
Presenting Simultaneous Translation in Limited Space

Dominik Macháček, Ondřej Bojar

Charles University
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
{machacek,bojar}@ufal.mff.cuni.cz

Abstract: Some methods of automatic simultaneous trans-
lation of a long-form speech allow revisions of outputs,
trading accuracy for low latency. Deploying these systems
for users faces the problem of presenting subtitles in a lim-
ited space, such as two lines on a television screen. The
subtitles must be shown promptly, incrementally, and with
adequate time for reading. We provide an algorithm for
subtitling. Furthermore, we propose a way how to estimate
the overall usability of the combination of automatic trans-
lation and subtitling by measuring the quality, latency, and
stability on a test set, and propose an improved measure
for translation latency.

1 Introduction

The quality of automatic speech recognition and machine
translation of texts is constantly increasing. It leads to
an opportunity to connect these two components and use
them for spoken language translation (SLT). The output of
the SLT system can be delivered to users either as speech
or text. In simultaneous SLT, where the output has to be
delivered during the speech with as low delay as possi-
ble, there is a trade-off between latency and quality. With
textual output, it is possible to present users with early,
partial translation hypotheses in low latency, and correct
them later by final, more accurate updates, after the sys-
tem receives more context for disambiguation, or after a
secondary big model produces its translation. Rewriting
brings another challenge, the stability of output. If the up-
dates are too frequent, the user is unable to read the text.
The problem of unstable output could be solved by using
big space for showing subtitles. The unstable, flickering
output would appear only at the end, allowing the user to
easily ignore the flickering part and read only the stabi-
lized part of the output. However, in many situations, the
space for subtitles is restricted. For example, if the users
have to follow the speaker and slides at the same time, they
lack mental capacity for searching for the stabilized part
of translations. It is, therefore, necessary to put the subti-
tles and slides on the same screen, restricting the subtitling
area to a small window.

In this paper, we propose an algorithm for presenting
SLT subtitles in limited space, a way for estimating the

Copyright c©2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

overall usability of simultaneous SLT subtitling in a lim-
ited area, and an improved translation latency measure for
SLT comparison. Section 2 describes the properties of SLT
for use with our subtitler. Section 3 details the main new
component for presenting a text stream as readable subti-
tles. Section 4 proposes the estimation of the usability of
the subtitling of multiple realistic SLT systems. We con-
clude the paper in Section 5.

2 Re-Translating Spoken Language
Translation

Our subtitler solves the problem of presentation of SLT
output with a re-translating early hypothesis, similarly to
[1, 2, 3]. Although it can also present the subtitles from the
automatic speech recognition (ASR) that re-estimates the
early hypothesis, or generally any audio-to-text processor,
we limit ourselves only SLT in this paper for brevity.

2.1 Stable and Unstable Segments

SLT systems output a potentially infinite stream of seg-
ments containing the beginning and final timestamps of an
interval from the source audio, and the translated text in
the interval. We assume that the segments can be marked
as stable and unstable, depending on whether the system
has the possibility to change them or not. This is a realis-
tic assumption because the ASR and SLT systems usually
process a limited window of the source audio. Whenever a
part of source audio exceeds this window, the correspond-
ing output becomes stable.

3 Subtitler

This section presents the design and algorithm of “subti-
tler”.

The subtitler is a cache on a stream of input messages
aiming to satisfy the following conflicting needs:
• The output should be presented with the lowest possi-

ble delay to achieve the effect of simultaneous trans-
lation as much as possible.
• The flickering of the partial outputs is partially de-

sired because it highlights the simultaneity of the
translation and comforts the user in knowing that the
system is not stuck.

 Pixelen auf Ihrem Bildschirm. Zu jedem Zeitpunkt. Es ist auch eine sehr flexible Architektur...

UNSTABLESTABLE

 Pixelen auf Ihrem Bildschirm. Zu jedem Zeitpunkt. Sie ist auch sehr flexibel. Die architektur ist ein ganzes Buch.

23 134 STABLE Pixelen auf Ihrem Bildschirm.

134 189 UNSTABLE Zu jedem Zeitpunk. Es ist auch eine sehr flexible Architektur...

134 156 STABLE Zu jedem Zeitpunk.

156 210 UNSTABLE Sie ist auch sehr flexibel. Die architektur ist ein ganzes Buch.

Input 1:

Buffer:

Input 2:

Buffer:

Window 1.1 Window 1.2

Window 2.1 Window 2.2

UNSTABLESTABLE

Resetted window 2.2

Figure 1: Illustration of speech translation subtitling in two subsequent inputs from SLT. The input arrives as a sequence
of quadruples: segment beginning time, segment end time, stable/unstable flag, text. The rectangles indicate the content
of the subtitling area of one line.

Figure 2: Subtitler processing of the inputs in Figure 1
with different timings. In the left one, Input 2 changes the
word “Es”, which has been read by the user and scrolled
away and causes a reset of a window start. In the right one,
the word “Es” is changed in the window on the current
display.

• The flickering should be minimized. If some output
was presented at a position of the screen, it should
keep the position until it is outdated.
• The user must have enough time to read the message.
• Only a predefined space of w (width) characters and

h (height) lines are available.
Given an input stream of stable and unstable segments

as described above, the subtitler emits a stream of “sub-
title windows”. On every update, the former window is
replaced by a new one.

The basic operation of subtitler is depicted in Figures 1
and 2. The elements of subtitler are a buffer of input seg-
ments, a presentation window, and two independent pro-
cessing threads.

The buffer is an ordered list of segments. The presen-
tation window is organized as a list of text lines of the
required width and count. The count corresponds to the
height of subtitling window plus one, to allow scrolling-

up the top line after displaying it for minimum reading
time. This line view is regenerated whenever needed from
the current starting position of the window in the buffer,
wrapping words into lines.

The input thread receives the input stream and updates
the buffer. It replaces outdated segments with their new
versions, extends the buffer, and removes old unnecessary
segments. If an update happens within or before the cur-
rent position of the presentation window, the output thread
is notified for a forced update.

Independently, the output thread updates the position of
the presentation window in the buffer, obeying the follow-
ing timeouts and triggers:
• On forced updates, the output thread detects if any

content changed before the beginning of the already
presented window, which would cause a reset. In that
case, the window position on the window buffer has
to be moved back, and the content for the user can no
longer be presented incrementally. Instead, the be-
ginning of the first line in the window shows a newer
version of an old sentence that has already scrolled
away.
• If the first line of the presentation window has not

been changed for a minimum reading time and if
there is any input to present in the extra line of the
window, the window is “scrolled” by one line, i.e.,
the first line is discarded, the window starting posi-
tion within the buffer is updated, and the extra line is
shown as the last line of the window.
• If the whole presentation window has not been

changed for a long time, e.g., 5 or 20 seconds, it is
blanked by emitting empty lines.

3.1 Timing Parameters

The subtitler requires two timing parameters. A line of
subtitles is displayed to a user for a “minimum reading

time” before it can be scrolled away. If no input arrives for
a “blank time”, the subtitling window blanks to indicate
it and to prevent the user from reading the last message
unnecessarily.

We suggest adopting the minimum reading time param-
eter from the standards for subtitling films and videos (e.g.,
[4]), before standards for simultaneous SLT subtitling will
be established. [5] claim that 15 characters per second is a
standard reading time in English interlingual subtitling of
films and videos for deaf and hard hearing. The standards
in other European regions are close to 15 characters per
second. We use this value for the evaluation in this work.

4 Estimating Usability

The challenges in simultaneous SLT are quality, latency,
and stability [1, 2]. All of these properties are critical for
the overall usability of the SLT system. The quality of
translation is a property of the SLT system. The subtitler
has no impact on it. The minimum reading time ensures
the minimum level of stability, ensuring that every stable
content is readable, and may increase the latency if the
original speech is faster than reading time. The size of
the subtitling window and timing parameters affect overall
latency and stability. The bigger the window, the longer
updates of translations fit into it without a reset. The tim-
ing parameters determine how long the content stays un-
changed in the window before scrolling. A small subtitling
window or a short reading or blanking time may cause a re-
set. Every reset increases latency because it returns to the
already displayed content. On the other hand, the signif-
icant latency may improve stability by skipping the early
unstable hypotheses and present only the stable ones.

We provide three automatic measures for assessing the
practical usability of simultaneous SLT subtitling on the
test set. The automatic evaluation may serve for a rough
estimation of the usefulness, or for selection of the best
candidate setups. We do not provide a strict way to judge
which SLT system and subtitling setup are useful and
which are not. The final decision should ideally consider
the particular display conditions, expectations, and needs
of the users, and should be based on a significant human
evaluation.

4.1 Evaluation Measures

For quality, we report an automatic machine translation
measure BLEU computed by sacrebleu [6] after automatic
sentence alignment using mwerSegmenter [7]. BLEU is
considered as correlating with human quality judgement.
The higher BLEU, the higher translation quality.

To explain the measure of latency and stability, let us
use the terminology of [2]. The EventLog is an ordered
list of events. The ith event is a triple si,oi, ti, where si
is the source text recognized so far, oi is the current SLT
output, and ti is the time when this event was produced.

Source and output, si and oi, are sequences of tokens. Let
us denote c(oi) a transformation of a token sequence into a
sequence of characters, including spaces and punctuation.
Let I be the number of all events, with an update either
in source or output, and T the number of events with an
update in translation.

Character Erasure To evaluate how many updates fit
into the subtitling window, we define character erasure
(cE). It is the number of characters that must be deleted
from the tail of the current translation hypothesis to update
it to a new one. If a new translation only appends words
to the end, the erasure is zero. The character erasure is
cE(i) = |c(oi−1)| − |LCP(c(oi),c(oi−1))|, where the LCP
stands for the longest common prefix. The average char-
acter erasure is AcE = 1/T ∑

I
i=1cE(i). It is inspired by the

normalized erasure (NE) by [2], but we do not divide it by
the output length in the final event, but only by the number
of translation events.

Translation Latency with Sentence-Alignment Catch-
up The translation latency may be measured with the use
of a finalization event of the j-th word in output. It is
f (o, j) = mini such that oi′, j′ = oI, j′ ∀i′ ≥ i and ∀ j′ ≤ j.
In other words, the word j is finalized in the first event i,
for which the word j and all the preceding words j′ remain
unchanged in all subsequent events i′.

The translation latency of output word j is the time dif-
ference of the finalization event of the word j in the out-
put and its corresponding word j∗ in the source. [2] esti-
mate the source word simply as j∗ = (j/|oI |)|sI |. This is
problematic if the output is substantially shorter than in-
put, because then it may incorrectly base the latency on a
word which has not been uttered yet, leading to a negative
time difference. A proper word alignment would provide
the most reliable correspondence. However, we propose a
simpler and appropriately reliable solution. The following
improved measure is our novel contribution. We use it to
compare the SLT systems.

We utilize the fact that our ASR produces punctuated
text, where the sentence boundaries can be detected. The
sentences coming from SLT and ASR in their sequential
order are parallel. They can be simply aligned because our
SLT systems translate the individual sentences and keep
the sentence boundaries. If the SLT does not produce in-
dividual sentences, then we use a rule-based sentence seg-
menter, e.g. from [8], and must be aware of the potential
inaccuracy.

We use the sentence alignment for a catch-up, and the
simple temporal correspondence of [2] only within the
last sentence. To express it formally, let us assume that
the EventLog has also a function S(o, j), returning the
index of the sentence containing the word j in o, and
L(o,k), the length of the sentence k in o. Let x(j) =
j−∑

S(o, j)−1
i=1 L(o, i) be the index of an output word j in its

Table 1: Quality measure of the English ASR and SLT
systems from English into the target language in the left-
most column, on IWSLT tst2015. The letters A, B, C de-
note different variants of SLT systems with the same tar-
get. Translation lag (TL∗) is in seconds. AcE is average
character erasure, NE is normalized erasure.

SLT BLEU TL∗ AcE NE
EN (ASR) 58.4747 29.22 5.88
CZ A 17.5441 2.226 24.20 7.05
CZ B 12.2914 2.622 29.48 5.30
CZ C 18.1505 2.933 27.90 3.93
DE A 15.2678 3.506 47.32 1.39
DE B 15.9672 1.845 38.12 5.46
ES 21.8516 5.429 43.30 1.49
FR A 25.8964 1.269 31.97 3.32
FR B 20.5367 5.425 47.92 1.46
RU 11.6279 3.168 31.78 4.05

sentence. Then we define our caught-up correspondence
as

j∗∗ = ∑
S(o, j)−1
i=1 L(s, i)+ x(j)

⌊
L(s,S(o, j))
L(o,S(o, j))

⌋
Finally, our translation latency with sentence-alignment

catch-up is TL∗(o, j) = t f (o, j) − t f (s, j∗∗). This is then
averaged for all output words in the document: TL∗=

1
|oI | ∑

|oI]
j=1 T L∗(o, j). 1

4.2 SLT Evaluation

We use one ASR system for English and nine SLT sys-
tems from English into Czech (three different models dif-
fering in the data and training parameters), German (2 dif-
ferent systems), French (2 different systems), Spanish and
Russian. All the SLT systems are cascades of an ASR,
a punctuator, which inserts punctuation and capitalization
to unsegmented ASR output, and a neural machine trans-
lation (NMT) from the text. The systems and their quality
measures are in Table 1. DE A, ES, and FR B are NMT
adapted for spoken translation as in [9]. The others are ba-
sic sentence-level Transformer NMT connected to ASR.
The ASR is a hybrid DNN-HMM by [10].

We evaluate the systems on IWSLT tst2015 dataset. We
downloaded the referential translation from the TED web-
site as [2], and removed the single words in parentheses
because they were not verbatim translations of the speech,
but marked sounds such as applause, laughter, or music.

4.3 Reset Rate

The average character erasure does not reflect the fre-
quency and size of the individual erasures. Therefore, in
Figure 3, we display the cumulative density function of
character erasure in the dataset. The vertical axis is the

1For a set of documents D, the TL∗=
∑o,I∈D ∑

|oI]
j=1 T L∗(o, j)

∑o,I∈D |oI |
.

80 100 120 140 160 180
character erasure (cE)

65

70

75

80

85

90

95

100

%
 o

f t
ra

ns
la

tio
n

up
da

te
s

EN (ASR)
CZ A
CZ B
CZ C
FR A
RU
ES
DE B
DE A
FR A

Figure 3: The percentage of translation updates in the val-
idation set with the character erasure less than or equal to
the value on the x-axis, for all our ASR and SLT systems.
The x-axis corresponds with the size of the subtitling win-
dow.

Table 2: Percentage of character erasures in all translation
updates, which are shorter or equal than x characters, for
selected values of x.

SLT x = 0 x = 70 x = 140 x = 210
EN (ASR) 20.76 84.23 99.96 100.00
CZ A 41.37 91.98 99.03 99.76
CZ B 28.61 89.78 98.63 99.77
CZ C 30.93 88.31 98.53 99.72
FR A 31.65 84.47 98.14 99.51
RU 35.42 85.17 97.82 99.38
ES 29.01 71.71 97.08 99.43
DE B 27.89 80.90 97.05 99.38
DE A 30.85 67.65 95.83 99.13
FR A 30.39 66.15 95.67 99.39

percentage of all translation updates, in which the charac-
ter erasure was shorter or equal than the value on the hori-
zontal axis. E.g., for the subtitler window with a total size
of 140 characters, 99.03 % of SLT updates of the SLT CZ
A fit into this area. Table 2 displays the same for selected
sizes, which fit into 1, 2, and 3 lines of subtitler window
of size 70, and also the percentage of updates without any
erasure (x = 0).

The values approximate the expected number of resets.
However, the resets are also affected by the blanking time,
so the real number of resets may be higher if the speech
contains long pauses. The percentage in Figure 3 serves as
a lower bound.

4.4 Subtitling Latency

The subtitling latency is the difference of the finalization
time of a word in subtitler and in the SLT. We count it sim-
ilarly as the translation latency, but the word correspon-
dence is the identity function because the language in SLT
and subtitler is the same.

0 200 400 600
time (s)

0

10

20

30

40
su

bt
itl

er
 la

g
(s

)
height=1
height=2
height=3

Figure 4: Subtitling latency (y-axis) over time (x-axis) for
tst2015.en.talkid1922 translated by CZ A. The subtitling
window has the width 70 and height 1, 2 and 3 lines. The
minimum reading time is 15 characters per second (one
line per 4.7s).

Table 3: Results of user evaluation with three subtitling
windows of different heights (h). Quality level 4 is the
highest, 1 is the lowest. The right-most column is the per-
centage of erasures fitting into the subtitling window.

Percentage of quality levels
height level=1 level=2 level=3 level=4 cE < 70 ·h

h = 1 35.27 % 28.79 % 14.95 % 20.99 % 88.59 %
h = 2 11.08 % 29.94 % 35.73 % 23.24 % 98.73 %
h = 3 16.33 % 19.90 % 33.67 % 30.11 % 99.64 %

We computed the latency caused by the subtitler with 1,
2, and 3 lines of width 70 for one talk and SLT systems,
see Figure 4. Generally, the bigger the translation window,
the lower latency.

4.5 User Evaluation

We asked one user to rate the overall fluency and
stability of subtitling for the first 7-minute part of
tst2015.en.talkid1922 translated by CZ A. We presented
the user with the subtitles three times, in a window of
width 70 and heights 1, 2 and 3. The minimum reading
time parameter was 15 characters per second. The user
was asked to express his subjective quality assessment by
pressing one of five buttons: undecided (0), horrible (1),
usable with problems (2), minor flaws, but usable (3), and
perfect (4). The user was asked to press them simulta-
neously with reading subtitles, whenever the assessment
changes. The source audio or video was not presented, so
this setup is comparable to situations where the user does
not understand the source language at all. The user is a
native speaker of Czech.

Table 3 summarizes the percentage of the assessed dura-
tion and the quality levels. The user has not used the level
undecided (0). The main problem that the user reported

was limited readability due to resets and unstable transla-
tions. The flaws in usable parts of subtitling were subtle
changes of subtitles which did not distract from reading
the new input, or disfluent formulations.

In the right-most column of Table 3 we show the per-
centage of erasures in the part of the evaluated document
which fit into the subtitling window. We hypothesize that
the automatic measure of character erasure may be used to
estimate the user assessment of readability.

5 Conclusion

We proposed an algorithm for presenting automatic speech
translation simultaneously in the limited space of subti-
tles. The algorithm is independent of the SLT system. It
ensures the minimum level of stability and allows simul-
taneity. Furthermore, we propose a way of estimating the
reader’s comfort and overall usability of the SLT with sub-
titling in limited space, and observe correspondence with
user rating. Last but not least, we suggested a catch-up
based on sentence-alignment in ASR and SLT to measure
the translation latency simply and realistically.

Acknowledgments

The research was partially supported by the grant
CZ.07.1.02/0.0/0.0/16_023/0000108 (Operational Pro-
gramme – Growth Pole of the Czech Republic), H2020-
ICT-2018-2-825460 (ELITR) of the EU, 398120 of the
Grant Agency of Charles University, and by SVV project
number 260 575.

References

[1] J. Niehues and et al., “Dynamic transcription for low-
latency speech translation,” in Proceedings of Interspeech,
2016.

[2] N. Arivazhagan, C. Cherry, T. I, W. Macherey, P. Baljekar,
and G. Foster, “Re-translation strategies for long form, si-
multaneous, spoken language translation,” 2019.

[3] N. Arivazhagan, C. Cherry, W. Macherey, and G. Foster,
“Re-translation versus streaming for simultaneous transla-
tion,” ArXiv, vol. abs/2004.03643, 2020.

[4] F. Karamitroglou, “A proposed set of subtitling standards
in europe,” Translation Journal, vol. 2, 4 1998.

[5] A. Szarkowska and O. Gerber-Morón, “Viewers can keep
up with fast subtitles: Evidence from eye movements,” in
PloS one, 2018.

[6] M. Post, “A call for clarity in reporting BLEU scores.” As-
sociation for Computational Linguistics, 2018.

[7] E. Matusov and et al., “Evaluating machine translation
output with automatic sentence segmentation,” in Inter-
national Workshop on Spoken Language Translation, Oct.
2005.

[8] P. Koehn and et al., “Moses: Open source toolkit for statis-
tical machine translation,” ser. ACL ’07, 2007.

[9] J. Niehues and et al., “Low-latency neural speech transla-
tion,” Interspeech 2018, Sep 2018.

[10] T.-S. Nguyen and et al., “The 2017 KIT IWSLT Speech-to-
Text Systems for English and German,” December, 14-15
2017.

	Introduction
	Re-Translating Spoken Language Translation
	Stable and Unstable Segments

	Subtitler
	Timing Parameters

	Estimating Usability
	Evaluation Measures
	Character Erasure
	Translation Latency with Sentence-Alignment Catch-up

	SLT Evaluation
	Reset Rate
	Subtitling Latency
	User Evaluation

	Conclusion

