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Abstract. Data lake architectures enable the storage and retrieval of large 

amounts of data across an enterprise. At Robert Bosch GmbH, we have de-

ployed a data lake for this expressed purpose, focused on managing automotive 

sensor data. Simply centralizing and storing data in a data lake, however, does 

not magically solve critical data management challenges such as data findabil-

ity, accessibility, interoperability, and re-use. In this paper, we discuss how se-

mantic technologies can help to resolve such challenges. More specifically, we 

will demonstrate the use of ontologies and knowledge graphs to provide vital 

data lake functions including the cataloging of data, tracking provenance, ac-

cess control, and of course semantic search. Of particular importance is the de-

velopment of the DCPAC Ontology (Data Catalog, Provenance, and Access 

Control) along with its deployment and use within a large enterprise setting to 

manage the huge volume and variety of data generated by current and future 

vehicles. 

Keywords: Ontology, Knowledge Graph, Semantic Data Lake, Semantic 

Search, Semantic Layer, Provenance, Access Control. 

1 Introduction 

Robert Bosch GmbH is a large enterprise company that designs and manufactures 

automotive components, ensuring the agility, comfort, function and safety of vehicles 

and driver assistance systems. Such components range from classical safety products 

including airbags and electronic stability control to next generation automated driving 

systems. Both the volume and variety of data generated by these systems have been 

growing dramatically in the past few years. More specifically, the types of data range 

from sensor data – including video, RADAR, LIDAR, and CANbus signals – to tex-

tual data and metadata about the various projects collecting and using the data within 
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the company. To handle this complexity, we have developed a holistic architecture for 

managing our data within the enterprise – the Bosch Automotive Data Lake. 

Simply centralizing and storing data in a data lake, however, does not immediately 

solve all data management challenges. Specifically, issues of findability, accessibility, 

interoperability, and re-use – the four principles of FAIR data1 – remain unresolved. 

To facilitate these principles of FAIR data, we have extended our data lake architec-

ture with a semantic layer. This semantic layer consists of an ontology and knowledge 

graph (KG) that provides meaningful, semantic description of all resources in the data 

lake. The resources include a heterogeneous assortment of documents, datasets, and 

databases. Semantic description of these resources, represented as a knowledge graph, 

includes information about the content of the resources, the provenance, and access 

control permissions. The ability to perform semantic search of all data in the data lake 

provides enhanced findability, access, interoperability, and re-use. 

The three primary contributions of this paper include the creation of a DCPAC On-

tology (Data Catalog, Provenance, and Access Control), the development of the Se-

mantic Data Lake Catalog KG that is conformant to DCPAC, and the application of 

the ontology and KG for semantic search and retrieval. In Section 2, we discuss relat-

ed work and then introduce the development and structure of the DCPAC Ontology in 

Section 3. The creation of a conformant KG and its use within an enterprise setting is 

explained in Section 4. Finally, in Section 5 we conclude with an overall summary 

and directions for the future. 

2 Related Work 

In the era of big data, data catalogs emerged as the standard for metadata manage-

ment. In the last few years, however, new application areas have appeared and the 

volume and richness of metadata required has grown significantly. Data lakes consti-

tute one such important new application for data catalogs, besides warehouses, master 

data repositories, etc. According to Gartner, a data catalog “… maintains an invento-

ry of data assets through the discovery, description, and organization of datasets2. The 

catalog provides context to enable data analysts, data scientists, data stewards, and 

other data consumers to find and understand a relevant dataset for the purpose of ex-

tracting business value.” [1].  

Current vendors offer a wide range of commercial data catalog software. A sample 

of such vendors includes Alation Data Catalog, Atlan Enterprise Data Catalog, Talend 

Data Catalog, Collibra Data Catalog, Informatica Enterprise Data Catalog, Microsoft 

Azure Data Catalog, Oracle Cloud Infrastructure Data Catalog, and even Google is 

joining the market with its Googles Data Catalog. To our knowledge, however, none 

of these data catalogs uses or supports standard semantic technologies, nor do they 

allow for using existing ontology vocabularies. Rather they are closed, propriety sys-

tems with their own metadata languages and glossaries. 

                                                           
1 https://www.go-fair.org/fair-principles/ 
2 Datasets are the files, tables, graphs etc. that applications or data engineers need to find and 

access. 

66

https://www.go-fair.org/fair-principles/


3 

Anzo Cambridge Semantics3 is one of a few exceptions, as it is built from the open 

data standards OWL, RDF and SPARQL, which makes it simple to leverage rapidly 

evolving vocabularies in multiple industries. Anzo has a built-in smart data catalog 

functionality that is able to automatically extract the schemas of databases in a data 

lake and support the mapping of the schemas to ontology terms. But the integration of 

this data catalog functionality with existing ETL pipelines, as well as extensibility of 

the built-in data catalog ontology based on domain specific needs, is limited. 

Adding a semantic layer to a data lake is a common approach to developing a se-

mantic data lake, which have been described in literature. The use of data catalogs in 

this context, however, are still rare. In [2], a data lake using semantic technologies is 

presented that can manage datasets produced by sensors or simulation programs in the 

manufacturing domain. It comprises a data catalog that provides inventory services 

and also implements security mechanisms. Different from our approach, however, this 

data catalog is not built using standard semantic technologies, but rather as a simple 

file system. 

A semantic data lake architecture for autonomous fault management in software-

defined networking environments, with clear similarities to ours (Section 4), is de-

scribed in [3]. Another comparable semantic data lake architecture called “Squerall” 

is proposed in [4]. This solution proposes distributed query execution techniques and 

strategies for querying heterogeneous big data. Both approaches, however, lack a data 

catalog and other means of handling provenance or access control. 

Our solution differs from existing solutions by proposing a semantic data lake ar-

chitecture that incorporates a semantic data catalog, built with standard semantic 

technologies, and that addresses provenance and access control for resources in the 

data lake. This solution is described in detail in the following sections. 

3 Semantic Data Catalog, Provenance and Access Control 

Layer for Data Lakes 

As one of the three primary contributions of this paper, this section describes the 

DCPAC ontology (Data Catalog, Provenance, and Access Control). The DCPAC 

ontology can be applied for adding a semantic layer to a data lake, which provides 

semantic description of the content, provenance, and access control permissions of the 

resources in a data lake. This ontology was created by combining several common, 

(predominantly) standardized ontology vocabularies and by aligning and extending 

them where necessary.  

3.1 Ontology Layer Architecture 

Fig. 1 shows a layer architecture diagram of DCPAC ontology, including the ontology 

vocabularies used and their import-relationships. The DCPAC ontology is shown at 

                                                           
3 https://www.cambridgesemantics.com/product/data-cataloging/ 
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the bottom, and recursively imports all other ontologies. Additionally, it defines 

SHACL constraints for validating instance data (ABox). 

In the following subsections, the primary ontologies utilized by DCPAC are de-

scribed. 

 

Fig. 1. Layer architecture of the data catalog, provenance and access control (DCPAC) ontolo-

gy for data lakes. 

Data Catalog (DCAT) Ontology [Prefix: dcat]. The Data Catalog (DCAT) ontology 

“… is an RDF vocabulary designed to facilitate interoperability between data catalogs 

published on the Web. … DCAT enables a publisher to describe datasets and data 

services in a catalog using a standard model and vocabulary that facilitates the con-

sumption and aggregation of metadata from multiple catalogs. This can increase the 

discoverability of datasets and data services. It also makes it possible to have a decen-

tralized approach to publishing data catalogs and makes federated search for datasets 

across catalogs in multiple sites possible using the same query mechanism and struc-

ture.” [5]. DCAT is standardized as a W3C recommendation, with the latest version 

from February 2020, and is being developed further by an active community. 

The DCAT ontology imports and uses the widely recognized SKOS [6] and DCMI 

Metadata Terms [7] ontologies. Its primary purpose in the context of the DCPAC 

ontology is the semantic description of the content of resources in a data lake. 

Provenance Ontology (PROV-O) [Prefix: prov]. The Provenance Ontology 

(PROV-O) “… expresses the PROV Data Model using the OWL2 Web Ontology 

Language. It provides a set of classes, properties, and restrictions that can be used to 

represent and interchange provenance information generated in different systems and 
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under different contexts. It can also be specialized to create new classes and proper-

ties to model provenance information for different applications and domains.” [8]. 

PROV-O is a W3C recommendation from April 2013. Its purpose in the context of 

DCPAC is to describe the provenance of the data lake resources. Such provenance 

information may include the ownership of resources how they were created, by which 

activity and agent, and from what data they were derived. 

Open Digital Rights Language (ODRL) Ontology [Prefix: odrl]. The Open Digital 

Rights Language (ODRL) ontology “… is a policy expression language that provides 

a flexible and interoperable information model, vocabulary, and encoding mecha-

nisms for representing statements about the usage of content and services. The ODRL 

Vocabulary and Expression describes the terms used in ODRL policies and how to 

encode them.” [9]. The latest version 2.2 was published by the W3C in September 

2017. In our data lake scenario, ODRL is applied to defining access control permis-

sions for the data lake resources, including who can access a resource and which ac-

tions are permitted, i.e. display, read, modify, delete. 

DCAT – PROV-O Alignment (DPA) Ontology [Prefix: dpa]. The DCAT – PROV-

O Alignment (DPA) ontology [10] was created by the W3C Dataset Exchange Work-

ing Group (DXWG) and contains alignment axioms between DCAT ontology and 

PROV-O. Thereby, it enhances the DCAT ontology with the ability to use PROV-O 

for expressing advanced provenance information. 

The most relevant alignments defined in the DPA ontology are shown in Fig. 2. It 

aligns the DCAT ontology classes dcat:CatalogRecord, dcat:Resource 

and dcat:Distribution as subclasses of the PROV-O class prov:Entity by 

adding corresponding rdfs:subClassOf statements. Thus, all instances of these 

classes and their subclasses become instances of prov:Entity, which allows the 

usage of all associated PROV-O object properties and classes for modeling prove-

nance information. This makes the provenance and authorship of data, along with its 

evolution over time, trackable in each little detail. 

SKOS Tags Ontology (STO). The Simple Knowledge Organization System (SKOS) 

is “a common data model for sharing and linking knowledge organization systems” 

[6]. We design separate SKOS vocabularies for different domains and use them to 

specify the semantics of resources in a data lake, dependent on its subject. In particu-

lar, we assign each dataset a set of skos:Concepts as tags that provide semantic 

description of the content of a data lake resource. 

The SKOS vocabularies are domain specific. While defining these vocabularies, 

we often reuse terms from existing or newly developed domain ontologies. From the 

domain ontologies, we select subsets of classes and individuals that are relevant for 

the tasks of retrieval, and define them as instances of skos:Concept. Domain spe-

cific SKOS vocabularies are iteratively added to the SKOS Tags ontology (STO), 

which serves as a generic component of the domain-agnostic architecture of the 
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DCPAC ontology (see Fig. 1), bridging it with domain specific ontologies. In the 

following sub-section, we describe one such domain ontology (ASO), developed for 

the Bosch Automotive Data Lake, and show its relationship to the STO. 

 

Fig. 2. DPA ontology: Alignment of DCAT ontology with PROV-O. 

Automotive Signal Ontology (ASO) [Prefix: aso]. The primary goal of the Automo-

tive Signal Ontology [11] is to represent manifold signal types in automotive datasets 

and to enable non-trivial queries spanning over datasets of different types, formats 

and modalities (including radar signals, onboard diagnostics and video data). The use 

of this ontology allows non-domain experts to understand and query the data, as well 

as to automate the integration of signals from different sources in support of a wide 

range of applications and use-cases of interest to the automotive industry. 

The ASO is an OWL 2 ontology. It borrows concepts from several standard ontol-

ogies and vocabularies, namely the W3C Semantic Sensor Network Ontology (SSN) 

[12], the Quantities, Units, Dimensions, and Data Types Ontologies (QUDT) [13] and 

the Vehicle Signal and Attribute Ontology (VSSo) [14], generated from the automo-

tive standard VSS [15]. The ASO conceptualizes a signal by defining several mean-

ingful relations, including the signal type (e.g. aso:WindowPosition as a sub-

class of aso:ObservableSignal), the associated vehicle component (e.g. 

aso:Window), the sensor(s) and actuator(s) involved in generating signal data, as 

well as the measured physical quantities and units-of-measure. It also provides terms 

to describe the specific details of automotive data collection, e.g. CAN bus data, CAN 

frames, messages and signals. 

The ASO also defines an associated SKOS vocabulary, where all signals are de-

fined as instances of skos:Concepts. This vocabulary is a part of STO. 

Consequently, the ASO has a dual role in our Automotive Data Lake. The typing 

of ASO signals as skos:Concepts provides the means to tag resources in the data 

lake in a consistent way and enriches the semantic search capabilities provided by our 
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DCPAC ontology. In addition, the formal semantics of the ASO itself enables expres-

sive queries, which go beyond the hierarchical SKOS tag search and make the data 

lake truly semantic. For example, find all datasets that are tagged with signals of a 

certain type (e.g. aso:ObservableSignal)and being associated with specific 

vehicle component (e.g. aso:Window). 

3.2 Data Catalog – Provenance – Access Control (DCPAC) Ontology 

[Prefix: dcpac] 

The DCPAC ontology is our primary contribution to the ontology layer architecture 

shown in Fig. 1. It combines, aligns and extends the ontology vocabularies described 

in the previous section. The ontology directly imports the ODRL ontology, the DPA 

ontology, the FOAF (“Friend of a Friend”) ontology [16] and optionally one or more 

STO ontologies, and recursively imports all other shown ontologies. We chose to re-

use properties defined by the FOAF ontology – such as foaf:givenName, 

foaf:name, and foaf:mbox – to extend the existing definitions of prov:Agent 

and odrl:PartyCollection. 

Alignments and Extensions to the Upper Layer Ontologies. The DCPAC ontology 

aligns the DCAT ontology with the ODRL ontology by declaring the classes 

dcat:Distribution and dcat:Resource to be subclasses of odrl:Asset, 

as can be seen in the upper part of Fig. 3. With odrl:Asset representing a resource 

or a collection of resources that are the subject of access authorization rules, this ena-

bles the definition of access control permissions for these DCAT classes and sub-

classes with the ODRL vocabulary. Furthermore, the DCPAC ontology extends the 

DCAT ontology by defining various types of dcat:Dataset subclasses (see Fig. 

3), which allows for distinguishing different types of datasets in a data lake, such as 

raw data files, tabular data files, relational database and graph database resources. 

Another contribution is the alignment of PROV-O with the ODRL ontology, as 

shown in Fig. 4. The PROV-O class prov:Agent is declared as subclass of 

odrl:Party, hence enabling all instances of prov:Agent to undertake roles in 

access control permissions. Additionally, the DCPAC ontology defines new sub-

classes of prov:Activity, which allow for distinguishing different types of ac-

tivities that created (dcpac:GenerationActivity) or modified (dcpac: 

ModificationActivity) a data lake resource. 

SHACL Constraints. The DCPAC ontology is associated with a SHACL shapes 

definition file that defines a comprehensive set of SHACL constraints of type SHACL 

Shapes (Node Shapes, Property Shapes) and SPARQL-based constraints [17]. 

SHACL shapes define cardinalities and type restrictions on properties, and regular 

expressions on the allowed values of string datatype properties. One such SHACL 

shape, for example, validates that each dcat:Dataset instance has to have exactly 

one value of type string defined for the property dct:identifier, and the string 
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must match the regular expression “^[a-z0-9][a-z0-9_\-]{2,59}$”. 

SPARQL-based constraints have a higher expressivity and can capture complex de-

pendencies as graph patterns. For the class dcat:Dataset, for example, we de-

fined a constraint that validates that each instance must have at least one semantic tag 

(skos:Concept) attached, and the tags must be members of a 

skos:ConceptScheme that is associated with (i.e. enabled for) the catalog the 

dataset belongs to (see also next section and  Fig. 5). 

A SHACL engine can process the constraints and validate the consistency of the 

KG (ABox)4. That improves the integrity and quality of the KG and prevents issues. 

 

Fig. 3. DCPAC ontology: Refinement and alignment of DCAT ontology with ODRL ontology. 

 

Fig. 4. DCPAC ontology: Refinement and alignment of PROV-O with ODRL ontology. 

                                                           
4 We use Stardog as highly scalable triple store for our Bosch data lake. Stardog supports 

SHACL and has an inbuilt SHACL engine. https://www.stardog.com/platform/ 
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3.3 The Core Vocabulary. 

This Section provides an overview and explanation of the core vocabulary of the 

DCPAC ontology and the primary imported vocabularies, which are explained in the 

previous sections. For the explanation, we refer to Fig. 5, which shows the main on-

tology classes as well as the most important object properties and datatype properties. 

The stereotypes shown for some of the classes in Fig. 5 contain their superclasses and 

hence their alignment to the other ontologies described in the previous sections. We 

abstain from showing and explaining additional classes and properties that are specif-

ic for the Bosch Automotive Data Lake in order to maintain comprehensibility and 

domain-independence. 

DCAT Entities. Let us start with the DCAT ontology classes shown in the center and 

bottom left of Fig. 5. The overall data catalog of the data lake is represented by one 

instance of class dcat:Catalog. It can contain many dcat:Dataset instances, 

one per resource in the data lake, e.g. raw data files, HBase or Hive tables, or RDF-

based knowledge graphs. An instance of class dcat:Distribution models a 

specific representation of a dataset, comprising a specific serialization or schematic 

arrangement. Different distributions can exist for the same dataset, and are accessible 

via a URL (dcat:downloadURL). The data catalog and the datasets can each have 

several data distribution services (dcat:DataDistributionService), which 

are end-points that provide access. They are accessible via an endpoint URL 

(dcat:endpointURL). 

PROV-O Entities. The PROV-O classes and properties shown in the top right part of 

Fig. 5 are used for modeling the provenance of the data catalog and its datasets (both 

declared as subclasses of prov:Entity, see Fig. 2), and for defining agents (e.g. 

person, software agent) they are attributed to (prov:wasAttributedTo) or that 

were involved in the activity of creating the dataset. Activities (prov:Activity) 

are initiated by agents (prov:wasAssociatedWith), create new Datasets 

(prov:wasGeneratedBy), have an start and end time, and can use other datasets 

as input (prov:used).  

ODRL Entities. Access control is defined by classes and properties from the ODRL 

ontology. An odrl:Permission can define an access rule for groups of agents 

(odrl:PartyCollection) to datasets, their distributions and/or data distribution 

services (odrl:target). The allowed actions (odrl:Action), such as display, 

read, modify, delete, are defined as skos:Concept and attached via 

odrl:action object property.  
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 Fig. 5. The main classes and properties of the DCPAC ontology (TBox). 
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SKOS Entities. SKOS finally is applied for defining the semantics of the content of a 

dataset. Therefore, the catalog refers to one or more sets of SKOS concepts 

(skos:ConceptScheme) that can be used for semantically tagging datasets. The 

defined SKOS tags can be either directly linked to a dataset (dcat:theme), or they 

can be bundled and linked as a collection (skos:Collection), which enables the 

definition and reuse of (large) sets of SKOS tags. For the Bosch Automotive Data 

Lake we use the ASO ontology, as described in Section 3.1. 

4 Semantic Data Lake Catalog 

At Bosch, we have built an Automotive Data Lake as a centralized platform for the 

engineering and testing of our autonomous driving applications [11]. To handle and 

manage the complexity and enormous volume of data from all our test drives, we 

have developed a holistic architecture, which is shown in Fig. 6. and explained in this 

section. Resources collected and stored in the Bosch Automotive Data Lake include a 

heterogeneous assortment of documents, datasets and databases. We have created a 

semantic layer, the Semantic Data Lake Catalog, which provides meaningful se-

mantic description of resources in the data lake and enables semantic search. The 

Semantic Data Lake Catalog comprises a knowledge graph that is built with the vo-

cabulary defined in the DCPAC ontology (see Section 3). The semantic description of 

the resources includes information about their content, provenance and access control 

permissions. The ability to perform semantic search of all data in the data lake pro-

vides enhanced findability, access, interoperability, and re-use.  

 

Fig. 6. Data lake architecture and role of Semantic Data Lake Catalog. 
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In the sub-sections below, we explain the other components of the Automotive Data 

Lake shown in Fig. 6, and clarify the process by which the Semantic Data Lake Cata-

log KG is populated and how it is used to query, find and access data assets. 

Data Ingestion Process. As illustrated in Fig. 6, external data from different sources 

(test fleet vehicles, test benches, data warehouse, etc.) are ingested into the data lake, 

either continuously in streams or driven by users and applications. The ingestion pro-

cess is responsible for extracting, transforming and loading new data assets into the 

data stores. The implementation of this ingestion process was containerized using our 

in-house DevOps tool in order to allow scaling-out based on the load. It is important 

to note that this tool does not only provide a mechanism to deploy the ingestion pro-

cesses on our on-premises infrastructure, it also wraps the ingestion with a list of 

standard operators that are automatically called to report the process information as 

well as input & output data to a Kafka5 cluster. These reports, published as standard-

ized Kafka messages, are consumed by the Data Lake Catalog Population Service. 

 

Data Lake Catalog Population Service. Triggered by Kafka messages, the Data 

Lake Catalog Population Service reads the available metadata on the ingested data 

assets and constructs the relevant semantic data as input for our Semantic Data Lake 

Catalog. The Data Lake Catalog Population Service aligns, annotates and enriches the 

input data from the Data Ingestion Process with DCPAC concepts before populating 

the Semantic Data Lake Catalog6. Besides dictionary based mappings (i.e. input data 

schema terms or tags are mapped to dedicated SKOS concepts of our Semantic Data 

Lake Catalog taxonomies), the population service also links signal name strings to 

relevant automotive signal concepts from the Automotive Signal Ontology (based on 

Levenshtein distance). This is a critical part of the knowledge construction process, as 

it enables us to search, integrate and process the various data assets based on a shared 

conceptualization. The Data Lake Catalog Population Service will also record rele-

vant provenance information; e.g. the activity that has created or modified a data as-

set, including information about the source asset as well as begin and end time. 

Data Access Engine. The Data Access Engine (DAE) provides applications with a 

uniform query interface and access to resources (e.g. files, tables, knowledge graphs) 

in the data lake based on a common HTTP-based API and endpoint. At this stage, the 

DAE supports data-type queries (i.e. in HBase7 or Hive8/Impala9 tables), knowledge 

queries (i.e. SPARQL queries of knowledge graphs) and task requests (i.e. Oozie10 

jobs in the Hadoop11 cluster). The DAE secures and hides the details of the underlying 

                                                           
5 Apache Kafka: A distributed streaming platform, https://kafka.apache.org/ 
6 We use Stardog for storing and processing the semantic layer as knowledge graph. 
7 Apache HBase: Distributed big data store that runs on Hadoop, https://hbase.apache.org/ 
8 Apache Hive: Data warehouse software for large distributed datasets, https://hive.apache.org/ 
9 Apache Impala: Native analytic database for Apache Hadoop, https://impala.apache.org/ 
10 Apache Oozie: Workflow scheduler for Hadoop, https://oozie.apache.org/ 
11 Apache Hadoop: Scalable, distributed computing software, https://hadoop.apache.org/ 
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storage system and enables transparent re-direction of requests based on stable and 

global identifiers. The DAE uses the Semantic Data Lake Catalog to control access to 

individual data assets based on common access operations (e.g. read, modify, delete). 

In particular, the Semantic Data Lake Catalog provides a list of authorized user 

groups for a given dataset according to its content type, security class and assigned 

project. For authorization, the DAE supports Kerberos12, for easy integration with 

Enterprise IT systems, as well as JSON Web Token13 based authorization. Besides the 

access control, the DAE also supports template-based requests for the different types 

of resources. The DAE fetches the respective template from the Semantic Data Lake 

Catalog and fills the template with parameters provided in the request. Once the tem-

plate is complete, the DAE fetches/queries the respective resources in the data lake 

and returns the results to the client. This template based request feature has proven 

especially useful in the case of knowledge graph queries, as it enables frontend devel-

opers – without knowledge of RDF and SPARQL – to query relevant data for their 

applications. 

Besides using templates, administrators and authorized data engineers are also able 

to query the data lake and Semantic Data Lake Catalog with native SPARQL queries 

via the DAE. This enables privileged users to carry out complex semantic search and 

analytics on the Semantic Data Lake Catalog (e.g. find all data assets that have been 

derived from a given asset, or find all datasets that contain signals associated with a 

particular sub-system of a car), or perform advanced data management operations 

(e.g. delete all data assets computed by a given provenance activity or task). The DAE 

also provides a means for data management agents to query and update the Semantic 

Data Lake Catalog programmatically. This is the basis for implementing sophisticated 

data lake management agents that can leverage the full semantic query capabilities of 

our Semantic Data Lake Catalog. 

 

Data Processing Tasks. Similar to the Data Ingestion Process, our run-time environ-

ment also supports containerized data processing tasks, such as data enrichment, 

knowledge construction, and data analytics. These tasks use the Semantic Data Lake 

Catalog to find data resources and the DAE to access data or knowledge in the data 

lake. Such processing tasks typically create new data resources (e.g. knowledge 

graphs or tables) or curate existing ones to persist the results. Whenever new data 

resources are created or further metadata about resources are discovered, the Semantic 

Data Lake Catalog is automatically updated. The Data Lake Catalog Population Ser-

vice is triggered via corresponding Kafka messages. Consequently, the Semantic Data 

Lake Catalog is automatically updated and relevant provenance information are rec-

orded.  

 

Data Lake Catalog User Interface. For data lake administrators and data engineers 

to manage and search data resources available in the data lake, we developed a Web 

application that allows the search and selection of resources based on the available 

                                                           
12 Kerberos: The network authentication protocol, http://web.mit.edu/kerberos/ 
13 JSON Web Token, https://tools.ietf.org/html/rfc7519 
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meta data (e.g., type of resource, content type, signals, recording date, associated 

SKOS tags). Selected data resources can then be batch processed, e.g. curated with 

relevant SKOS tags or keywords, ownership or permissions changed, or deleted from 

the data lake. Fig. 7 illustrates a screenshot of our Data Lake Catalog Web applica-

tion.  

 

Fig. 7. A screenshot of the Data Lake Catalog User Interface. 

Our Semantic Data Lake Catalog has been in use since the end of 2019. The Data 

Lake Catalog Population Service is now continuously populating the Semantic Data 

Lake Catalog as new data resources are ingested to the data lake. Since the data lake 

was already in use prior to the implementation of the automated population process 

described above, we are still batch-processing data ingested in the past based on vari-

ous metadata sources. 

 

Table 1 shows the number of data resources registered in the Semantic Data Lake 

Catalog, the number of facts in the knowledge graph, the data volume of the regis-

tered resources as well as the number of registered users.  

Table 1. Statistics of the Semantic Data Lake Catalog KG and data lake (as of 2020-03-31). 

Types of Data Resources 6 
Data Resources 1,798,927 

Facts (triples) in KG 32,363,911 

Fact to Data Resource ratio ~18:1 

RDF Store Cluster Size  3 Stardog Servers 

Data Volume (all assets) 64.1648 Petabytes 

Projects 10 
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5 Conclusion 

This paper presents the design and implementation of a semantic layer for data lakes 

in general and reports on its realization and use for managing data in the Bosch Au-

tomotive Data Lake. In particular, we demonstrate how we use our DCPAC ontology 

(Data Catalog, Provenance, Access Control) for managing data resources in a com-

prehensive manner, enabling findability, accessibility, interoperability, and re-use – 

the four principles of FAIR data (Section 3). We report on the concrete application of 

the DCPAC ontology in conjunction with our Automotive Signal Ontology (ASO) in 

the implementation of the Semantic Data Lake Catalog at Bosch (Section 4). At the 

core of our Semantic Data Lake Catalog is a knowledge graph that includes instances 

for all data resources in our data lake (~1.8M) comprising of the available metadata 

(id, name, date created, date modified, size, format, etc.). The knowledge graph also 

stores references to the encompassing automotive signals (ASO) being defined as 

SKOS tags, defines access control permissions, and documents provenance infor-

mation such as activities and associated agents. This comprehensive knowledge graph 

offers our data scientists and engineers sophisticated semantic search and data man-

agement capabilities, by combining typical metadata search with semantic search 

based on content-related (SKOS tags and formal semantics of the ASO) as well as 

provenance-related (entities, activities, agents) information. 

Several important lessons learnt from the design and usage of the system so far in-

clude: (1) The DCPAC ontology in conjunction with ASO has proven sufficiently 

expressive to find and manage the automotive data resources in our Semantic Data 

Lake Catalog; (2) The population of the Data Lake Catalog must be fully automatic 

and triggered by the data ingestion process; (3) Semantic search and management of 

data resources based on SKOS tags of automotive signals and their conceptualizations 

are critical as equivalent signals occur with different names across the enterprise; (4) 

Provenance related information are critical to manage data and enable traceability and 

automatic reprocessing/updating of derived data; (5) Access control can be seamlessly 

integrated into the KG. 

One of the limitations of our current system is that the ASO covers only a small 

fraction of the overall signals used in our data. This is because the ASO has been 

manually populated so far. As future work, we target a processing pipeline that popu-

lates the ASO with missing signals in a semi-automatic manner by involving domain 

experts as needed. 
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