
OWL2Bench: Towards a Customizable
Benchmark for OWL 2 Reasoners

Gunjan Singh1, Ashwat Kumar1, Kanav Bhagat1,
Sumit Bhatia2, and Raghava Mutharaju1

1 Knowledgeable Computing and Reasoning Lab, IIIT-Delhi, India
{gunjans, ashwat16023, kanav16046, raghava.mutharaju}@iiitd.ac.in

2 IBM Research AI, New Delhi, India
sumitbhatia@in.ibm.com

1 Introduction

In the past decade, there has been remarkable progress towards the develop-
ment of reasoners3 that involve expressive ontology languages such as OWL
2 [3]. However, they still do not scale well on expressive language profiles (OWL
2 DL). To build better quality reasoners, developers need to find and improve
the performance bottlenecks of their existing systems [11]. A reasoner bench-
mark aids the reasoner developers to evaluate their system’s performance and
deal with the limitations. Furthermore, it paves the way for further research
to improve performance and functionality. In particular, a reasoner needs to be
evaluated from several aspects such as support for different language constructs
and their combinations, their effect on reasoning performance, ability to handle
large ontologies, and capability to handle queries that involve reasoning. Al-
though there are some existing ontology benchmarks, they are limited in scope.
LUBM [2] and UOBM [7] are based on the older version of OWL (OWL 1).
OntoBench [6] supports OWL 2 profiles but does not evaluate reasoner perfor-
mance. ORE benchmark framework4 does not consider evaluation in the context
of varying sizes of an ontology. In essence, no existing benchmark covers all the
above-mentioned aspects for reasoner evaluation. Here, we describe our ongoing
efforts towards building a customizable ontology benchmark for OWL 2 reasoners
named OWL2Bench5 (to be presented at the ISWC 2020 Resources Track) [8].
We also briefly discuss the planned future extensions to the benchmark.

2 OWL2Bench

OWL2Bench is an extension of the well known University Ontology Benchmark
(UOBM) [7]. It consists of three major components: a fixed TBox for each OWL

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
4 https://github.com/ykazakov/ore-2015-competition-framework
5 https://github.com/kracr/owl2bench

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
https://github.com/ykazakov/ore-2015-competition-framework
https://github.com/kracr/owl2bench


2 profile (EL, QL, RL, and DL), an ABox generator that can generate ABox of
varying sizes for the corresponding TBox, and a fixed set of 22 SPARQL queries
that involve reasoning. Thus, it allows users to benchmark three aspects of the
reasoners - support for different OWL 2 profiles, scalability in terms of ABox
size, and query performance. Moreover, the set of SPARQL queries also enables
benchmarking of SPARQL query engines that support OWL 2 reasoning. The
TBox for each profile was created by enriching UOBM’s university ontology
with the supported constructs. In order to generate varying size ABox, two user
inputs are required, the number of universities and the OWL 2 profile (EL, QL,
RL, or DL) of interest. The generated instance data complies with the schema
defined in the TBox of the selected profile, and the size depends on the number of
universities. For one university, by default, approximately 50,000 ABox axioms
are generated.

To demonstrate the utility of OWL2Bench, we ran our benchmark on six
reasoners, ELK [5], HermiT [1], JFact6, Konclude [10], Openllet7, and Pellet [9]
for three reasoning tasks, i.e., consistency checking, classification, and realisation.
We also evaluated two SPARQL query engines, Stardog8 and GraphDB9, on
SPARQL queries in terms of their loading time and query response time. During
our evaluation, we identified possible issues with these systems (some of which
have already been communicated with the developers) that need to be fixed and
could pave the way for further research in the development of reasoners and
query engines. The performance of the reasoners on OWL2Bench is shown in
Figure 1.

For our experiments, we set the heap space to 24 GB and time-out to 90
minutes. Most of the reasoners timed-out for even a small number of universities
(except for QL profile). Although Konclude is much faster, it requires a lot of
memory and could not perform any reasoning task after 50 universities. For the
EL profile, both Konclude and ELK performed exceptionally well in terms of
time taken, but ELK is better due to its low memory requirements. For the RL
profile, most reasoners timed-out on larger ontologies. In the case of OWL 2 DL,
Konclude, HermiT, and Pellet were able to complete the consistency checking
task only (for 1, 2, and 5 universities, respectively). However, we observed some
inconsistency in the results of Pellet. Other evaluations were time-outs. More
details about the benchmark and the results are available in the full-version of
our paper [8].

3 Proposed Extensions

When selecting a reasoner to use, there could be many considerations. One of the
approaches is to select the best possible reasoner in terms of its efficiency and
scalability. OWL2Bench can be used for this requirement. The other approach is

6 http://jfact.sourceforge.net/
7 https://github.com/Galigator/openllet
8 https://www.stardog.com/
9 http://graphdb.ontotext.com/

http://jfact.sourceforge.net/
https://github.com/Galigator/openllet
https://www.stardog.com/
http://graphdb.ontotext.com/


1510 20 50 100

20

40

60

80

(a) OWL 2 EL (RT)

1510 20 50 100

2

4

(b) OWL 2 QL (RT)

1 5 10 20 50

20

40

60

80
A

(c) OWL 2 RL (RT)

1 5 10 20 50

20

40

60

80
A

(d) OWL 2 RL (CC)

1 5 10

20

40

60

80
A

(e) OWL 2 DL (CC) No. of Universities

T
im

e
t
a
k
e
n

(
m

in
)

ELK

HermiT

Konclude

Openllet

Pellet

Fig. 1: Time taken in minutes (Y-axis) by reasoners on ontologies with varying
size represented by the number of universities (X-axis) is given here. The rea-
soning tasks are Consistency Checking (CC) and Realisation (RT). The dashed
line, parallel to X-axis represents the time-out (90 min).

to check the performance of a reasoner on a set of language constructs that could
possibly be of interest to the user. Another possibility is to check the performance
of a reasoner under a given set of constraints, for example, time-taken or memory
consumed during the reasoning process. We propose the following two extensions
that address the last two requirements.

3.1 Customizable Selection of OWL 2 Language Constructs

The idea behind this approach is inspired by OntoBench [6]. It provides a web
interface to the users to select the constructs of their choice and generates an
ontology according to the selected constructs. However, the primary purpose
of OntoBench is to test the reasoner coverage and not to evaluate the perfor-
mance and the scalability of the reasoners. We propose a customizable TBox
generator. Here, along with the choice of constructs, the user can specify the
individual count for each selected construct. Note that, instead of continuing
with OntoBench’s general approach and its naming convention for the generated
classes and properties, we propose to use our benchmark’s university ontology.
The axioms generated by OntoBench lack interconnections that are necessary
to test the efficiency of the reasoners. However, a university ontology consists
of concepts that describe a university (college, department, faculty, etc.) and
the relationships between them. Thus, the axioms in the generated ontology
would have sufficient interconnections for performance evaluation. Moreover, a
domain-specific ontology improves the readability of large ontologies.



In this approach, we first create a bucket for each OWL 2 construct. The
TBox axioms of our benchmark already cover all the major OWL 2 constructs.
We start putting these axioms into the bucket of the construct involved. For
example, axioms like Faculty v ∃worksFor.College would be put into the
bucket of existential restriction. If the user chooses existential restriction, then
axioms from this bucket would be picked. Note that, along with each axiom,
some related axioms also get generated. For example, along with Faculty v
∃worksFor.College, axioms such as Facultyv Employee, Collegev Universi-
ty, and University v Organization would also get generated. If the count ex-
ceeds the number of axioms in the bucket, then the axioms can be repeated with
a different naming convention such as Faculty 1 v ∃worksFor.College 1, and
Employee 1 v ∃worksFor.Organization 1. Furthermore, we would also con-
sider the interactions and the interplay between the axioms. It is possible that
reasoners can handle a particular set of axioms generated for a certain set of
constructors well. However, with the same set of constructors, a different set
of axioms could cause a blow up for the reasoner because these axioms result
in interactions that did not occur in the previous case. Therefore, we plan to
generate different sets of axioms (more than one ontology) for the user-selected
constructors. Since the bucket for each constructor consists of several axioms, it
is feasible to generate multiple ontologies. However, there are some design deci-
sions that still need to be made, such as, should both Faculty and Faculty 1 be
a subclass of Employee or should they be subclass of Employee and Employee 1

respectively. This needs to be investigated so that the benchmark does not gen-
erate a large number of unnecessary side axioms.

3.2 Generating Ontologies based on their Hardness

We define three levels (easy, medium, and hard) to categorize an ontology. These
are defined based on reasoner performance metrics such as the time taken and
the memory consumed while reasoning over an ontology. The first step is to
determine the distinguishing features of an ontology that can help in defining
the three levels. For this purpose, we plan to make use of existing work on
determining different aspects of the size and structural characteristics of an
ontology that affect the reasoner’s performance [4]. Several ontology features
such as the number of named entities (classes, properties), class unions, depth of
class and property hierarchy, the ratio of object and data properties, etc., have
been studied for their impact on the reasoning performance. A large number of
ontologies from different repositories (ORE dataset10, AberOWL11) would be
run on different OWL 2 reasoners for the three reasoning tasks: classification,
consistency checking, and realisation. The results obtained in terms of the time
taken and the memory consumed, serve as the basis to cluster these ontologies
under the three levels, i.e., easy, medium, and hard. Each cluster would have a
different range of values for the ontology features.

10 http://doi.org/10.5281/zenodo.18578
11 http://aber-owl.net/ontology/



The OWL2Bench users would be provided with an option to choose any one
of the hardness levels, along with the total number of axioms in the ontology.
Based on these inputs, and the values of ontology features associated with that
hardness level, OWL2Bench automatically generates an ontology that can be
used to benchmark the OWL 2 reasoners. The approach used would be similar
to Section 3.1. The only difference is that instead of directly considering the type
and the number of each construct from the user as inputs, we try to balance the
axioms in such a way that the values of the features in the generated ontology
comply with the ranges specified in that particular hardness level.

References

1. Glimm, B., Horrocks, I., Motik, B., S., G., Wang, Z.: HermiT: An OWL 2 Reasoner.
Journal of Automated Reasoning. 53(3), 245–269 (2014)

2. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics. 3(2-3), 158–182 (2005)

3. Hitzler, P., Krötzsch, M., Parsia, B., F. Patel-Schneider, P., Rudolph, S.: OWL 2
Web Ontology Language Profiles (Second Edition) (2012), https://www.w3.org/
TR/owl2-primer/

4. Kang, Y.B., Krishnaswamy, S., Sawangphol, W., Gao, L., Li, Y.F.: Understanding
and improving ontology reasoning efficiency through learning and ranking. Infor-
mation Systems 87, 101412 (2020)

5. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The Incredible ELK. Journal of Auto-
mated Reasoning. 53(1), 1–61 (2014)

6. Link, V., Lohmann, S., F., H.: OntoBench: Generating Custom OWL 2 Benchmark
Ontologies. In: International Semantic Web Conference. pp. 122–130 (2016)

7. Ma, L., Yang, Y., Qiu, Z .and Xie, G., Pan, Y., Liu, S.: Towards a Complete
OWL Ontology Benchmark. In: The Semantic Web: Research and Applications.
pp. 125–139. Springer Berlin Heidelberg (2006)

8. Singh, G., Bhatia, S., Mutharaju, R.: OWL2Bench: A Benchmark for OWL 2
Reasoners. In: The Semantic Web - ISWC 2020 - 19th International Semantic Web
Conference, ISWC 2020. Lecture Notes in Computer Science, Springer (2020)

9. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics. 5(2), 51–53 (2007)

10. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. Journal of
Web Semantics. 27, 78–85 (2014)

11. Yadav, R.K., Singh, G., Mutharaju, R., Bhatia, S.: Towards a Concurrent Ap-
proximate Description Logic Reasoner. In: Proceedings of the ISWC 2019 Satellite
Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas). CEUR Work-
shop Proceedings, vol. 2456, pp. 145–148 (2019)

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/

	OWL2Bench: Towards a Customizable Benchmark for OWL 2 Reasoners

