
Generating Grammars from lemon lexica for
Questions Answering over Linked Data: a

Preliminary Analysis

Viktoria Benz1, Philipp Cimiano1, and Mohammad Fazleh Elahi1 Basil Ell1

1 Semantic Computing Group, CITEC, Universität Bielefeld, Inspiration 1, 33619
Bielefeld, Germany

2 {vbenz,cimiano,melahi,bell}@techfak.uni-bielefeld.de

Abstract. Most approaches to question answering over linked data
(QALD) frame the task as a machine learning problem, consisting in
learning a mapping from natural language questions into SPARQL queries
by parametrizing a model from training data given in the form of pairs
of natural language (NL) question and SPARQL query. In this prelimi-
nary work we present an alternative approach to developing a QA sys-
tem using machine learning that relies on the automatic generation
of a QA grammar from a lemon lexicon. This model-based approach
comes with a number of advantages compared to a machine learning
approach. First, our approach gives maximum control over the QA in-
terface to the developer of the system as every entry added to the
lexicon increases the coverage of the grammar and thus of the QA
system in a predictable way. This is in contrast to machine learning
approaches where the impact of the addition of a single training ex-
ample is difficult to predict. A further advantage of our approach is
that the QA system operates on the basis of a symbolic grammar that
can be used to provide guidance and auto-completion functionality to
users. Our system is indeed intended to be used in the context of an
auto-completion interface that allows users to ask only questions that
the grammar can cover. We present very preliminary results showing
that a large percentage of the questions of the training set of QALD-7
can be rephrased in terms of questions that our grammar can parse.
We show that with a hand-crafted lexicon, we can in principle get very
high micro-F1 scores of 62.5% on the training data of QALD-7 when
questions are manually rephrased to fit our grammar. Although these
preliminary results do not constitute a proper evaluation of our ap-
proach, they hint at the fact that an approach as we propose seems
feasible.

Keywords: grammar generation, question answering over linked data,
lemon

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

1 Introduction

Most approaches to question answering over linked data (QALD) follow a
machine learning (ML) approach where a QA system is learned by parametriz-
ing a model on the basis of training data given in the form of pairs of NL
question and SPARQL query. In this preliminary work, we explore an alter-
native paradigm that consists in generating a lexicalized grammar that can
be used to parse questions into SPARQL. The method relies on the availabil-
ity of a lemon lexicon [18] for the given ontology / knowledge graph that is
queried. In our view this does not represent a limitation as the lexicon can be
also used in other tasks, e.g. to verbalize the ontology. Further, the approach
of developing such lexica can be scaled up by a collaborative approach [17].
An advantage of our proposed paradigm is that it provides a level of control
over the QA interface that ML methods can not provide. In fact, for ML sys-
tems in general, it is unclear what the impact of adding one example is in
terms of behaviour of the system. Generally, several examples of the same
or similar type need to be provided for the ML system to learn a pattern,
leading to high redundancy in training data. In contrast, in our model-based
approach, several lexicalized grammar rules are generated automatically
for each entry in the lemon lexicon and the impact of each lexicon entry on
the behaviour of the QA system can be clearly predicted and monitored. A
further limitation of machine learning approaches is that they can not be di-
rectly used in a guided interface that offers auto-completion features as this
requires access to a grammar or a correspondingly powerful look-ahead. Fi-
nally, adopting a QA system to different domains requires the creation of
training datasets with hundreds if not thousands of questions to train a sys-
tem from scratch for the new domain or ontology. We shift this effort to the
creation of a lexicon that can represent a cost-effective approach compared
to creating large amount of redundant examples the impact of which is not
clear a priori.
For these reasons, we have developed an approach that can automatically
generate a lexicalized grammar from a lemon lexicon. The approach is in-
spired by earlier work on generating LTAG grammars [21]. Here we revisit
this approach in the context of QALD interfaces and provide a preliminary
evaluation of our approach that shows that, if a corresponding lexicon is
available, our approach can reach micro F-1 values of 62.5% on the English
dataset of QALD-73 [22], provided that queries are rephrased with our gram-
mar.
This paper is structured as follows: in the next Section we describe our ap-
proach and in particular how regular lexicalized grammars are generated
from lemon lexica. These grammars can be used to parse questions and map
them into corresponding SPARQL queries. We provide a preliminary feasi-

3 http://qald.aksw.org/

bility study for our approach by evaluating the approach on QALD-7 training
data. We manually rephrase questions in QALD-7 so that they can be anal-
ysed with our grammar. While the rephrasing might be seen as a critical
limitation, we regard this rephrasing as legitimate given that we see the
application of our grammar-based approach in the context of a guided NL
interface with auto-completion functionality such as proposed by Rico et al.
[19]. So our main question is not whether people would be able to ask the
questions from QALD-7 as they are given, but whether they would be able
to ask a question that satisfies their information need using our grammar.

2 Generating QA grammars from lemon lexica

Our approach automatically generates lexicalized regular grammars from
lexical entries in a lemon lexicon and is inspired in previous work that showed
how to generate LTAG grammars from a specification of the ontology-lexicon
interface [21]. The grammar generation approach works for four basic types
of entries corresponding to:

– relational nouns subcategorizing a prepositional phrase (NounPPFrame
in Lexinfo [7]), e.g. ‘capital (of)’

– transitive verbs (TransitiveFrame), e.g. (to) ‘direct’
– intransitive verbs subcategorizing a prepositional phrase, (IntransitivePPFrame),

e.g. ‘flow through’
– adjectives (AdjectiveAttributiveFrame), e.g. ‘spanish’

We describe the grammar entries generated for each of these four types in
the following subsections

2.1 NounPPFrame

Consider the lemon lexical entry in Figure 1 for the relational noun ‘cap-
ital’ (of). The entry states that the canonical written form of the entry is
“capital”. It states that the entry has a NounPPFrame as syntactic behaviour
that corresponds to a copulative construction ‘X is the capital of Y’ with two
arguments, where copulativeArg corresponds to the copula subject X and
the prepositionalAdjunct corresponds to the prepositional object Y. The
semantics of the relational noun is captured with respect to the property
http://dbpedia.org/ontology/capital, where the subject of the property
is realized by the prepositionalAdjunct and the object of the property is
realized by the copulativeArg. This essentially captures the fact that the
meaning of ‘Berlin is the capital of Germany’ is expressed by the triple

<Germany> <http://dbpedia.org/ontology/capital> <Berlin>

1 :lexicon_en a lemon:Lexicon ;
2 lemon:language "en" ;
3 lemon:entry :capital_of ;
4 lemon:entry :of .
5
6 :capital_of a lemon:LexicalEntry ;
7 lexinfo:partOfSpeech lexinfo:noun ;
8 lemon:canonicalForm :capital_form ;
9 lemon:synBehavior :capital_of_nounpp ;

10 lemon:sense :capital_sense_ontomap .
11
12 :capital_form a lemon:Form ;
13 lemon:writtenRep "capital"@en .
14
15 :capital_of_nounpp a lexinfo:NounPPFrame ;
16 lexinfo:copulativeArg :arg1 ;
17 lexinfo:prepositionalAdjunct :arg2 .
18
19 :capital_sense_ontomap a lemon:OntoMap, lemon:LexicalSense ;
20 lemon:ontoMapping :capital_sense_ontomap ;
21 lemon:reference <http://dbpedia.org/ontology/capital> ;
22 lemon:subjOfProp :arg2 ;
23 lemon:objOfProp :arg1 ;
24 lemon:condition :capital_condition .
25
26 :capital_condition a lemon:condition ;
27 lemon:propertyDomain <http://dbpedia.org/ontology/Country> ;
28 lemon:propertyRange <http://dbpedia.org/ontology/City> .
29
30 :arg2 lemon:marker :of .
31
32 :of a lemon:SynRoleMarker ;
33 lemon:canonicalForm [lemon:writtenRep "of"@en] ;
34 lexinfo:partOfSpeech lexinfo:preposition .

Fig.1. Lemon entry for the relational noun ‘capital (of)’

The entry also captures that the default domain of the property is http:
//dbpedia.org/ontology/Country in the context of the lexical entry (other
lexical entries might induce other defaults for the domain/range). Corre-
spondingly, the default range of the property is http://dbpedia.org/on
tology/City. From this lexical entry, two grammar rules are automatically
generated in our approach.

The 1st grammar rule (Figure 2) is a rule for the English language that is
of type “SENTENCE”, that is, it ‘generates’ full sentences (in our case a full
question). The rule is generated from an entry following the NounPPFrame.
The grammar entry is lexicalized as it refers to specific lexical elements.
It ‘generates’ the following four proto-questions: 1) ‘What is the capital of
X?’, 2) ‘What was the capital of X?’, 3) ‘Which city is the capital of X?’, 4)
‘Which city was the capital of X?’. These are proto-questions in the sense
that some elements need to be inserted at the X position to be a complete
sentence or question. Two different types of elements can be inserted into
the X position. On the one hand, we can insert labels denoting a particular
country, e.g. ‘Germany’. This is referred to as $x in the grammar entry and
any label of a country can be inserted into the position. On the other hand,
a complete noun phrase (NP) denoting a country can be inserted, such as
‘country where German is spoken’, ‘country were Einstein was born’, ‘coun-
try governed by Angela Merkel’, etc. $x can be regarded as a preterminal
symbol and COUNTRY_NP as a non-terminal symbol. The grammar entry de-

1 {
2 "id": "107",
3 "language": "EN",
4 "type": "SENTENCE",
5 "bindingType": "COUNTRY",
6 "returnType": "CITY",
7 "frameType": "NPP",
8 "sentences": [
9 "What is the capital of ($x | COUNTRY_NP)?",

10 "What was the capital of ($x | COUNTRY_NP)?",
11 "Which city is the capital of ($x | COUNTRY_NP)?",
12 "Which city was the capital of ($x | COUNTRY_NP)?"
13],
14 "queryType": "SELECT",
15 "sparqlQuery": "(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/capital> ?objOfProp))",
16 "sentenceToSparqlParameterMapping": {
17 "$x": "subjOfProp"
18 },
19 "returnVariable": "objOfProp",
20 "sentenceBindings": {
21 "bindingVariableName": "$x",
22 "bindingList": [{
23 "label": "Democratic Republic of Afghanistan",
24 "uri": "http://dbpedia.org/resource/Democratic_Republic_of_Afghanistan"
25 }],...
26 },
27 "combination": false
28 }

Fig.2. 1st grammar rule automatically generated from the entry in Figure 1

fines the semantics of the questions by way of basic graph patterns (bgps),
in this case the pattern:

(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/capital> ?objOfProp))

In the entry it is further specified that the fillers of the placeholder $x
are to be substituted into the subjOfProp position, and the objOfProp rep-
resents the return variable of the query. The “sentenceBindings” element
lists all the possible entities that $x can be bound to. This binding list is
only abbreviated in the Figure and is obtained by querying the correspond-
ing knowledge graph. The flag “combination: false” indicates that this is a
grammar rule with the start symbol at the left side that can not be combined
with another rule.

The 2nd grammar rule generated for the lemon entry in Figure 1 is given
in Figure 3. This rule generates the noun phrase ‘the capital of $x’ where
any country can be inserted into the $x position. The “returnType” is CITY,
meaning that this noun phrase can be inserted into any other rule requiring
a CITY_NP. The rest of the grammar rule is similar to the case above.

2.2 Transitive Verbs

The second example entry we discuss is the entry given for the verb (to)
‘direct’ given in Figure 4. The lexical entry states that the canonical form
has the written representation ‘direct’. The second person singular written
form is ‘directs’, and the (simple) past form is ’directed’. The semantics of
the verb (to) ‘direct’ is expressed by the property http://dbpedia.org/on

1 {
2 "id": "108",
3 "language": "EN",
4 "type": "NP",
5 "bindingType": "COUNTRY",
6 "returnType": "CITY",
7 "frameType": "NPP",
8 "sentences": [
9 "the capital of $x"

10],
11 "queryType": "SELECT",
12 "sparqlQuery": "(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/

capital> ?objOfProp))\n",
13 "sentenceToSparqlParameterMapping": {
14 "$x": "subjOfProp"
15 },
16 "returnVariable": "objOfProp",
17 "sentenceBindings": {
18 "bindingVariableName": "$x",
19 "bindingList": [{
20 "label": "Democratic Republic of Afghanistan",
21 "uri": "http://dbpedia.org/resource/Democratic_Republic_of_Afghanistan"
22 }]
23 },
24 "combination": false
25 }

Fig.3. 2nd grammar rule automatically generated from the entry in Figure 1

tology/director. Thus, the meaning of ‘Quentin Tarantino directed Pulp
Fiction’ can be expressed by the triple:

<PF> <http://dbpedia.org/ontology/director> <QT>

The entry specifies that the subject of the property is realized by the direct
object of the verb ‘direct’ while the object of the property is realized by the
syntactic subject of the verb ‘direct’. The rule in Figure 5 is automatically
generated for the above lemon entry. This rule generates the following four
proto-questions: 1) ‘Which person directed X?’, 2) ‘Which person directs X?’,
3) ‘Who directed X?’, 4) ‘Who directs X?’. At the position X, either labels
of individuals of type Film can be inserted or noun phrases denoting films
(FILM_NP), e.g. ‘films starring Bruce Willis’, ‘films produced before 1999’
etc.

2.3 Intransitive Verbs with a prepositional adjunct

As an example of an intransitive verb with a prepositional adjunct we discuss
the verb (to) ‘flow through’. The corresponding lemon entry is given in Fig-
ure 6. According to the lemon entry, the verb has a subject flow_subj and
a prepositional adjunct flow_pobj. The semantics of ‘X flows through Y ’ is
captured by the property http://dbpedia.org/ontology/city, where the
subject of the property is realized by the flow_subj, and the object of the
property is realized by flow_pobj. The entry states that the default domain

1 :lexicon_en a lemon:Lexicon ;
2 lemon:language "en" ;
3 lemon:entry :to_direct .
4
5 :to_direct a lemon:LexicalEntry ;
6 lexinfo:partOfSpeech lexinfo:verb ;
7 lemon:canonicalForm :form_direct ;
8 lemon:otherForm :form_directs ;
9 lemon:otherForm :form_directed ;

10 lemon:synBehavior :direct_frame_transitive ;
11 lemon:sense :direct_ontomap .
12
13 :form_direct a lemon:Form ;
14 lemon:writtenRep "direct"@en ;
15 lexinfo:verbFormMood lexinfo:infinitive .
16
17 :form_directs a lemon:Form ;
18 lemon:writtenRep "directs"@en ;
19 lexinfo:person lexinfo:thirdPerson .
20
21 :form_directed a lemon:Form ;
22 lemon:writtenRep "directed"@en ;
23 lexinfo:tense lexinfo:past .
24
25 :direct_frame_transitive a lexinfo:TransitiveFrame ;
26 lexinfo:subject :direct_subj ;
27 lexinfo:directObject :direct_obj .
28
29 :direct_ontomap a lemon:OntoMap, lemon:LexicalSense ;
30 lemon:ontoMapping :direct_ontomap ;
31 lemon:reference <http://dbpedia.org/ontology/director> ;
32 lemon:subjOfProp :direct_obj ;
33 lemon:objOfProp :direct_subj ;
34 lemon:condition :direct_condition .
35
36 :direct_condition a lemon:condition ;
37 lemon:propertyDomain <http://dbpedia.org/ontology/Film> ;
38 lemon:propertyRange <http://dbpedia.org/ontology/Person> .

Fig.4. Lemon entry for the transitive verb (to) ‘direct’

of the property is http://dbpedia.org/ontology/River and the default
range of the property is http://dbpedia.org/ontology/City.

Two grammar rules are generated from the lemon entry given in Figure
6. We do not discuss the grammar rules in detail as the rules follow the
same principles as those described already. The first grammar rule is given
in Figure 7 and generates sentences such as 1) ‘What flows through X?’, 2)
‘What river flows through X?’, 3) ‘Which rivers flow through X?’. The second
rule is given in Figure 7 and generates the following sentences: 1) ‘What
does X flow through?’, 2) ‘Which cities does X flow through?’, 3) ‘Which city
does X flow through?’

2.4 Adjectives

Adjectives have a slightly different behaviour in terms of grammar rules gen-
erated compared to the entries discussed before. Let’s consider the example
entry for the adjective ‘spanish’ in Figure 8.

The entry states that the adjective can be used in an attributive frame
(e.g. ‘spanish movie’) as well as in a predicative frame (e.g. ‘the movie is

1 {
2 "id": "141",
3 "language": "EN",
4 "type": "SENTENCE",
5 "bindingType": "FILM",
6 "returnType": "PERSON",
7 "frameType": "VP",
8 "sentences": [
9 "Which person directed ($x | FILM_NP)?",

10 "Which person directs ($x | FILM_NP)?",
11 "Who directed ($x | FILM_NP)?",
12 "Who directs ($x | FILM_NP)?"
13],
14 "queryType": "SELECT",
15 "sparqlQuery": "(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/director> ?

objOfProp))\n",
16 "sentenceToSparqlParameterMapping": {
17 "$x": "subjOfProp"
18 },
19 "returnVariable": "objOfProp",
20 "sentenceBindings": {
21 "bindingVariableName": "$x",
22 "bindingList": [{
23 "label": "12 Monkeys",
24 "uri": "http://dbpedia.org/resource/12_Monkeys"
25 }]
26 },
27 "combination": false
28 }

Fig.5. Grammar rule automatically generated from the entry in Figure 4

spanish’). The entry states that the semantics of the adjective ‘spanish’ can
be expressed through a restriction on property http://dbpedia.org/onto
logy/country for the value http://dbpedia.org/resource/Spain. From
this entry, two grammar rules are generated for each class in the ontology
that has instances that are related to http://dbpedia.org/resource/Spain
via the property http://dbpedia.org/ontology/country. In order to
determine these classes, the following query is executed over the knowledge
graph:

SELECT ?y (count(?y) as ?f) ?label WHERE {
?x <http://dbpedia.org/ontology/country>
<http://dbpedia.org/resource/Spain> ;
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
?y . ?y rdfs:label ?label . FILTER (lang(?label)="en") .}
GROUP BY ?y ?label having (count(?y) > 9) order by desc(?f)

We thus consider only classes that have at least nine instances related to
http://dbpedia.org/resource/Spain via the property http://dbpedia.
org/ontology/country. The class http://dbpedia.org/ontology/movie
is one of the classes that is returned by the above query. We generate two
rules from the adjective lexical entry for ‘Spanish’ for the class http://db
pedia.org/ontology/movie. The first rule is given in Figure 9 and gen-
erates the following full-fledged questions: 1) ‘Which are Spanish movies?’,
‘Which is a Spanish movie?’, ‘Which was a Spanish movie?’, ‘Which were

1 :lexicon_en a lemon:Lexicon ;
2 lemon:language "en" ;
3 lemon:entry :to_flow ;
4 lemon:entry :through .
5
6 :to_flow a lemon:LexicalEntry ;
7 lexinfo:partOfSpeech lexinfo:verb ;
8 lemon:canonicalForm :form_flow ;
9 lemon:otherForm :form_flows ;

10 lemon:otherForm :form_flow_plural ;
11 lemon:synBehavior :flow_frame ;
12 lemon:sense :flow_sense1 .
13
14 :form_flow a lemon:Form ;
15 lemon:writtenRep "flow"@en ;
16 lexinfo:verbFormMood lexinfo:infinitive .
17
18 :form_flows a lemon:Form ;
19 lemon:writtenRep "flows"@en ;
20 lexinfo:number lexinfo:singular ;
21 lexinfo:person lexinfo:thirdPerson ;
22 lexinfo:tense lexinfo:present .
23
24 :form_flow_plural a lemon:Form ;
25 lemon:writtenRep "flow"@en ;
26 lexinfo:number lexinfo:plural ;
27 lexinfo:person lexinfo:thirdPerson ;
28 lexinfo:tense lexinfo:present .
29
30 :flow_frame a lexinfo:IntransitivePPFrame ;
31 lexinfo:subject :flow_subj ;
32 lexinfo:prepositionalAdjunct :flow_pobj .
33
34 :flow_sense1 a lemon:OntoMap, lemon:LexicalSense ;
35 lemon:ontoMapping :flow_sense1 ;
36 lemon:reference <http://dbpedia.org/ontology/city> ;
37 lemon:subjOfProp :flow_subj ;
38 lemon:objOfProp :flow_pobj ;
39 lemon:condition :flow_condition_city .
40
41 :flow_condition_city a lemon:condition ;
42 lemon:propertyDomain <http://dbpedia.org/ontology/River> ;
43 lemon:propertyRange <http://dbpedia.org/ontology/City> .
44
45 :flow_obj lemon:marker :through .
46
47 :through a lemon:SynRoleMarker ;
48 lemon:canonicalForm [lemon:writtenRep "through"@en] ;
49 lexinfo:partOfSpeech lexinfo:preposition .

Fig.6. Lemon entry for the intransitive verb (to) flow through

Spanish movies?’. A second rule not further described here would generate
NP phrase such as ‘a spanish movie’. The code for our approach in addition
to all relevant ressources is available here https://github.com/fazleh201
0/question-grammar-generator. A demo of the system can be found here:
https://scdemo.techfak.uni-bielefeld.de/question-answering.

3 Preliminary Results

We have applied our approach to the training dataset of QALD-74 and cre-
ated a lexicon to cover the content words in these entries. This yielded a
lexicon with a distribution of frame types as given in Table 1. From this lex-
icon, we automatically generated 5269 grammar rules using the approach
described in Section 2.

4 https://project-hobbit.eu/challenges/qald2017/

1 {
2 "id": "536",
3 "language": "EN",
4 "type": "SENTENCE",
5 "bindingType": "CITY",
6 "returnType": "RIVER",
7 "frameType": "IPP",
8 "sentences": [
9 "What flows through ($x | CITY_NP)?",

10 "Which river flows through ($x | CITY_NP)?",
11 "Which rivers flow through ($x | CITY_NP)?"
12],
13 "queryType": "SELECT",
14 "sparqlQuery": "(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/city> ?objOfProp))

\n",
15 "sentenceToSparqlParameterMapping": {
16 "$x": "objOfProp"
17 },
18 "returnVariable": "subjOfProp",
19 "sentenceBindings": {
20 "bindingVariableName": "$x",
21 "bindingList": [{
22 "label": "Gaza City",
23 "uri": "http://dbpedia.org/resource/Gaza_City"
24 }]
25 },
26 "combination": false
27 }

1 {
2 "id": "537",
3 "language": "EN",
4 "type": "SENTENCE",
5 "bindingType": "RIVER",
6 "returnType": "CITY",
7 "frameType": "IPP",
8 "sentences": [
9 "What does $x flow through?",

10 "Which cities does $x flow through?",
11 "Which city does $x flow through?"
12],
13 "queryType": "SELECT",
14 "sparqlQuery": "(bgp (triple ?subjOfProp <http://dbpedia.org/ontology/city> ?objOfProp))

\n",
15 "sentenceToSparqlParameterMapping": {
16 "$x": "subjOfProp"
17 },
18 "returnVariable": "objOfProp",
19 "sentenceBindings": {
20 "bindingVariableName": "$x",
21 "bindingList": [{
22 "label": "Cagayan River (Mindanao)",
23 "uri": "http://dbpedia.org/resource/Cagayan_River_(Mindanao)"
24 }]
25 },
26 "combination": false
27 }

Fig.7. 1st and 2nd grammar rules automatically generated for the entry in Figure 6

1 :lexicon_en a lemon:Lexicon ;
2 lemon:language "en" ;
3 lemon:entry :spanish ;
4 lemon:entry :spanish_res .
5
6 :spanish a lemon:LexicalEntry ;
7 lexinfo:partOfSpeech lexinfo:adjective ;
8 lemon:canonicalForm :spanish_lemma ;
9 lemon:synBehavior :spanish_attrFrame, :spanish_predFrame ;

10 lemon:sense :spanish_sense .
11
12 :spanish_lemma lemon:writtenRep "Spanish"@en .
13
14 :spanish_predFrame a lexinfo:AdjectivePredicateFrame ;
15 lexinfo:copulativeSubject :spanish_PredSynArg .
16
17 :spanish_attrFrame a lexinfo:AdjectiveAttributiveFrame ;
18 lexinfo:attributiveArg :spanish_AttrSynArg .
19
20 :spanish_sense a lemon:LexicalSense ;
21 lemon:reference :spanish_res ;
22 lemon:isA :spanish_AttrSynArg, :spanish_PredSynArg .
23
24 :spanish_res a owl:Restriction ;
25 owl:onProperty <http://dbpedia.org/ontology/country> ;
26 owl:hasValue <http://dbpedia.org/resource/Spain> .

Fig.8. Lemon entry for the adjective ‘spanish’

Frame type No. of entries

NounPPFrame 59
TransitiveFrame 16
AdjectiveAttributiveFrame 5
AdjectivePPFrame 15
IntransitivePPFrame 4

Total 100

Table 1. Frequencies of entries with a certain frame type

For the questions in the training dataset of QALD-7, we manually rephrased
the questions that did not follow our grammar into the closest grammar
rule capturing the same meaning, if possible. 96 questions were reformu-
lated in total, this corresponds to a percentage of 44.65% rephrased queries.
While only 30.25% of questions in original form could be transformed into
a SPARQL query yielding at least one answer, with the reformulated ques-
tion this number raised to 54.88%. In order to use the grammar to parse
NL queries, we automatically translated our grammar rules into regular ex-
pressions that parse the question and substitute the variables in the basic
graph patterns by the corresponding elements matched by the regular ex-
pression. This is accomplished by looking up the values matched in the NL
question with the labels in the binding lists, replacing the correct URI into
the corresponding variable of the SPARQL query composed out of the ba-
sic graph patterns. Disambiguation happens in this case implicitly as the
URIs selected are only those that ‘fit’ into the corresponding SPARQL tem-

1 {
2 "id": "152",
3 "language": "EN",
4 "type": "SENTENCE",
5 "bindingType": "THING",
6 "returnType": "FILM",
7 "frameType": "AA",
8 "sentences": [
9 "Which are Spanish movies?",

10 "Which is a Spanish movie?",
11 "Which was a Spanish movie?",
12 "Which were Spanish movies?"
13],
14 "queryType": "SELECT",
15 "sparqlQuery": "(bgp\n (triple ?isA <http://dbpedia.org/ontology/country> <http://dbpedia.org/

resource/Spain>)\n (triple ?isA <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://
dbpedia.org/ontology/Film>))",

16 "sentenceToSparqlParameterMapping": null,
17 "returnVariable": "isA",
18 "sentenceBindings": {
19 "bindingVariableName": "NONE",
20 "bindingList": []
21 },
22 "combination": false
23 }

Fig.9. Grammar rule automatically generated for the lexical entry in Figure 8

Original questions

including ASK without ASK

Micro Precision 58.49% 58.49%

Micro Recall 4.49% 4.68%

Micro F-measure 8.33% 8.67%

Macro Precision 8.93% 10.32%

Macro Recall 9.30% 10.75%

Macro F-measure 8.99% 10.39%

Rephrased questions

including ASK without ASK

90.41% 90.41%

47.76% 49.85%

62.50% 64.26%

41.02% 47.42%

42.33% 48.92%

41.40% 47.85%

Table 2. Results for original and rephrased questions from QALD-7

plate and are mentioned in the binding list. When parsing the QALD-7 train-
ing data queries using our grammar and instantiating the corresponding
SPARQL query, we get the results in Table 2. The table shows the results
of our grammar-based parsing for the original questions in comparison to
the rephrased questions, both for the cases including and excluding the ASK
questions. We see that the results are higher for the case where the ASK
questions are not included as our approach does not support them so far.
We see that with the rephrased queries we get overall a decent result of a
micro F-Measure of 62.5%. Restricting the evaluation only to the SELECT
queries without ASK queries, which our grammar can currently not cover,
we get a micro F-measure of 64.26%.5.

5 The table with all rephrasings for each question can be found here:
https://docs.google.com/spreadsheets/d/1Jjt_ZlDD1zbBXs3Mhdf8kIJCAuv2H
9EMlJKSqyjKabU/edit#gid=2076204763

4 Related Work

Most work on question answering over linked data currently builds on sys-
tems that use machine learning to learn a model to map natural language
questions into SPARQL queries (see [6] for an overview of deep learning
methods applied to QALD and [1] for an overview of recent work on natural
language interfaces to databases). Examples of recent systems that use ma-
chine learning techniques are systems using probabilistic graphical models
[10], Bi-directional LSTMs [11], Tree-LSTMs [2] and more recently trans-
formers [15] as well as neural machine translation models [23]. The draw-
back of such systems is that they can only be used for knowledge graphs or
ontologies for which training data is available, limiting the applicability of
such systems in the long tail.

Besides systems using machine learning techniques, there are rule-based
systems that rely on a set of rules to map NL questions into a representation
that can be either directly evaluated over the knowledge graph or rely on
graph exploration to map the representation of the NL question into a full-
fledged SPARQL query. An early system relying on rules to map dependency
parse trees of questions into SPARQL queries is Aqualog [14] and its succes-
sor Poweraqua [13]. For this, Aqualog and Poweraqua rely on a number of
similarity metrics to match the elements in the question to elements in the
knowledge graph and/or RDF data. WDAqua [8] is a system that does not
rely on syntactic analysis, but leverages the graph to induce connections
between the entities and words mentioned in an NL question, construct-
ing different hypothesis for SPARQL queries and ranking them according
to a set of features. If training data is available, a learned linear combina-
tion of the features can be used for ranking. Further, there have been a
number of systems that rely on pre-refined templates [20] or patterns [5]
to map queries into a SPARQL query. The above mentioned systems includ-
ing WDAqua, Aqualog/PowerAqua and Qakis are systems that in principle
do not require training data to adapt the system to a different domain, as
the interpretation of the question is guided by the underlying knowledge
graph. We have proposed a different paradigm to the above mentioned sys-
tems that rely on the generation of a lexicalized question grammar from a
lemon lexicon that can be used both to generate and parse questions into
SPARQL queries. Our approach has the benefit that the grammars can be
used in a guided QA interface, supporting a user in selecting a question
that approximates his/her information need the best. Further, our approach
has the advantage of supporting the portability across domains without hav-
ing to provide training data, albeit requiring the creation of a lemon lexi-
con if not available. The basic idea of generating lexicalized grammars from
ontology lexica goes back to our earlier work on generating LTAG gram-
mars from ontology lexica [21]. While we sketched the approach in earlier
work, we only worked on a very restricted domain (GEOBASE) and did not

provide the empirical proof that the approach is feasible. In this paper we
have revisited the approach in the context of the lemon model and empiri-
cally shown on the QALD-7 dataset that our grammar, given the appropriate
rephrasings, has a reasonable recall and precision. Our work is related to
approaches to question answering over linked data building on controlled
languages. The work of Ferré [9], for example, has proposed a controlled
language approach to translating questions into full SPARQL 1.1, supporting
all the relevant SPARQL features including joins, union, optionals, negation,
quantification, aggregation/grouping, etc. However, the language proposed
by Ferré, SQUALL, is not a natural language, but an artificial language us-
ing RDF elements including URIs. In contrast, our goal has been to propose
an approach in which users can formulate their queries in natural language
without knowing anything about the underlying data model or graph. Other
natural language interfaces based on controlled natural language are based
on finite-state automatons that guide a user in composing a question [16,
12]. In terms of guided interfaces to question answering over linked data,
different interfaces have been proposed. In our own work, we presented two
interactive guided interfaces that rely on the automatic generation of ques-
tions [4, 19]. However, the mechanisms for generating the questions were
quite adhoc. In this paper we have presented a grammar formalism that is
declarative and allows thus to share the grammar as an important asset.
Further, the grammar supports some level of compositionality in that more
complex NPs can be nested into questions. Other interactive interfaces to
RDF data have been proposed as well [16, 12, 24, 3].

5 Conclusion and Future Work

In this paper we have presented an approach by which question answer-
ing grammars can be automatically generated from lemon lexica. We have
proposed a specific grammar formalism that has been developed to provide
a basic level of composition. We have presented preliminary results on the
QALD-7 English training dataset showing that our approach is feasible and
provides very good results provided that questions are rephrased with our
grammar and a corresponding lemon lexicon is available. While the need
to rephrase the questions can be seen as a limiting bottleneck, in the con-
text of a guided question answering interface it is possible to guide users
to formulate questions following the rules of the grammar. In this scenario
our results look promising. The advantage of our approach is that, being
model-based, the governance and control over the lifecycle of the QA sys-
tem is more transparent, as the developer can predict the impact of adding
a further lexical entry to the lemon lexicon. This is a significant advantage
over machine learning based systems where the impact of adding a further
example can not always be predicted. Further, many redundant examples

with the same content words might be needed for the machine learning sys-
tem to learn a pattern. Our approach can be straightforwardly adapted to
different ontologies and knowledge graphs for which no training datasets
are available, an important advantage compared to ML-based approaches.

In the future, we will adapt our system to other languages and will de-
velop approaches that can scale-up the acquisition of a lemon lexicon by
semi-automatic means. We will also evaluate our system on other datasets
including more recent versions of QALD as well as LC-QuAD 2.0.

Acknowledgements: This work has been funded by the European Commis-
sion under grant 825182 (Prêt-à-LLOD) as well as by the project ‘Unbiased
Bots That Build Bridges’ (U3B), funded by VolkswagenStiftung.

References

1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural
language interfaces for databases. VLDB Journal 28, 793–819 (2019)

2. Athreya, R.G., Bansal, S., Ngomo, A.N., Usbeck, R.: Template-based question
answering using recursive neural networks. CoRR abs/2004.13843 (2020)

3. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying ontologies: A con-
trolled english interface for end-users. In: Proc. of the 4th International Semantic
Web Conference (ISWC). pp. 112–126 (2005)

4. Biermann, L., Walter, S., Cimiano, P.: A guided template-based question answer-
ing system over knowledge graphs. In: Proc. of the 21st International Conference
on Knowledge Engineering and Knowledge Management (EKAW) (2018)

5. Cabrio, E., Cojan, J., Gandon, F., Hallili, A.: Querying multilingual dbpedia with
qakis. In: Proc. of the 10th Extended Semantic Web Conference (ESWC), Satel-
lite Events, Revised Selected Papers. vol. 7955, pp. 194–198 (2013)

6. Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fis-
cher, A.: Introduction to neural network based approaches for question answer-
ing over knowledge graphs. CoRR abs/1907.09361 (2019)

7. Cimiano, P., Buitelaar, P., McCrae, J.P., Sintek, M.: Lexinfo: A declarative model
for the lexicon-ontology interface. J. Web Semant. 9(1), 29–51 (2011)

8. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering
system over the semantic web. Semantic Web 11(3), 421–439 (2020)

9. Ferré, S.: SQUALL: A controlled natural language as expressive as SPARQL 1.1.
In: Proc. of 18th International Conference on Applications of Natural Language
to Information Systems (NLDB) (2013)

10. Hakimov, S., Jebbara, S., Cimiano, P.: AMUSE: multilingual semantic parsing for
question answering over linked data. In: Proc. of the 16th International Semantic
Web Conference (ISWC). pp. 329–346 (2017)

11. Hakimov, S., Jebbara, S., Cimiano, P.: Evaluating architectural choices for deep
learning approaches for question answering over knowledge bases. In: Proc.
of the 13th IEEE International Conference on Semantic Computing (ICSC). pp.
110–113 (2019)

12. Karam, N., Streibel, O., Karjauv, A., Coskun, G., Paschke, A.: Answering con-
trolled natural language questions over rdf clinical data. In: Proc. of the Demo/-
Poster Session of the European Semantic Web Conference (ESWC) (2020)

13. López, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in
querying and exploring the semantic web. Semantic Web 3(3), 249–265 (2012)

14. López, V., Motta, E., Uren, V.S.: Aqualog: An ontology-driven question answering
system to interface the semantic web. In: Proc. of the Human Language Tech-
nology Conference of the of the North American Chapter of the Association of
Computational Linguistics (NAACL) (2006)

15. Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple
question answering over knowledge graphs. In: Proc. of the 18th International
Semantic Web Conference (ISWC). pp. 470–486 (2019)

16. Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language questions on
rdf knowledge bases. In: Proc. of the 19th International Conference on Extending
Database Technology (EDBT) (2016)

17. McCrae, J.P., Montiel-Ponsoda, E., Cimiano, P.: Collaborative semantic editing of
linked data lexica. In: Proc. of the Eighth International Conference on Language
Resources and Evaluation (LREC). pp. 2619–2625 (2012)

18. McCrae, J.P., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies
on the semantic web with lemon. In: Proc. of the 8th Extended Semantic Web
Conference (ESWC) (2011)

19. Rico, M., Unger, C., Cimiano, P.: Sorry, I only speak natural language: a pattern-
based, data-driven and guided approach to mapping natural language queries to
SPARQL. In: Proc. of the 4th International Workshop on Intelligent Exploration
of Semantic Data (IESD) co-located with the 14th International Semantic Web
Conference (ISWC) (2015)

20. Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.N., Gerber, D., Cimiano, P.:
Template-based question answering over RDF data. In: Proc. of the 21st World
Wide Web Conference (WWW). pp. 639–648. ACM (2012)

21. Unger, C., Hieber, F., Cimiano, P.: Generating LTAG grammars from a lexicon/on-
tology interface. In: Proc. of the 10th International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG). pp. 61–68. Yale University (2010)

22. Usbeck, R., Ngomo, A.C.N., Haarmann, B., Krithara, A., Röder, M., Napolitano,
G.: 7th open challenge on question answering over linked data (QALD-7). In: Se-
mantic Web Evaluation Challenge. pp. 59–69. Springer International Publishing
(2017)

23. Yin, X., Gromann, D., Rudolph, S.: Neural machine translating from natural lan-
guage to SPARQL. CoRR abs/1906.09302 (2019)

24. Zafar, H., Dubey, M., Lehmann, J., Demidova, E.: Iqa: Interactive query con-
struction in semantic question answering systems. Journal of Web Semantics
64, 100586 (2020)

