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Abstract

Failures in Cyber-Physical Systems (CPS)
can be detrimental. This is why these sys-
tems often employ fault-tolerance meth-
ods that allow their service to keep work-
ing even in the event of hardware or soft-
ware failures. These methods are often
intertwined with computation code, this
makes CPS even more complex. We aim
to reduce this complexity by means of
coordination. The TeamPlay coordina-
tion language uses a component-based ap-
proach and aims to separate the struc-
ture and non-functional property manage-
ment from the computation code. The
computation code can then focus on be-
ing functionally correct. We extend this
coordination language by introducing the
specification and management of fault-
tolerance strategies and we introduce ad-
ditional structures to manage these strate-
gies while keeping code duplication low.

1 Introduction

Cyber-physical systems (CPS) is a form of
embedded-computing which involves hardware
and software systems that interacts with the phys-
ical world around us [BG11]. Examples of this can
be found in several areas such as self-driving cars,
autonomous drones, robotics, and building & en-
vironmental control.

Commonly, these systems also have non-
functional requirements. These requirements are

Copyright c○ by the paper’s authors. Use permitted under
Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Proceedings of the Seminar Series on Advanced Tech-
niques & Tools for Software Evolution, Virtual conference
(originally in Amsterdam, the Netherlands), 01-02 July
2020, published at http://ceur-ws.org

manifested in facets such as timing, energy-
consumption, security, and robustness [PZL12;
Raj+10]. These requirements often involve trade-
offs; e.g., executing an action in less time of-
ten involves a higher power consumption [JSC20].
Adding robustness or fault-tolerance often involves
redundancy which also incurs a higher power con-
sumption and a higher response time.

Additionally, many safety-critical systems (es-
pecially in multicore or heterogeneous systems)
require extensive testing, validation, and verifi-
cation. This is often hard to do when non-
functional properties, like fault-tolerance, are in-
tertwined with computational code. This is one of
the reasons why there is a lot of work to be done
to alleviate the burden on the programmer in CPS
[PZL12; Rom07; Raj+10]. In this work, we pro-
pose an extension to an existing solution which
resides in the paradigm of coordination languages
[JSC20; GC92].

Coordination languages can be used to man-
age the interaction between separate activities or
components into an often parallel system [ACH98].
The language we are extending is called the Team-
Play coordination language. It was designed to
run on heterogeneous architectures thus requiring
synchronisation and parallelisation [JSC20]. This
language facilitates separation of concerns between
coordination and computation code. Coordination
code defines the structure of the application and
manages non-functional properties on a high level.
This allows the computation code to focus on be-
ing functionally correct.

In this work, we make the following contribu-
tions to the TeamPlay coordination language:

1. Facilitate the management of fault-tolerance
or resilience strategies.

2. Introduce templating that facilitates code
reuse and add other structures such as cas-
cading and inheritance that makes manage-
ment of fault-tolerance and other future op-
tions easier.
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2 Existing coordination language

We illustrate the existing coordination language
[JSC20] by means of an example. Figure 1 shows
a subsystem in a car with two sensors leading to
a decision controller which in turn leads to an ac-
tuator which can interact with the physical world.
Figure 2 shows the code that goes with this exam-
ple.

Decision Actuator

DistSensor

voltage

dist

ImageCapture
frameData

Figure 1: Example illustrating how a pro-
gram looks like in the existing coordination
language.

The existing coordination language is a
component-based language [JSC20]. An applica-
tion definition (line 1) has three major regions:
datatypes (line 2) in which data-types used in ports
are defined, components (line 6), in which compo-
nents are defined and edges (line 21) in which edges
between components are specified.

1 app {

2 datatypes {

3 (num , "uint32_t")

4 (frame , "jpegFrame*")

5 }

6 components {

7 DistSensor {

8 outports [ (dist , num) ]

9 }

10 ImageCapture {

11 outports [ (frameData , frame) ]

12 }

13 Decision {

14 inports [ (dist , num) (frameData ,

num) ]

15 outports [ (voltage , num) ]

16 }

17 Actuator {

18 inports [ (dist , num) ]

19 }

20 }

21 edges {

22 DistSensor.dist -> Decision.dist

23 ImageCapture.frameData -> Decision.

frameData

24 Decision.voltage -> Actuator.dist

25 }

26 }

27

Figure 2: Example illustrating the existing
coordination language.

Components themselves are stateless, state is
captured in data-tokens that are consumed when a
component fires. Like Petri-nets, a component can
fire once all required input tokens are ready. Each

component can have the following ports: inports
(line 14) for input tokens and outports (line 15)
for output tokens.

Working with stateless components ensures
that the program structure is captured by the co-
ordination model while the code for a single com-
ponent can focus mostly on the functional aspects
of computation, i.e., getting the correct result.
The coordination language can then be used to
manage energy, time and security (ETS) by sup-
plying different versions of the same component
with different properties. These properties have to
be defined separately and are used by the scheduler
to decide which version should be used. For ex-
ample, a component used for encryption can use a
faster (but weaker) algorithm to save time and en-
ergy while compromising on security. Which ver-
sion is being used depends on the mission’s state,
so that the resources available are used optimally
and are appropriate for the situation as directed
by the scheduler. We leave the details of this ap-
proach out due to limited space.

Ports between components are connected with
edges as can be seen in line 21-24 in the code exam-
ple and the schematic example (Figure 1). Edges
are created by connecting a component and out-
port with another component and an inport sep-
arated by an arrow. Edges have a FIFO buffer
which holds tokens waiting to be consumed by
components once they have enough tokens for their
inports. It is also possible to define that multiple
tokens have to be consumed before a component
can be fired.

3 Extension 1: Fault-tolerance

We extend the language to facilitate fault-
tolerance or resilience, meaning that it aims to
avoid service failures when faults occur [Avi+04].
We opt for a user-directed approach so that the
user can specify which of the pre-defined options
to apply in different parts of the application. This
is due to major semantic challenges in having a
compiler or scheduler analyse the criticality of a
component in the application as a whole. Fur-
thermore, the way fault-tolerance is implemented
and achieved needs to be transparent to the pro-
grammer, since, in critical applications, errors or
ambiguity can be costly.

We selected the following methods for imple-
mentation in the language. Checkpoint-restart
(checkpoint) saves a backup of the application’s
state which can be restored when a failure occurs
[TV07; Sul+19]. In the coordination language we
can easily create checkpoints by backing up the
FIFO-buffers on the edges between components.
For this method, we allow enabling or disabling
the removal of faulty resources from the resource
pool (also called shrinking recovery).
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N-Modular Redundancy (NMR) (nModular) runs
𝑛 identical processes followed by a voting process
to reduce the risk of deviating components caused
by faults [LV62; TV07; Ori+13]. In this method,
it is possible to change the value of 𝑛 but also the
number of voting processes to run since these can
also be faulty, thus decreasing resilience against
faults. Without a dedicated monitoring compo-
nent, it is impossible to tell whether a component
or process involved in triple-modular redundancy
has crashed. For this, we have a timeout system in
which can be specified how long the finished pro-
cesses should wait before the slow process is killed
off because it may have crashed.

Primary-backup or standby (standby) runs mul-
tiple backup processes in addition to an active or
primary process. The output of the latter is used
while the backup processes can take over the job of
the active component in case it fails [Ori+13]. Like
in NMR, the number of replicas can be changed.
It is also possible to tweak the degree of synchro-
nisation the standby component has compared to
the primary component.

N-version programming (nVersion) runs 𝑛 dif-
ferent processes conforming to the same specifica-
tion [Pen10]. For this method, one can specify the
𝑛 value of each version separately, as we use the
version specification mechanisms already present
in the language to define versions.

Fault-tolerance options are specified with the
keywords defined above in brackets, optionally fol-
lowed by a set of method-specific options to tweak
the way fault-tolerance is used.

Fault-tolerance methods can be applied directly
to a component by adding the above options di-
rectly in a component definition as can be seen
in Figure 3, line 13. Alternatively, these options
can be put into generic profiles (defined on line
2) which in turn can be added inside the profiles

keyword (line 12). The order in which profiles are
added to a component matters, a given profile is
overwritten by subsequent ones. This way of cas-
cading enables the programmer to define generic
profiles to use in the whole application, adding,
and removing options to suit the specific need of
a component. In the example, we have a mix of
inline-specification and profiles. Directly defined
options always overwrite profiles given to a com-
ponent.

4 Extension 2: Introducing re-
usability in options and compo-
nents

To assist in managing the fault-tolerance options
defined above and reducing duplication in the co-
ordination language code we will introduce new
constructs in this section. While the motivation

1 profiles {

2 TMR {

3 nModular {

4 replicas 3

5 votingReplicas 2

6 }

7 }

8 }

9 components {

10 Decision {

11 outports [ (voltage , num) ]

12 profiles [ TMR ]

13 nModular { replicas 4 }

14 }

15 }

16

Figure 3: Cascading inline and separated
profile definition. The inline option will
overwrite the replicas 3 option of the TMR
profile because the inline option is more
specific than a profile. Other options, in this
case the votingReplicas option will be merged
with the inline profile.

for these additions originates from managing fault-
tolerance options, they are also meant to work
with existing and future options of the language.

Groups of components responsible for a spe-
cific functionality may have a similar criticality,
this means that they require the same or similar
options. To support this, we add the notion of
sub-networks to the language as shown schemat-
ically in Figure 4 and in code in Figure 5. Sub-
networks can contain multiple components, as can
be seen on lines 11 and 15. On the outside, they
are treated like normal components as they have
the same kinds of ports as regular components.
For example, the sub-network has an outport on
line 8. Like in regular components, fault-tolerance
options can be specified directly and by using pro-
files (line 10).

Options specified on the top level of the sub-
network are automatically inherited by the com-
ponents inside unless indicated otherwise. One
can stop inheritance by removing a fault-tolerance
method or option, which can be done by placing
the remove keyword before the name of an option
or method, e.g., remove nModular. In addition to
remove , we introduce the vital keyword, which
can be put in front of an option or fault-tolerance
method: vital replicas 4. vital indicates that an
option cannot be overwritten.
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Sensors

ImageCapture

DistanceSensor

Decision
distance

frame

Figure 4: Sub-network schematic example,
Sensors contain two sensors, ImageCapture and
DistanceSensors which present their outports
to the sub-network level which in turn lead
to the decision-component.

Edges between components inside a sub-
network are defined inside the sub-network itself
using the same edges keyword as root-level compo-
nents (line 18-23). A major difference is that edges
going to ports in and outside the component need
to be defined by using the in and out keywords in-
stead of using the id of a component in the edge
definition. This can be seen on line 20 and 23, out
is a handle to the current sub-network. These two
components present their outports to the outside
of the graph with an outport on the side of the sub-
network. This outport can be used in the top-level
edges specification coming from that sub-network.

The existing language has no way of reusing
components, a component definition is tied to an
instance of the component. This inhibits code
reuse. In order to solve that, we have to decouple
the instantiation of a component from its defini-
tion. To this end, we define a new keyword and
application region, called templates. Contrary to
components or sub-networks defined in the com-
ponents keyword, components and sub-networks
defined inside templates are not automatically in-
stantiated but require explicit instantiation inside
the components keyword.

Figure 6 shows an extension of the previous ex-
ample to show the templating mechanism. Sensors

has been moved to templates and is instantiated
twice as seen on lines 26 and 28. This is indicated
by the name of the template followed by the de-
sired handle (i.e., id) to the instance, the brackets
will be featured in the next paragraph. The han-
dle is then used to define the edges between the
instance and other components (lines 38-45).

To assist in slight variations of options between
different instances of templates, we introduce a
parameter-mechanism. Parameters can be added
in the template definition, as can be seen on line 8
in Figure 6. Occurrences of the parameter-names
in settings-related areas will be replaced by the
value given during instantiation (lines 26 and 28).
If no parameters are desired, the brackets can be
left out.

1 profiles {

2 TMR {

3 nModular { replicas 3 }

4 }

5 }

6 components {

7 Sensors {

8 outports [ (distance , num)

9 (frameData , frame) ]

10 profiles [ TMR ]

11 ImageCapture {

12 outports [ (frameData , frame) ]

13 nModular { replicas 4 }

14 }

15 DistanceSensor {

16 outport [(dist , num)]

17 }

18 edges {

19 // out refers to sub -network

outport

20 ImageCapture -> out.frameData

21 // frameData references specified

22 // outport

23 DistanceSensor -> out.distance

24 }

25

26 }

27 Decision {

28 inports [ (frameData , frame)

29 (distance , num) ]

30 }

31 }

32 edges {

33 Sensors.distance -> Decision.distance

34 Sensors.frameData -> Decision.frameData

35 }

36

Figure 5: Sub-network example which mir-
rors 4. The TMR profile applies to all sub-
components: ImageCapture and Distance-
Sensor.

For now, a single parameter corresponds to a
single value or keyword. This is because of two
reasons: we have not encountered a use-case where
entire lines put into a template’s parameters was
beneficial and it is difficult to give useful user feed-
back by the compiler when entire lines or blocks
can be given as parameters.

5 Related work

For related work, we have compiled a short list
of approaches to providing fault-tolerance. We
have been unable to find an existing approach that
provides application-specific (i.e., non-systematic)
fault-tolerance whilst being non-intrusive to com-
putation code.

XBW is a conceptual graphical computing
model that uses entities similar to components
and sub-networks to specify time behaviour and
distribution properties [CPS98]. Contrary to our
approach, XBW makes use of systematic fault-
tolerance which uses the same techniques (active
replication, i.e., NMR) on the whole system.
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1 profiles {

2 TMR {

3 nModular { votingReplicas 3 }

4 }

5 }

6 templates {

7 // Parameters can be used throughout

the template

8 Sensors(numReplicas , rootProfile) {

9 outports [(dist , num),

10 (frameData , frame)]

11 profiles [ rootProfile ]

12 ImageCapture {

13 outports [ (frameData , frame) ]

14 nModular { replicas numReplicas }

15 }

16 DistanceSensor {

17 outports [(dist , num)]

18 }

19 edges {

20 ImageCapture -> out.frameData

21 DistanceSensor -> out.dist

22 }

23 }

24 }

25 components {

26 Sensors(3, TMR) SensorFront

27 // Parameters can be left empty

28 Sensors(4, _) SensorRear

29

30 Decision {

31 inports [

32 (distFront , num) (frameFront ,frame)

33 (distRear , num) (frameRear , frame)

34 ]

35 }

36 }

37 edges {

38 SensorFront.dist -> Decision.distFront

39 SensorFront.frameData ->

40 Decision.frameFront

41

42 SensorRear.dist -> Decision.distRear

43 SensorRear.frameData ->

44 Decision.frameRear

45 }

46

Figure 6: Example of specifying parame-
ters in a template. In SensorFront, NMR
will be utilised with three replicas and the
TMR profile will be applied to all sub-
components. SensorRear on the other hand
will have four replicas and no other profile
will be applied.

Metaobject protocols (MOPs) [KDB91; FB08]
change the behaviour of object-oriented language
building blocks to provide non-functional con-
cerns, like fault-tolerance, in a systematic way.
When a MOP is established, these behavioural
changes result in a mostly user-transparent ap-
proach. An example of using this way of working
is the FRIENDS system [FP98].

Fault-tolerant Linda systems [TWT95; BS95;
FB08] are extensions of the Linda coordination
language [Gel85; GC92; Wel05]. This coordina-

tion language uses a tuple-space in which mes-
sages can be shared between processes. Exten-
sions focus mostly on making tuple-space opera-
tions safer and fault-tolerant utilizing redundancy,
checkpoint/restart and atomics.

Message Passing Interface (MPI) also has ex-
tensions to enable the construction of fault-
tolerant programs [Lag+16; GL04; Bou15;
Bla+13; Sul+19]. Some extensions add structures
and functions to the library, e.g., agreement algo-
rithms and graceful error handling procedures for
when nodes fail. Others focus on systematic fault-
tolerance, usually with checkpoint/restart due to
its low intrusiveness.

6 Conclusion and next steps

In cyber-physical systems, there is still a lot to
be done in the area of creating tools, frameworks,
and languages to aid the programmer in processes
related to software evolution like creating and
maintaining [PZL12; Rom07; Raj+10]. With this
project, we take the first steps towards facilitat-
ing separation of concerns between computation
and coordination code. This provides opportuni-
ties to manage non-functional properties like fault-
tolerance separately from computation code.

In this work, we have extended and improved an
existing coordination language [JSC20]. We have
introduced: templating with parameters, multi-
ple instances of the same component and profiles
(along with cascading and inheritance). Further-
more, we have introduced a way to specify fault-
tolerance methods into the coordination language
and how they can be managed.

In terms of next steps in this research, we imple-
mented the language features proposed here into
the existing compiler. We aim to create a simula-
tor to validate our approach and allow prototyping
of the specification (i.e., the language), manage-
ment, and execution of fault-tolerance strategies.
Additionally, we started working on a visualisa-
tion for the simulator to make the fault-tolerance
behaviour more transparent to the programmer.
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