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Abstract  
A mathematical model of the viscoelastic deformation problem for biomaterials with fractal 
structure is constructed. The basic relationships between stress-strain state components of the 
rheological behavior of the biomaterials during heat treatment are obtained. Integro-
differentiation apparatus of fractional order to account the fractal structure of the considering 
biomaterial was used. The fractal integral relations for determining the components of the 
stress vector due to deformation were obtained. A variational formulation of the viscoelastic 
deformation problem of biomaterials with taking into account their fractal structure is 
obtained. Which allows to obtain an approximate continuous solution of the problem. 
Application software for finding an approximate solution of the viscoelastic deformation 
problem of biomaterials with taking into account their fractal structure was developed. The 
usecase diagram of the developed software and the sequence diagram for usecase which 
provides reception of a numerical decision were constructed. For partial cases the numerical 
solutions of this problems was obtained are analyzed. The dependence of stress components 
on the degree of material fractality, geometric sizes and type of biomaterials were analyzed.  
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1. Introduction 

The development of additive technologies based on the active use of mathematical and computer 
modeling and introduction of special innovative information technologies in medicine, the permanent 
expansion of the range of bioprosthetics applications, appearance of materials with new properties and 
capabilities led to an integrated interaction of mechanics, computer science and medicine. The 
construction of mechanical and mathematical models for describing the state and behavior of 
biomaterials and biostructures, the studying of their physical and mechanical properties is an 
important area of research [2, 4, 6, 14].  

The study of the patterns of displacement and deformation of biological structures and tissues 
under the influence of external environment factors and the muscular system is an urgent scientific 
task. It is connected with the facts that in the process of evolution biological systems have arisen that 
are optimal in design with not only regard to the physiological functions they perform, but also the 
properties of materials which determining their mechanical behavior. Therefore, the study of the 
structure and mechanical properties of various biological tissues will make it possible to create 
materials most suitable for replacing damaged natural structures [8]. 

Knowledge of the quantitative and qualitative indicators of the state and dynamics of the 
biomaterials properties allows to obtain new information about their functioning and vital activity and 
provides data to improve the accuracy of diagnosis and improve the quality of therapy for various 
diseases. Therefore, the construction of mechanical and mathematical models for studying the 
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behavior of biomaterials based on the fractional order integro-differentiation apparatus, the 
development of highly effective analytical and experimental methods for assessing the physical and 
mechanical properties of biomaterials is an urgent scientific task [5, 10, 11, 13, 24]. 

A significant number of real processes do not fit into the concepts of continuum mechanics and 
requires to use the involvement of ideas about the fractality of the environment in which these 
processes occur. The viscoelastic deformation of biomaterials refers to such processes. The 
correspondingly modified relations of the theory of viscoelasticity are used to describe them, which 
requires the use of the mathematical apparatus of fractional integro-differential calculus. 
Yu.N. Rabotnov introduced a generalization of the rheological equation to describe the behavior of 
hereditary media using the apparatus of fractional derivatives [19-23, 25]. 

Taking into account the effect of memory by fractional derivatives in mathematical models leads 
to an increasing in computational costs when finding a numerical solution. Any algorithm that uses 
the sampling of fractional order derivatives must take into account its nonlocality, which leads to 
increasing storage requirements for computational data and the complexity of the algorithm. 
Numerical algorithms for finding the solution of differential and integral equations containing 
fractional order operators can be found in the literature devoted to so-called collocation methods for 
solving Voltaire-Abel integral equations. There are also works devoted to the consideration of 
fractional-linear multi-step methods for the numerical solution of such integral equations [3, 7, 9, 15, 
16, 31]. 

One of the problems that arise when using fractional derivatives is that there is no unambiguous 
definition of them. Numerical methods for solving problems which describes by equations with 
fractional  derivatives are  tied to the type of  the chosen derivative,  so there is  a  need to analyze and 
compare the results obtained using different definitions and numerical methods. 

Thus, the construction of the variational formulation of the viscoelastic deformation problem of 
biomaterials with taking into account their fractal structure is an urgent scientific problem. Its solution 
will make it possible to obtain the values of the stresses, strains and displacements components as 
continuous functions. Analyzing the obtained values, we can conclude about the strength and 
rheological behavior of biomaterials, which is an important characteristic in their operation. 

2.  Production of a problem 

Integrals and derivatives of fractal order and fractional integro-differential equations find many 
applications in modern research in theoretical physics, mechanics and applied mathematics. Fractional 
mathematical calculus is a powerful tool for describing physical systems that have memory and 
nonlocality effects [26, 28]. Using of fractional mathematical analysis can be useful for obtaining 
dynamic models in which integro-differential operators by the time and spatial coordinates describe 
the degree of long-term memory and spatial nonlocal complex structure of environments and 
processes. Let us consider the fractional order integro-differentiation operators integral of the function 

),,( zyxf  over the variable  x  in Caputo's understanding in more detail [12, 18, 32-34]. 
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2.1. The viscoelastic deformation problem 

Let’s consider the problem of stress-strain state in biomaterial with taking into account the fractal 

structure. Suppose that a body which is in equilibrium is affected by mass forces ( )TZYX rrr ,,=F in 



the corresponding directions. And also surface forces ( )TVVVV ZYX ,,=F  with corresponding 
projections on the axis zyx ,, . Let’s find the components of the stress-strain state of the body, namely 

vectors ( )Tyzxzxyzyx tttsss ,,,,,=σ  - stress, ( )Tyzxzxyzyx gggeee ,,,,,=ε  - deformation and 

displacement ( )Tu wu,,=u , which are satisfying the equilibrium equation in elementary volume [27, 
29, 30] 

,0=+ iijx FD
j
sa  (1) 

and the equilibrium conditions on the surface [17] 
),,cos( jijiV xnF s=  (2) 

where n - outer normal to the surface of the body S . 
The relationship between displacements and deformations will be written with using the 

derivatives of fractal order as follows [29, 30] 

( ).
2
1

jxixij ij
DD uu aae +=  (3) 

Thus, the relations between stress and deformation components with using the integral of fractal 
order are written as follows [30]: 

( )[ ] ( )[ ] ( )[ ],131211 zreltzyreltyxreltxx tRItRItRI eteeteetes aaa --+--+--=  (4) 

( )[ ] ( )[ ] ( )[ ],232221 zreltzyreltyxreltxy tRItRItRI eteeteetes aaa --+--+--=  (5) 

( )[ ] ( )[ ] ( )[ ],333231 zreltzyreltyxreltxz tRItRItRI eteeteetes aaa --+--+--=  (6) 

( )[ ],44 xyreltxyxy tRI gtgt a --=
 (7) 

( )[ ],55 xzreltxzxz tRI gtgt a --=  (8) 

( )[ ].66 yzreltyzyz tRI gtgt a --=  (9) 

where ( )relij tR t-  - relaxation kernels tensor. 
We introduce a notation to simplify further description of the material 

( ) ( )( ).,,2 yxfDDyxfD yxxy
aaa =  (10) 

Considering (3), the ratio of the deformation community in biomaterials with a fractal structure 
were follows 
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So, using this approach we can obtain the viscoelastic deformation problem with taking into 
account the fractal structure of the biomaterial. 

2.2. Variational formulation of the viscoelastic deformation problem 

Particular interest has direction of obtaining continuous solutions of stress-strain state problem in 
biomaterials with a fractal structure. This becomes possible with using variational formulations of 
such problems. The principle of virtual works is widely used for this purpose.  



All general theorems for small deformations is based on the equation of virtual works [1, 35] 
.dSdVdV i

V S
iVii

V
ijij uFuFεσ òòò òòòòò += r  (17) 

where V  - body volume, S  - body surface. 
Thus, among all permissible displacements wu,,u  that satisfy the boundary conditions, the active 

displacements result in a stationary of full potential energy and provide a minimum of functional P  
( ) ( )[ ] ( ) ,,,,,,, òòòòò Y+F+=P

SV

dSudVuuA wuwuwu  (18) 

( ) ,,, wrurrwu ZYuXu ++=F-  (19) 
( ) ,,, wuwu VVV ZYuXu ++=Y-  (20) 

where ( )wu,,uA  - the strain energy function can be written in the form 
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Substitute the expression of stresses due to deformations from the relations (4)-(9). Then, taking 
into account relation (3), the equilibrium conditions on the surface due to displacement was obtained 
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Thus, a variational formulation of the viscoelastic deformation problem of biomaterials with a 
fractal structure was obtained. 

3. Software for calculating the dynamics of the stress-strain state 
components of biomaterials with a fractal structure 

For finding a numerical solution to the problem of viscoelastic deformation of biomaterials with a 
fractal structure in the process of heat treatment application software was developed in the 
programming language GNU Octave 5.2.0. 

When finding a numerical solution of the problem, the main advantages of the Octave environment 
were as follows: 



· a large number of built-in functions for finding solutions of interpolation and 
approximation problems; 

· a wide range of statistical functions of statistical regression and other functions of 
mathematical statistics and analysis of experimental data; 

· a specially designed class that allows you to work with sparse matrices. 
A usecase diagram was constructed of developed software for finding the numerical solution of 

viscoelastic deformation problem of biomaterials with a fractal structure in the process of heat 
treatment, which is shown in Fig. 1. 

As you can see, the user has the following options when finding a solution to the problem of 
viscoelastic deformation: "Set the rheological parameters of the biomaterial", "Choose the sample 
type", "Set modeling time", "Set the geometric sizes of the sample", "Set the initial value", "Set the 
boundary conditions", "Compute the stress-strain problem","Set the parameters of numerical method". 
Option of usecase "Compute the stress-strain problem" - implements the algorithm for finding the 
numerical solution of the problem (18)-(25). Execution of this usecase variant leads to automatic 
execution of the following: "Determine the strain modulus", "Calculate the relaxation function". 

 

 
Figure 1: Usecase diagram of developed software for finding the numerical solution of viscoelastic 
deformation problem of biomaterials with fractal structure 
  

In Fig. 2 shows a sequence diagram constructed for the "Compute the stress-strain problem" 
usecase. It reflects the sequence of actions performed to find a numerical solution to the problem of 
viscoelastic deformation of biomaterials with a fractal structure in the process of heat treatment. 

This usecase uses the functionality of the UserForm and Solver objects. The UserForm object is 
designed to specify the user: modeling time, type of biomaterials, geometric dimensions, initial values 
of stresses and strains, parameters of the numerical method and setting the rheological parameters of 
the mathematical model of viscoelastic deformation of biomaterials in heat treatment. 

The Solver object is designed to implement an algorithm for finding a numerical solution to the 
problem of viscoelastic deformation of biomaterials with a fractal structure in the heat treatment 
process. It contains methods that allow to determine the values of instantaneous module of elasticity, 
calculate the relaxation function, implement a numerical method, build graphical dependences of the 
dynamics of stress and strain components on the sample depending on time and spatial coordinates. 

 



 
Figure 2: Sequence diagram for the use of "Compute the stress-strain problem" usecase  

 
The Solver object also contains methods that allow you to control the process of finding the 

numerical solution of the viscoelastic deformation problem: 
· SolveStressStrainStateProblem - implementation of the algorithm for finding the 

numerical solution of the model; 
· GetElasticModulusValues - calculation of values of instantaneous modulus of elasticity; 
· GetRelaxationFunctionValue - calculation of the value of the relaxation function; 
· BuildGrafics - construction of graphical dependences of dynamics of components of 

stresses and strains. 

4. Obtained results 

During the process of heat treatment of biomaterials the moisture content in the central layers 
increases and in the surface - decreases. This leads to the appearance of stresses of different signs: in 



the surface layers - positive; in the central - negative. Let us investigate the dependences of the stress 
components xs  and ys  dynamics within 48 hours. We show the difference between the values of the 
stress components obtained by implementing a mathematical model of viscoelastic deformation of 
biomaterials with taking into account the fractal structure during heat treatment and without. To take 
into account the fractal structure of the material the fractional derivative index a  is set equal to the 
value determined by approximating the experimental data. Values 1=a  are set to neglect the fractal 
structure of the material. 

The results of realization of the mathematical model of viscoelastic deformation of biomaterials 
with fractal structure depending on the geometric dimensions of the sample are considered. A 
biomaterial  with  the  following  values  of  physical  parameters  of  the  material  was  selected  for  the  
numerical experiment: base density - 560=r  kg/m3, ambient temperature - Ctc

070= . Cross-section 
points of the biomaterial will be used to compare the numerical values of the simulated processes. 1l  
and 2l  is  half  of  the  sample  size.  The  point  ( )0;0A  is in the center of the pattern, the point 
( )2/;2/ 21 llB  is in the middle, ( )21;llC  is in the corner of the rectangular pattern. 
In Fig. 3 and Fig. 4 shows the dynamics of the stress components at the point ( )21;llC  of  the  

sample during 48 hours of heat treatment. It can be seen that by changing the proportional 
relationships between the lengths of the surface of the sample the nature of the stress curves changes 
significantly. In particular, this is observed with a change in the proportions from 3/ 12 =ll  to 

2/ 12 =ll .  

 
Figure 3: Changing of the stress component xs  at a point ( )21;llC  on the sample depending on its 
geometric dimensions 

 
Analyzing the behavior of the curves in Fig. 3 and Fig. 4 can be concluded that with increasing the 

ratio between the sides of the sample, the fractal structure of the material has a more significant effect 
on  the  dynamics  of  stress  components  and  residual  stresses.  In  particular,  we  can  see  that  the  
difference between the stresses with taking into account the fractal structure and without at 

1/ 12 =ll does not exceed 4.1%, at 2/ 12 =ll - 8.4%, at 3/ 12 =ll  - 15.7%. 



 
Figure 4: Changing of the stress component ys  at a point ( )21;llC  on the sample depending on its 
geometric dimensions 
 

Graphic dependence in Fig. 5 shows the dynamics of stress components in biomaterials depending 
on its type. In particular, we consider a biomaterial of type №1, denote its biomat1, with a base 
density equal to 680=r  kg/m3, biomat2 - with a density of 625=r  kg/m3, biomat3 - with a density 
of 480=r  kg/m3.  

 
Figure  5: Changing of the stress component xs  at  a  point  ( )21;llC  on the sample depending on 
biomaterial type 

 
We can conclude that for biomaterials with approximately the same density, the stresses differ by 

no more than 12.5%. Instead, for materials with lower density the stress dynamics is different. The 
numerical values of the stress components in such materials are several times smaller. However, the 
type of stresses dymanics in all samples remains the same. 



5. Conclusions 

Using the basic laws of mechanics of hereditary environments and the mathematical apparatus of 
integro-differentiation of fractional order, new mathematical models of viscoelastic deformation of 
biomaterials with fractal structure in the process of heat treatment were obtained, which allows to take 
into account the complex nature of spatial correlations and deterministic chaos. 

The basic equations of viscoelastic deformation of biomaterials taking into account their fractal 
structure are obtained. A variational formulation of the viscoelastic deformation problem of 
biomaterials  with  taking  into  account  their  fractal  structure  is  obtained.  Which  allows  to  obtain  an  
approximate continuous solution of the problem. 

Application software for finding an approximate solution of the viscoelastic deformation problem 
of biomaterials with taking into account their fractal structure was developed. The usecase diagram of 
the developed software and the sequence diagram for usecase which provides reception of a numerical 
decision were constructed. 
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