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ABSTRACT
Online homework systems are common in university courses.
While scientific findings about learning could have bearing
on how instructors design these systems, there is little guid-
ance available for instructors on the problem of extrapo-
lating scientific results in various contexts to make design
decisions in specific settings. This paper leverages the value
of online environments to conduct randomized experiments
that directly test principles in a real-world introductory pro-
gramming course. We investigate the relative benefit of giv-
ing students explanations of the correct solution to a prob-
lem and giving them an additional problem. We find sugges-
tive evidence that students do better on subsequent prob-
lems in the same exercise when given an explanation, but
they do better on a post-test two weeks later when given
an additional practice problem. These results can inform
instructors’ decisions in designing online homework.
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1. INTRODUCTION AND RELATED WORK
Many university courses use online homework systems to
give students practice material. These systems enable stu-
dents to conveniently practice their skills and instructors
to automatically grade homework and gather data on stu-
dent performance. They typically consist of problems with
either written or multiple-choice responses for students to
complete.

Past research has investigated the effects of these supports
on student learning. There is experimental evidence, for
example, that explanations and practice problems can help
student learning under certain circumstances [5, 6, 8]. How-
ever, instructors still must solve the considerable problem
of how to translate this research to a real-world setting.
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Figure 1: Screenshot of the problem on which the
student supports were deployed in the PCRS home-
work system

While much work in educational data mining has focused
on extracting and analyzing data students generate as they
naturally interact with these systems, we diverge from that
trend in this paper by deliberately embedding a random-
ized experiment in an online homework environment. We
believe that randomized experiments can provide valuable
insight for computing education researchers and practition-
ers because they can directly test the impact of different
educational interventions.

The ICAP framework [2, 3] provides a theoretical basis for
thinking about different educational methods by grouping
them into levels based on the depth of students’ engagement
with the material. The levels are, from most to least engag-
ing: interactive, constructive, active, and passive methods.
Using this framework, one might expect the active learn-
ing approach of solving problems to be more effective for
students’ understanding than the passive approach of read-
ing more explanations. Students must engage with practice
problems at a deeper level then explanations, so practice
problems might produce better learning outcomes. Compar-
ing the effectiveness of these two methods enables us to test
the active-passive boundary within the ICAP framework.

While the ICAP framework might lead one to predict that



Figure 2: An additional problem given to some stu-
dents as a follow-up exercise in the online homework
system

an additional problem should be more helpful to learning
than an explanation, this could be confounded by the fact
that the additional problem is optional. If students spend
enough time thinking about and attempting the problem,
it should improve their understanding beyond the improve-
ment they would see from reading an explanation of the
solution. However, it is also possible that students will ded-
icate less time and attention to the additional problem than
they would to the explanation as trying to solve a problem is
a more daunting task than reading an explanation. Further-
more, there is the variable of time to improvement. Perhaps
students will not see any immediate benefit from trying an
additional problem, but doing it will help their learning in
the longer term by cementing their understanding of the
concept the problem tests. Will students benefit from addi-
tional homework immediately, or will the improvement affect
how well the student remembers that week’s material later?
Both hypotheses appear plausible. Likewise, one might ex-
pect that additional explanations will not have a significant
effect on student learning. They fit into the passive category
of the ICAP framework, which is the lowest level of engage-
ment. The explanation is also optional to read, so students
might ignore it entirely. However, one might also expect that
reading a well-written explanation of a concept will deepen a
student’s understanding of the concept they are being tested
on. Furthermore, it could be the case that students forget
the explanation as soon as they finish working on the ex-
ercise, but it could also improve their understanding over a
longer period of time, similar to how they remember what
they learned from lectures when completing homework.

There is evidence that providing students with instructional
explanations when they are solving problems can benefit
learning – which is intuitive. However, these explanations
are not always effective, especially when they merely give
away the answer rather than help students come to see how
to solve a problem [8, 11]. For instance, when learners al-
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Figure 3: Names of problems in week 10 (top)
with corresponding problems in week 12 (bottom).
Blue lines indicate correspondence between prob-
lems. Problems with the same name are identi-
cal, while problems ending in “v2” are very similar
but with minor differences such as different variable
names. Learning supports were all deployed on the
problem “Repeat Chars” in week 10.

ready have some knowledge about a subject, providing ad-
ditional explanations instead of other knowledge-reinforcing
activities can be detrimental to learning [12]. There has also
been considerable research on prompting students to write
their own explanations in a laboratory setting, finding that
having students write their own explanations of key course
concepts can help learning [10, 4].

Similarly, the effects of solving problems on learning can be
varied and complex under different circumstances. For in-
stance, there is a large body of research on the design of
intelligent tutoring systems which automatically determine
which practice problems to show learners and in what order
to improve their understanding most effectively [1]. How-
ever, mathematics and computer science education research
point to the challenges in assuming additional practice of
problems is always helpful, as sometimes it is a poor use of
students’ time, or leads them them to focus on procedural
knowledge, instead of understanding the underlying princi-
ples [7, 9].

These studies have shown that even in a controlled labo-
ratory environment, the effects of these intuitively-helpful
interventions vary significantly. Instructors seeking to apply
these findings to their courses face the problem of translat-
ing findings in laboratory experiments to design decisions
about what kind of support to provide in online problems
and other educational environments.

Many counterintuitive effects have been found in prior edu-
cation research, so it is essential to empirically study the ef-
fects of interventions before recommending them to instruc-
tors. In this paper, we extend upon past literature about the
role of reading explanations and solving problems in learn-
ing and provide empirical evidence on how these forms of
student support affect learning in a real-world setting. Ul-
timately, we hypothesize that students will perform better
on subsequent tests of their understanding when they are
shown an additional problem compared to when they are
shown an explanation. This hypothesis is motivated by the
active-passive boundary from the ICAP framework.
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Figure 4: Effect of giving an explanation on number
of attempts to get the right answer on subsequent
problems in the same exercise. T-test results: none
vs. short: (t(490)=-1.24, p=0.215), none vs. long:
(t(491)=-1.29, p=0.195), short vs. long: (t(309)=-
0.0263, p=0.979)

2. METHODS
The context for the experiment on explanations and addi-
tional practice problems was the Programming Course Re-
source System (PCRS) online homework system for the in-
troductory computer programming course at the University
of Toronto. This course spans one twelve-week semester and
students are given for-credit online homework exercises each
week. The problem we deployed the supports on is shown
in Figure 1. It asks students to analyze the runtime of a for
loop in Python.

A total of 648 students completed the homework in week
10 of the course. 478 of these students also completed the
optional follow-up exercise in week 12. There were 5 prob-
lems in each week. This choice of weeks ensures that there
is considerable delay between the initial intervention and
subsequent measurement, enabling us to measure long-term
learning.

In the experiment, after students attempted a homework
problem in week 10 of the course, we used a factorial de-
sign to independently vary two factors: whether an expla-
nation was provided and whether an additional problem was
provided. The experiment was performed in the context of
a multiple-choice problem pertaining to run-time analysis,
shown in Figure 1. Students were given course credit for
completing the main problem, but did not have any direct
incentive to read the explanation or attempt the additional
problem.

To measure the impact on learning over a longer time frame,
we designed a post-test with problems that were either iden-
tical to or variants of the problems asked in week 10. We
gave these problems to students two weeks after the experi-
ment (week 12). Some follow-up problems were identical to
the corresponding week 10 problems and others had features
of the problem changed, such as having a loop executing 50
times rather than 30. Students were not at ceiling perfor-
mance in the post-test, suggesting that they did not remem-
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Figure 5: Effect of giving an explanation on num-
ber of attempts to get the right answer on the
same problem given two weeks later. T-test re-
sults: none vs. short: (t(364)=0.300, p=0.764),
none vs. long: (t(372)=0.433, p=0.665), short vs.
long: (t(214)=0.126, p=0.900)

ber the exact answers by week 12, so these were non-trivial
measures of learning. Figure 3 shows the names of problems
in week 10 and the corresponding problems in the week 12
follow-up activity. All of these problems were focused on
analyzing the runtime of Python programs.

2.1 Experimental Factors
We experimentally varied two variables in a factorial exper-
iment. Each time the student submitted an answer to the
first problem of the exercise, they were randomly assigned
to a condition for the Explanation factor and the Additional
Problem factor.

The Explanation factor had three levels: absent (none),
short, or long. The short explanation states, “The third
answer is correct because the code inside the for loop takes
constant steps regardless of len(s) and it will be executed
len(s) times.” The long explanation states “Suppose s =
‘cat’. Then, double = double + ch * 2 will be executed 3
times because the for loop iterate through each character of
s (i.e. ‘c’, ‘a’ and ‘t’). Now, suppose s = ‘google’. Then
double = double + ch * 2 will be executed 6 times. As you
can see, if len(s) doubles, the number of steps also doubles.
So, the third answer is correct.”

The Additional Problem factor had two levels: absent (none)
or present (one additional problem that was very similar to
the problem students had attempted in asking them to trace
through a for loop and determine its time complexity). A
screenshot of this problem is shown in Figure 2.1

To measure how well a student performs on a problem, we
used the number of attempts until the first correct answer.
This is simply the number of submissions made before the

1These factors were varied in the context of a larger exper-
iment with more factors that will not be described in this
paper in the interest of space. We used weighted randomiza-
tion in favour of not showing students additional activities
to avoid overwhelming them with too many activities
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Figure 6: Effect of giving an additional problem on
number of attempts to get the right answer on subse-
quent problems in the same exercise. T-test result:
(t(646)=0.158, p=0.874)

student selects all of the correct options and none of the
incorrect options on the multiple-choice problem. For ex-
ample, if a student gets the problem correct on their first
try, their number of attempts is 1. If they get the first at-
tempt wrong but the second attempt right, their number of
attempts is 2.

To measure short-term improvement, we took the difference
between the number of attempts on problem 1 of the week
10 exercise and the average number of attempts for the re-
maining four problems in that exercise. This number can
be negative if students did worse on the remaining problems
than they did on the problem we deployed the supports on,
and the higher the number, the greater the improvement.

To measure improvement on the delayed exercise, we took
the difference between the number of attempts on problem
1 of the week 10 exercise and the number of attempts on the
exact same problem when presented in the week 12 follow-
up.

3. RESULTS AND DISCUSSION
In this section, we first show a lack of evidence for an im-
provement in performance between the problem we added
student support to in week 10 and the same problem given in
a follow-up exercise in week 12. Next, we analyze the effects
of the Explanation and Additional Problem factors. Our
results did not reach the significance threshold of p < 0.05,
and as such they should be interpreted with caution. We
present suggestive evidence that the explanations were help-
ful on the same homework exercise (t(490)=-1.24, p=0.215),
but not on the follow-up test two weeks later (t(364)=0.300,
p=0.764). Finally, we show the reverse trend with the Ad-
ditional Problem: it was not helpful in the same homework
exercise (t(646)=0.158, p=0.874) but might have been in the
follow-up exercise two weeks later (t(476)=-1.602, p=0.110).
We interpret how these results can inform instructors’ de-
sign choices and address possible limitations of the work.

none additional problem
Additional Problem

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Lo
ng

-te
rm

 d
iff

er
en

ce
 in

 #
 a

tte
m

pt
s

Mean = -0.079
n = 367

Mean = 0.252
n = 111

Long-Term Effect of Additional Problem

Figure 7: Effect of giving an additional problem on
number of attempts to get the right answer on the
same problem given two weeks later. T-test result:
(t(476)=-1.602, p=0.110)

3.1 Minor improvement on the same problem
Students took only slightly fewer attempts to get the prob-
lem correct in week 12 compared to week 10. While they
took 2.07 attempts on average to get the answer right in
week 10, they took 2.02 attempts to get the answer right on
week 12, even though they had completed the same problem
just two weeks before. We found little evidence that students
improved between solving a problem in week 10 and solv-
ing the same problem in week 12 (t(1136)=-0.529, p=0.597).
This suggests that students might not have remembered the
answer to the problem even when they already solved it two
weeks earlier, meaning testing them on the same problem in
week 12 appears to be a non-trivial measure of their under-
standing of the same concepts.

3.2 Explanations might have helped in the short
term

We found no statistically significant difference between stu-
dents who were given explanations and those who were not.
However, the results suggest that when students were given
explanations, they took slightly fewer attempts to get the
right answer in subsequent problems than those who did
not, regardless of whether they saw a short (t(490)=-1.24,
p=0.215) or long explanation (t(491)=-1.29, p=0.195), as
shown in Figure 4. However, the effect of seeing explana-
tions was much smaller in the long term, as the sample
means were similar in all three conditions. This is shown
in Figure 5 and suggests that an explanation in a homework
context might be useful only during that homework session.
This could have happened because the problems tested a
procedural skill, namely runtime analysis. While reading an
explanation gives students a clear formula they can apply
in subsequent runtime analysis, they might forget that for-
mula when they stop working on their homework and lose
the benefit of the explanation.

3.3 Additional Problems might have helped in
the long term

Similarly to the Explanation factor, we did not find statis-
tically significant evidence for a difference in means for the



Additional Problem factor. However, we still found sugges-
tive evidence that giving an additional problem has an effect
in the long term. We did not find evidence for a difference
between the performance of students who were shown an
additional problem and those who were not on subsequent
problems in the same homework exercise, but students who
received the additional problem took fewer attempts in the
post-test (t(476)=-1.602, p=0.110). These results are shown
in Figures 6 and 7 respectively.2 This difference might sug-
gest that the value of the additional practice problem was
primarily as a memory aid. Doing more problems could have
helped students remember the skill they learned better when
writing the post-test. If this knowledge is already in their
minds when they are doing the exercise, it makes sense that
they did not benefit immediately from more practice. How-
ever, they might remember more when writing the post-test,
which would explain the improvement in performance there.

3.4 Limitations
A notable limitation of this work was the lack of statistical
signficance. However, the results are consistent with each
other and align with ideas from the ICAP framework. As
such, they suggest a trend that could inform future research.
In the interest of open and replicable science, it can be valu-
able to publish suggestive and negative results that do not
meet the threshold for statistical significance. Real-world
data is often messy and suggestive results can reveal crucial
new directions for analysis.

Another limitation of this work is that the problems in the
week 12 follow-up were not all identical to those in the week
10 homework. They tested the same concepts and some were
exact copies, but others were slight modifications of prob-
lems on the original homework. Therefore, the observed re-
sults might be due to the supports having different degrees
of relevance to the problems in week 10 and week 12 rather
than the duration between support and post-test. We have
mitigated this by using the differences between number of
attempts on the problem we applied the explanations and
additional problem to and the relevant subsequent problems
as dependent variables, so if one intervention improves stu-
dents’ score on problem 1 both in week 10 and week 12, that
would be reflected in that the changes to both scores cancel
out when the difference is computed.

One might also raise the concern that we had different sam-
ple sizes in different conditions. More students were assigned
to the “none” condition than other conditions for both the
Explanation and Additional Problem factors. We intention-
ally weighted the randomization in this way to minimize the
burden on students from having too many additional ac-
tivities, a strategy used in randomized clinical trials in the
medical field.

Considering that the effects of reading explanations and
solving problems might vary widely with context, such as
the week of a course in which supports were given, it is un-
clear how broadly the trends we identify in our data apply.
While it appears possible that giving students more practice

2After this analysis, we noticed that the control and exper-
imental groups had different variances, which violates the
assumption of the standard t-test. We then ran Welch’s t-
test and found a p-value of 0.07. (t(476)=-1.813, p=0.0712)

problems helps them develop lasting procedural knowledge
of how to analyze the runtime of an algorithm, it is not
clear that we can conclude the same about different tasks
in computer science education like learning the syntax of a
programming language or how to design an algorithm.

Finally, the week 12 post-test was optional, so dropout is
a concern. While 648 students completed the exercise in
week 10, only 478 completed the follow-up post-test in week
12. Therefore, the conclusions we draw about the effects
of educational supports in the long term might reflect only
the population of students who choose to complete the post-
test. Though this was the majority of students, the reported
effect could be different if, for instance, the students who are
unlikely to do optional homework problems in week 12 are
also unlikely to attempt an optional problem given to them
in their week 10 homework exercise.

4. CONCLUSION AND FUTURE WORK
Our experiment investigated the effects of explanations and
additional problems on performance both on a post-test and
subsequent problems on the same test. We found intrigu-
ing but not definitive insight into the effects of explanations.
The mean number of attempts for students who saw either a
short or long explanation was lower than those who saw no
explanation, but this difference was not statistically signifi-
cant (t(490)=-1.24, p=0.215). It is possible that the expla-
nations we showed students simply did not have an effect on
their learning in either the short or long term. It could be
that the explanations used in this experiment did not bene-
fit students as much as they could have and effort should be
directed to designing better explanations. Alternatively, it
is possible that the explanations helped students somewhat
on the remaining problems in the homework exercise. If this
result were replicated in a larger study, it would be inter-
esting because it could guide instructors in deciding how to
effectively incorporate instructional explanation into their
courses.

In exploring the effect of additional problems, we found that
the mean number of attempts on the equivalent post-test
problem was lower for students who were shown an addi-
tional problem than those who were not. This difference
was not statistically significant, though we found stronger
evidence for it than we found for explanations (t(476)=-
1.602, p=0.110). Like with the explanations, it is possible
that the additional problem we gave students was truly not
effective and future work should focus on how to design more
effective practice problems. However, if the long-term im-
provement as a result of the additional problem is replicated
in subsequent large-scale experiments, it could provide guid-
ance for instructors in deciding how to incorporate practice
problems into their courses effectively.

If the results reported above reflect a real effect, they sug-
gest that explanations are helpful in the short term, but not
in the long term. Conversely, additional problems are help-
ful in the long term, but not in the short term. This aligns
with what one might expect based on the ICAP framework,
as solving a problem qualifies as deeper engagement with
the learning material than reading an explanation. Instruc-
tors likely care more about whether their students retain
information in the long term rather than whether they un-



derstand concepts immediately, so focusing on the long-term
learning measure makes sense.

The possible difference between the effects of these inter-
ventions is interesting and motivates further research into
how immediate and delayed effects of reading explanations
and solving problems might differ. This might help guide
instructors in thinking about the trade-offs involved in de-
ciding when to give explanations to students and when to
give them more problems.

Future work should investigate how generally this pattern
holds. The part of the course we deployed these supports
on focused on the procedural skill of reading an algorithm
and analyzing its time complexity. Would giving an addi-
tional problem still be effective in teaching a different con-
cept in the course, such as the difference between for and
while loops? Perhaps additional problems are more helpful
in developing procedural knowledge while good explanations
might be more effective in building propositional knowledge.
By running similar experiments at different points in the in-
troductory computer science course, we hope to learn more
about which types of student support are helpful in devel-
oping different skills.

Additionally, we are interested in investigating whether the
effects of these interventions differ across subgroups of stu-
dents. One reason why we might not see a large average
effect is that the effectiveness of different forms of support
could vary significantly across students. Perhaps, for exam-
ple, students who take a programming course out of intrinsic
interest are more likely to benefit from an additional prac-
tice problem than those who take it to satisfy a breadth re-
quirement. By analyzing this experimental data jointly with
contextual variables derived from surveys and data mining,
we hope to provide a richer picture of which forms of sup-
port work for which students and how instructors can tailor
interventions more precisely to individual students’ needs.

5. REFERENCES
[1] C. J. Butz, S. Hua, and R. B. Maguire. A web-based

bayesian intelligent tutoring system for computer
programming. Web Intelligence and Agent Systems:
An International Journal, 4(1):77–97, 2006.

[2] M. T. Chi. Active-constructive-interactive: A
conceptual framework for differentiating learning
activities. Topics in cognitive science, 1(1):73–105,
2009.

[3] M. T. Chi and R. Wylie. The icap framework: Linking
cognitive engagement to active learning outcomes.
Educational psychologist, 49(4):219–243, 2014.

[4] J. L. Chiu and M. T. Chi. Supporting self-explanation
in the classroom. Applying science of learning in
education: Infusing psychological science into the
curriculum, pages 91–103, 2014.

[5] M. Feng, N. T. Heffernan, and J. E. Beck. Using
learning decomposition to analyze instructional
effectiveness in the assistment system. In AIED, 2009.
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