
We thus used corpus SYN2015 [8]] to build a vocabulary
where keys are words extracted from the corpus and values
are pairs consisting of a word class and lemma. The am-
biguity of some words is resolved by taking into account
their frequency. The built vocabulary has about 1 million
items.

The proposed pattern extraction algorithm was imple-
mented in Python 3. It returned 28 WPA-patterns and 8
QUE-patterns for instances in WP500CZ-train. The run-
ning time was 4.9 [s] on a notebook equipped with Intel(R)
Core(TM) 15-5250U CPU @ 1.60GHz, 8GB RAM and
MacOS.

Table [T] shows the efficiency of the subsequent pattern-
based classification. Three possible classification out-
comes are distinguished — a correct classification, incor-
rect classification and no result when the classification al-
gorithm does not return any expression.

correct | incorrect | no result
WP500CZ-train 85 10 155
WP500CZ-test 107 8 135

Table 1: The accuracy of pattern matching on WP500CZ.

The collected patterns were detected in nearly one-
half of the word problems in WP500CZ-test (115 out of
250). In those cases, the reliability of classification was
quite high, achieving 93% accuracy (107 correct classifi-
cations). Interestingly, the accuracy was better than in the
case of training data, however, there were fewer instances
matching a pattern.

4 Machine learning

This section proposes a solver based on machine learning.
The main idea is to come up with a suitable transforma-
tion of a word problem into a numeric vector of fixed di-
mension (a so-called feature vector) and train a multi-class

support vector machine (SVM) [1]] to classify the inputs by
their types (expressions). In the experimental part, we also
show that it is worth to combine results produced by SVM
and the pattern matching from Section [3]

We decided to use SVM because it is a classifier able
to cope with high-dimensional data and it is not prone
to overfitting. A flexibility is achieved through a kernel
choice, which gives a possibility to linearly separate non-
linearly separable data by mapping them into a higher di-
mension. It also does not require a large dataset for train-
ing, unlike neural networks.

Our method of representing word problems by numeric
vectors is semantic-independent. It is based on histograms
of words occurring in word problems of the same type. For
this purpose we define

1. a frequency function w(w, p,E) which for a word w
in its canonical form, p € {WPA,QUE} and a word
problem type E is equal to the number of word prob-
lems of type E in the training dataset that contain a
word of the canonical form w in the p-part, and

2. a weight function a(c,p) which for a word class ¢
and p € {WPA,QUE} is equal to an integer deter-
mining the importance of word class c in the classifi-
cation process.

The values of the frequency function are calculated
based on the training dataset. For example, we obtained
the following values for verb mit (fo have) and adverb
dohromady (together) from WP500CZ-train:

o(mit, WPA,NUMI1 + NUM2) =27, (1)
o(mit, QUE,NUMI + NUM2) =28, (2)
o(mit, WPA,NUM1 — NUM2) =25, (3)
o(mit, QUE,NUMI —NUM2) = 11, (4)
o(dohromady, WPA,NUM1 +NUM2) =0, (5)
o(dohromady, QUE, NUMI + NUM2) =6, (6)
o(dohromady, WPA,NUM1 —NUM2) =0, @)
o(dohromady, QUE,NUM1 — NUM2) =0. (8)

Values of the weight function were learned by a genetic
algorithm, taking SVM accuracy as the objective function.

When the functions @ and ¢ are known, we transform a
word problem W to a numeric vector x using the following
algorithm.

1. Components of x are indexed by types of word prob-
lems in the training dataset (thus the vector dimension
coincides with the number of SVM classes) and all of
them are initially set to 0.

2. Words of W are taken one by one. Let the current
word be of a lemma w and word class ¢. Moreover,
let it be from a p-part of W. For each word problem
type E, it is checked if @w(w, p,E) is defined and the
expression E evaluates to a non-negative integer after

substituting the numeric values from W to E (i.e., E
is feasible to W). If true, then the E-component of x
is increased by a(c,p) - @(w, p,E).

Let us demonstrate how the frequencies (T)-(8) are used
to calculate the numeric vector for word problem W, in
Section |2} For simplicity, assume that word problems in
the training dataset are only of types NUM1 + NUM?2 and
NUMI1 — NUM2, and that o(c, p) = 1 for all ¢ and p (i.e.,
we will ignore the weigh function).

First, we observe that both considered expressions eval-
uate to a positive integer when the numbers 4 and 3 from
W, are substituted for NUM1 and NUM2, respectively,
hence both expressions are feasible to W;. Since the verb
mit is in the WPA-part as well as QUE-part of Wy, it con-
tributes by frequencies (I) and (2) to vector component
NUMI1 +NUM?2, and, analogously, by frequencies (3] and
(@) to the component NUM1 — NUM?2. The adverb dohro-
mady appears only in the QUE-part of Wy, hence it con-
tributes by frequency (6) to component NUM1 + NUM2
(note that frequency @) is zero, hence it does not con-
tribute to component NUM1 — NUM?2). If we sum the
listed contributions, we obtain the vector

{NUM1+NUM2: 61, NUMI —NUM2: 36} .

Remark 2. It is important to notice that the proposed form
of vectors suggests to use a simple classifier which only
finds a component of maximum value and returns the ex-
pression assigned to it. We will consider this strategy in
the experimental part where it will be shown that it per-
forms considerably worse than SVM.

As the testing data might have a different distribution
than the training data, we normalize the vectors before
passing them to SVM. For the SVM training stage, the
normalization modifies the training set vectors so that the
mean value is 0 and the variance is 1. The same transfor-
mation is applied to each input vector before it is classified.

Figure [2| shows a visualization of an SVM trained for
word problems of types NUMI1 + NUM2 and NUM1 —
NUM2.

4.1 Experiments

In the next paragraphs we use the following abbreviations
to denote the proposed solvers:

e sSVM is SVM-based solver,
e sMAX is the classifier suggested by Remark 2]

e sSVM+PAT is sSVM combined with the pattern
matching, and

o SMAX+PAT is sSMAX combined with the pattern
matching.

0.5

0.0

—0.51

-1.01

-1.51 ad s Classes
.
- ® ° ® NUMI1-NUM2
B o t ® NUMI + NUM2
-2.04 .7 i
o # input
®

=25 -20 -15 -1.0 -05 0.0 0.5 1.0

Figure 2: A SVM trained for normalized 2-dimensional
vectors obtained for several word problems of NUM1 +
NUM?2 and NUMI — NUM2 types. The circled samples
are the support vectors. The input displayed in red repre-
sents the normalized vector of an input word problem to
be classified.

The combined solvers sSSVM+PAT and sMAX+PAT try to
apply the pattern matching first. If it does not return a
result, then sSSVM and sMAX is called to complete the
classification.

We used scikit—learrﬂ library to implement sSVM. Ra-
dial basis function kernel was chosen as the best perform-
ing one among tested kernels.

The accuracy of the solvers can be compared in Table
and Table The combined solver sSSVM+PAT was the
best solver on the testing dataset. In addition, the strategy
of sSMAX solver is inferior to the SVM classification.

sSVM | sMAX
WP500CZ-train | 87.6% | 58.0%
WP500CZ-test | 61.1% | 51.0%

Table 2: The accuracy of sSVM and sMAX.

sSSVM+PAT | sSsMAX+PAT
WP500CZ-train 86.8% 69.2%
WP500CZ-test 74.9% 66.1%

Table 3: The accuracy of the combined solvers.

All instances of WP500CZ were evaluated in 3.66 [s]
by sSVM+PAT and 3.15 [s] by sSMAX+PAT (the running
environment was identical to that one described in Subsec-
tion[3.1).

Figures [3] and [] show distributions of errors per word
problem type for sSSVM+PAT (note that only word prob-
lem types present in the training dataset are considered).

3https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

I correct
Il wrong

NUM1 * NUM2
NUM1 + NUM2
NUM1 - NUM2
NUM1 / NUM2
NUM2 + NUM3
NUM2 - NUM1
NUM2 - NUM3
NUM2 / NUM1

NUM1 + NUM1 * NUM2
NUM1 + NUM1 - NUM2
NUM1 + NUM1 / NUM2
NUM1 + NUM2 + NUM3
NUM1 + NUM2 - NUM3

Figure 3: The accuracy of sSSVM+PAT on WP500CZ-train.

B correct
80 1 I wrong

701
60
50 A
40
301
20 1

104

N
=
=}
z
*

-
=
=}
=

NUM1 + NUM2
NUM1 - NUM2
NUM1 / NUM2
NUM2 + NUM3
NUM2 - NUM1
NUM2 / NUM1

NUM1 + NUM1 - NUM2
NUM1 + NUM1 / NUM2
NUM1 + NUM2 + NUM3
NUM1 + NUM2 - NUM3

Figure 4: The accuracy of sSSVM+PAT on WP500CZ-test.

5 Syntactic analysis

The so far presented solvers worked as classifiers but they
were not suitable to be used for a step by step explana-
tion of how to derive a solution to a given word problem.
Here we give a high-level description of a method based on
syntactic analysis, which creates an internal representation
of the input problem. Although our current implementa-
tion of this method lags behind the SVM-based solver, we
think that there is a room for improvements and it is thus
worth to analyze causes of errors.

The method uses UDPipe (with Universal Dependen-
cies 2.5 Models 2019-12-06) to process sentences of a

given word problem. UDPipe returns information on
word classes, sentence elements and their dependencies in
CONNL-U formaEl This information allows to construct
a dependency tree.

We apply several algorithms working over the tree to re-
trieve structured information on entities encoded in the as-
signment. For each number N, it is extracted which entity
E/ the number refers to and which entity E; is the owner
of £ 1.

Let us demonstrate it for the sentence:

Alenka si koupila 5 ¢okolddovych bonboni.
(Alice bought 5 chocolate candies.)

Figure [5] shows the dependency tree constructed from
the data returned by UDPipe.

o
<root>
koupila
root
VERB
Alenka si bonbdénd
nsubj obl obj punct
NOUN PRON NOUN PUNCT
5 ¢okoladovych
nummod:gov amod
NUM ADJ

Figure 5: A dependency tree example.

The structure which is supposed to be extracted from
the tree is visualized in Figure[6]

Alenka (Alice)

¢okoladovych (chocolate)
bonbénu (candies)

O

Figure 6: Extracted information.

A given word problem is solved in three phases de-
signed to handle a variety of assignment formulations:

1. Preprocessing phase splits compound sentences and
evaluates each part separately. It also replaces

4https://universaldependencies.org/format.html

https://universaldependencies.org/format.html

phrases like 3 times more than by numbers, i.e., if ap-
plicable, it computes intermediate results and passes
them to the next phases.

2. Structure creation phase connects numbers and enti-
ties. This is done by traversing the dependency tree
from nodes representing numbers. When a structure
is extracted, a vocabulary of verbs that represent a
subtraction is used to adjust sign of the number (i.e.,
unlike in the previous methods, verbs semantic is
taken into account here).

3. Evaluation phase checks the question part and
guesses which entity E the word problem queries for.
The answer is derived based on the extracted struc-
tures that relate to E.

5.1 Experiments

To tune the method and to analyze errors encountered dur-
ing testing, we considered only a subset of WP500CZ con-
sisting of 150 word problem instances, denoted here as
WP150CZ. The reason is that to analyze error types re-
quired a manual approach, it would, therefore, be too la-
borious to work with the entire dataset.

The method achieved 76% accuracy on the training
part of WP150CZ (formed of 75 instances) and 67.1%
accuracy on the testing part. However, the performance
was much worse when the method was evaluated against
all instances of WP500CZ (which took 23.5 [s]), solv-
ing correctly 41% of word problems. This indicates that
WP500CZ is more diverse than WP150CZ and the rules
designed based on WP150CZ are not general enough.

Table @] shows detailed analysis of errors made by the
method on WP150CZ. The analysis reveals that UDPipe
itself is a non-negligible cause of errors since it often re-
turns partially incorrect outputs and our method is not able
to recover from these errors.

UDPipe | preproc. | creation | eval. || total
train 7 3 5 3 18
test 9 5 9 1 24

Table 4: Errors by type made by the solver on WP150CZ.

6 Conclusion

Our paper is an initial study of an automatic evaluation
of math word problems in Czech. We have reviewed
the state-of-the-art methods for inputs in English and pro-
posed three solvers, based on pattern matching, SVM and
syntactic analysis. We also contributed by a dataset of 500
annotated word problems in Czech.

The main findings and new ideas of our work can be
summarized as follows.

e The pattern extraction is a less efficient approach
when used as a standalone solver for word problems
entered in a language with flexible word order. It is
applicable only to a portion of inputs. However, we
showed that it can be well used in a combination with
other solvers since a matched pattern usually results
in a correct classification. Another success is that we
managed to implement a fully automatic pattern ex-
traction.

e A semantic-independent representation of word prob-
lems, considering only frequencies of words, turned
out to be sufficient to obtain a relatively accurate clas-
sifier. The trained SVM performed better than the
straightforward sMAX classifier. This might be in-
terpreted as meaning that the SVM was able to find
nontrivial relationships in the used features vectors.

e We have tested the suitability of existing linguistic
tools for the studied task. The method based on syn-
tactic analysis processed dependency trees produced
by UDPipe. The method was not able to recover from
errors occasionally done by UDPipe. Improving the
accuracy of UDPipe is thus supposed to result in a
higher accuracy of the method.

The accuracy of sSVM+PAT on WP500CZ (achieving
74.9%) was not too far from the accuracy of the state-
of-the-art solvers on Alg514 (achieving 70% or 82.5% by
methods from [9] or [6]], respectively), it must, however,
be said that the complexity of some instances in Alg514 is
out of the scope of our methods. To make a fairer com-
parison with the state-of-the-art would require to create an
English version of WP500CZ, or to adapt the state-of-the-
art solvers to inputs in Czech.

It must also be noted that WP500CZ is a small dataset
(however, as we explained in the introduction, the problem
has not been studied for non-English languages by others
and there are no publicly available datasets of word prob-
lems for e.g. Slavic languages). A worse performance can
be expected if sSSVM+PAT is applied to larger and more
diverse datasets. A broad expansion of the dataset and a
creation of multilingual versions can, therefore, be iden-
tified as the goal of our further work. Except much more
thorough testing, it would allow us to apply deep learning
which is expected to improve the quality of the results.

In addition to our future plans, we also hope that the pre-
sented research can inspire others to consider non-English
inputs for the studied problem.

Acknowledgment

We thank anonymous reviewers whose suggestions helped
improve this paper. Our work was supported by the Czech
Science Foundation grant no. 19-21198S.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag, Berlin, Heidelberg, 2006.

Daniel G. Bobrow. Natural language input for a computer
problem solving system. Technical report, USA, 1964.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

Edward A. Feigenbaum and Julian Feldman. Computers
and Thought. McGraw-Hill, Inc., USA, 1963.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Et-
zioni, and Nate Kushman. Learning to solve arithmetic
word problems with verb categorization. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 523-533, Doha, Qatar,
October 2014. Association for Computational Linguistics.

Danging Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
Neural math word problem solver with reinforcement
learning. In Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 213-223, Santa
Fe, New Mexico, USA, August 2018. Association for Com-
putational Linguistics.

Danging Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. How well do computers solve math
word problems? Large-scale dataset construction and eval-
vation. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 887-896, Berlin, Germany, August
2016. Association for Computational Linguistics.

Michal Kien, Vaclav Cvréek, Tomas Capka, Anna
Cermdkovd, Milena Hnitkovd, Lucie Chlumskd, Do-
minika Kovafikovd, TomasS Jelinek, Vladimir Petkevic,
Pavel Prochdzka, Hana Skoumalovd, Michal Skrabal,
Petr Trunecek, Pavel Vondficka, and Adrian Zasina.
SYN2015: representative corpus of written Czech, 2015.
LINDAT/CLARIAH-CZ digital library at the Institute of
Formal and Applied Linguistics (UFAL), Faculty of Math-
ematics and Physics, Charles University.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina
Barzilay. Learning to automatically solve algebra word
problems. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 271-281, Baltimore, Maryland, June
2014. Association for Computational Linguistics.

Marie Reischigova. Matematika na zdkladni a obecné Skole
ve slovnich tilohdch. Pansofia, 1996. In Czech.

Milan Straka and Jana Strakova. Tokenizing, POS tagging,
lemmatizing and parsing UD 2.0 with UDPipe. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 88-99,
Vancouver, Canada, August 2017. Association for Compu-
tational Linguistics.

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Dai,
and Heng Shen. The gap of semantic parsing: A survey on
automatic math word problem solvers. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PP:1-1, 04
2019.

	Introduction
	WP500CZ dataset
	Pattern-based classification
	Experiments

	Machine learning
	Experiments

	Syntactic analysis
	Experiments

	Conclusion

