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Abstract

Safeguarding the trajectory planning algorithms of au-
tonomous vehicles is crucial for safe operation in mixed traf-
fic scenarios. This paper proposes the use of an ensemble
of neural networks to work together under the moniker of
“Crash Prediction Networks”. The system comprises multi-
ple independent networks, each focusing on a different sub-
set of sensory inputs. The aim is for the networks to work
together in unison to reach a consensus of whether a vehicle
might enter a catastrophic state to trigger an appropriate in-
tervention. The proposed approach would act as an additional
layer of safety by supervising the decision making module of
an autonomous vehicle.

Though the proposed approach encompasses all the sensors
and allied paraphernalia, the scope of this paper is exclusively
limited to exploring safety monitors for visual sensors. The
approach can, however, be extrapolated to other sensors. The
evaluation was conducted using the CARLA simulator for
simple driving scenarios studying the benefits of modeling
temporal features to capture the motion in the environment.
Additionally, the paper studies the importance of ‘accounting
for uncertainty’ in models dealing with vehicle safety.

Introduction

Safety, as defined by Avizenis (Avizienis et al. 2004), is the
“absence of catastrophic consequences on the user(s) and the
environment”. Therefore, safety engineering (Torngren et al.
2018) relates to “methods used to assess, eliminate and/or
reduce risk to acceptable level”. Safety in vehicles requires
implementing vehicle-level behaviours (Koopman and Wag-
ner 2017) that ensures safe and reliable performance across
different contexts (McAllister et al. 2017). This could entail
safety by construction, analysis, and verification/validation.
Currently, however, testing is the main method used for en-
suring safety in automated vehicles, and includes the follow-
ing types (Huang et al. 2016): -

1. Software testing: helps to ensure the correctness of the

program at the source code level via unit tests and testing
tools.

2. X-in-the-Loop (XiL) testing: as introduced in (Stellet
et al. 2015; Riedmaier et al. 2018), combines real-world
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and simulated components for testing the functionality of
parts of the system. The software, hardware and the vehi-
cle itself can be tested while simulating the residual parts.

3. Testing in real traffic: allows to study how the au-
tonomous vehicle reacts to real-world driving scenarios
on public roads with other participating actors.

Safety concerns are still seen to be a major impediment in
the wide-scale adoption of autonomous vehicles (Rudolph,
Voget, and Mottok 2018; Kalra and Paddock 2016; McAl-
lister et al. 2017; Koopman and Wagner 2016). Safety moni-
tors can potentially help to alleviate the safety concerns sur-
rounding autonomous vehicles, by observing the inputs to
and outputs from the various modules contained in the driv-
ing pipeline. These monitors usually differentiate between
three main states that the system of interest, in this case,
the car, may end up in (Machin et al. 2016). The first be-
ing the catastrophic state, that is one where the damage has
already been done and from which the system cannot be re-
covered. The remaining two states, namely the safe state and
the warning state, are non-catastrophic. In the safe state the
system behaves as expected, without any constraints. The
warning state is where the system is close to being involved
in a catastrophe but can still be salvaged. For a system to
transition from a safe to a catastrophic state, it must always
pass through the warning state, thus the warning state can
be thought of as the margin, where applying the correct in-
tervention brings the system back to the safe state. Thus,
it requires defining a safety strategy that identifies potential
warning states and specifies corresponding safety rules to
guide the response of the autonomous system.

The problem with existing approaches to safety
monitoring, such as “Safety Monitoring Framework
(SMOF)” (Machin et al. 2016), is that they require hand-
picked and hard-coded limiters defined at the design stage
describing what counts as safe or unsafe intervals of input
and output. However, in neural networks, rather than the
behaviour being hard-coded into the system, the models
learn to detect patterns from the data they were trained on.
This makes it difficult to combine neural networks with
the existing safety monitoring techniques, and might in
fact limit the expressive power and freedom of neural net-
works (Ashmore, Calinescu, and Paterson 2019). Thus this
paper introduces “Crash Prediction Networks” (CPN) (Nair
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Figure 1: Training phase of the crash prediction net-
work (Nair et al. 2019)

et al. 2019) as a °‘safety by construction’ solution for
monitoring modules composed of neural networks. The
aim of this paper is to explore the effectiveness of CPN
in monitoring various aspects of vehicular safety. CPN for
this purpose has been evaluated in a simulated environment
and in the presence of dynamic obstacles. Additionally, the
potential enhancement of prediction accuracy has also been
investigated using temporal features in the architecture of
the networks.

Overall Architecture

Consider an end-to-end setup for the driving system with a
range of sensors that can be trained in simulation, the driv-
ing module uses information about the state of the environ-
ment to decide whether to continue straight, turn or apply
brakes. The Crash Prediction Network can be thought of as
an envelope around this driving module. The aim of CPN
is to study the action decision obtained as output from the
driving module, to determine whether it is likely to lead to
a crash given the sensory information about the state. Safety
monitors need to be extremely robust and reliable, thus to
this effect CPN is suggested to be implemented as an ensem-
ble (Ying Zhao, Jun Gao, and Xuezhi Yang 2005) of neural
networks. Each network differs either in architecture or the
subset of sensory data it consumes as input. The networks
then work in unison to reach a consensus on whether the ve-
hicle should continue with the current action or trigger an
intervention.

During the training phase for CPN ( Figure 1), a dataset is
created by allowing a Reinforcement Learning driving agent
to interact with the environment, and storing the information
of the states encountered and the action taken along with the
outcome. This allows the training of the CPN to be posed as
a classification problem with two classes ‘safe’ or ‘unsafe’
indicating whether the action decision with the given state
information led to a collision or not. During the operational
phase (Figure 2), the ensemble of networks that compose
CPN observe the input from the various sensors and the de-
cision proposed by the driving module to predict the “safe-
ness” of the outcome. If the proposed action is likely to lead
to a catastrophic state, a predefined intervention is triggered
thereby filtering out potentially dangerous action decisions,
else, the proposed action is executed. The predefined inter-
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Figure 2: Operation phase of the crash prediction net-
work (Nair et al. 2019)

vention, also referred to as the “Fail Safe Mode” (as seen in
Figure 2), can be of the form of transferring control to the
human driver, or pulling over to the shoulder of the road and
so on. This paper does not delve into the details of the in-
tervention, but rather focuses on developing the technique to
identify when the intervention should be triggered.

A potential problem that might be encountered is that
CPN might lose its relevance in the real-world over time due
to the dynamic and constantly evolving state of the opera-
tional environment. The setup of CPN makes it possible to
train the network in an iterative manner, which can be used
to combat this problem. Implementing iterative training with
CPN would require the continuous collection of live driv-
ing data during the operational phase and training CPN on
the newly collected data at regular intervals. Additionally, an
advantage with this technique is that it is not tightly coupled
with the nature of the driving agent, though the experiments
use an RL-based driving agent, one could easily swap it for
any other driving agent.

Though the proposed architecture and techniques suggest
the use of an ensemble of networks each focusing on a sub-
group of different sensors, the scope of this evaluation is
limited only to visual data collected using RGB cameras
mounted on the hood of the car in simulation. The paper
studies the importance of accounting for temporal features
in the data on the prediction accuracy of CPN by modeling
two different network architectures, namely “Simple CPN”
and “Spatio-Temporal (ST)-CPN” as depicted in Figure 3.
Simple CPN uses a single frame, i.e., an image of the cur-
rent state to make a prediction about the level of safety of the
next state based on the proposed action of the driving mod-
ule. This is achieved by using a VGG network (Simonyan
and Zisserman 2014) (trained from scratch with the dataset
collected in CARLA as described in the following section)
for feature extraction, which is then concatenated with the
action decision to perform the classification. The ST-CPN
architecture, on the other hand, takes as input an N-frame
long history, i.e., the last N-frames encountered before the
current state, along with the proposed driving decision.

Additionally, the importance of accounting for uncer-
tainty is also studied in this evaluation. Standard deep learn-
ing uses point estimates for predictions (Goodfellow, Ben-
gio, and Courville 2016). Thus, even when the model en-
counters inputs that are dissimilar to the ones that it was
trained on, it might counterintuitively generate a high proba-
bility score, thereby making probability scores an unreliable
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Figure 3: The Simple CPN (left), and ST-CPN (right) archi-
tectures used in conducting experiments

Figure 4: Format of the dataset used by Simple CPN

estimate of the model’s confidence. This can be combated
with the use of Bayesian deep learning which allows for
a probabilistic approach to predictions by inferring distri-
butions over the model parameters (Gal 2016; Kwon et al.
2020). Beside generating uncertainty estimates, Bayesian
deep learning also helps reduce over-fitting. However, such
models are difficult to train, and usually have intractable ob-
jective functions. Thus, in this work, we explore the need
for accounting for uncertainty in safety monitors, like CPN,
with the use of MC-Dropout (Gal and Ghahramani 2016) to
approximate the Bayesian function.

Experiments and Evaluations

As stated in the previous section, the scope of the experi-
ments was limited to inputs from RGB cameras placed on
the hood of the car. Additionally, the focus of the networks
was on preventing “locally avoidable catastrophes” (Saun-
ders et al. 2018), i.e., ones that can be avoided by adjusting
the course of action when danger is imminent. This simpli-
fying assumption eliminates the need for long-term strategic
planning and focuses only at the point of failure. The exper-
iments were conducted using Carla 0.9.6, “an open-source
simulator for urban driving” (Dosovitskiy et al. 2017). The
CARLA simulator provides a “Scenario Runner”, which
acts as an additional layer over the simulator, to support the
testing of driving scenarios laid out by NHTSA as a list of
pre-crash typologies (Najm et al. 2007). To study the im-
portance of temporal features in safety prediction, ST-CPN
is compared against the single frame input of Simple CPN.
The evaluation in this paper, uses a history length of 10,
meaning the last 10 image frames encountered by the ego
vehicle are fed as input to the ST-CPN model. Both the mod-
els are extended for further experiments with uncertainty by
applying MC-Dropout (Gal and Ghahramani 2016). To this
effect, a Dropout layer with a probability of 0.4 is applied
during training and inference after each of the trainable lay-
ers (namely, conv, convlstm and dense) in the models.

Dataset

Creating a representative dataset is a vital part of the deep
learning pipeline. Data for the experiments in this paper was
collected by allowing the ego vehicle backed by an RL-
agent to drive in and interact with the simulated environment
in CARLA. The simulator provides pre-built environments,
called “Towns”. Towns 01, 03 and 04 were used for training
and validation, while towns 02 and 05 were used for testing.
For the initial tests of the proposed approach presented here,



the scale of the experiment was fairly limited with 18000
images (12000 safe and 6000 unsafe) used for training and
9000 (6000 safe and 3000 unsafe) used for testing.

For the experiments discussed here, the ego vehicle used
in the simulation was equipped with three RGB cameras,
placed on the left, right and center of the far-front of the
hood of the car. The cameras enabled the ego vehicle to bet-
ter perceive its surroundings, allowing for a wider field of
view. As mentioned before, the two network architectures
required two different formats of data. Thus, for the Simple
CPN model single frames of images were stored. The RGB
images from the three cameras were first converted to gray-
scale to reduce the effect of color on the decision making of
the neural network since the network only needs to detect
the presence of an obstacle, and not the type of the obstacle.
The single-channel gray-scale images from the three cam-
eras were then combined depth-wise to create a single three-
channel image of dimension 84x84x3 (as depicted in Fig-
ure 4), such that each channel represented one of the gray-
scale images. To extend the data to the ST-CPN model, a
similar procedure was followed to store a concatenation of
the last 10 image frames per step, such that 10 image frame
were stacked vertically to generate an (84x10)x84x3 image.
Before being fed to the model as input, the single long im-
age was processed into a series of 10 images of dimensions
84x84x3 akin to a short video. The two networks perform
binary classification, such that the final dense layer contains
a single neuron. Thus, a decision threshold value of 0.6 was
used, such that if the output layer neuron produces a value
greater than 0.6 then the state-action pair is classified as un-
safe.

Evaluation Metrics

In real world scenarios, unsafe crash states are compara-
tively rare, which often leads to imbalanced datasets. This
information is captured in the collected dataset by enforc-
ing a mild imbalance, as can be noticed in the description of
the dataset in the previous section. Thus, accuracy, the most
commonly used metric in deep learning, does not suffice as
it could lead to a false sense of success. Since falsely classi-
fying unsafe states as safe is much worse than vice versa, the
main focus of the models should be on reducing false neg-
atives. Therefore, recall is an important metric for the CPN
models, which has been captured in this paper via precision-
recall curves.

Simple CPN with Static Obstacles Only

Before moving on to complex scenarios, it was necessary to
test if a deep-learning based model could help predict the
possibility of a crash based on state and action information.
As a sanity check, in this first experiment the Simple CPN
model was tested with only static obstacles, which meant
crashes into walls, fences, rocks, crates on the road and other
static objects in an urban scenario. With a test accuracy of
0.7907, the model was able to predict crash situations. How-
ever, the accuracy was inadequate to be practically usable.
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Figure 5: Simple CPN model on test set with dynamic ob-
stacles

Simple CPN with Dynamic Obstacles

Seeing the results of the previous experiment, the simulation
environment for the following experiments was extended to
include dynamic obstacles in the form of 2- and 4- wheeler
vehicles. The Simple CPN model was tasked with taking as
input an image of the current state along with the proposed
action decision to predict if the next state would be ‘unsafe’.
The model was able to replicate the success of the previous
experiment, achieving a test accuracy of 0.8018 and AUC-
PRC score of 0.7624.

As per the confusion matrix depicted in Figure 5, the num-
ber of false negatives were quite high. However, for safety-
critical applications such as autonomous vehicles, it is im-
portant to reduce false negatives to as low as possible. In or-
der to improve the results of the classification, class weights
were introduced in the Simple CPN architecture. The class
weights were used during training in the ratio of 1:2, such
that the penalty of wrongly classifying a crash case applied
to the loss was double that of the penalty of wrongly clas-
sifying a non-crash case. The results summarized in table 1
show a slight improvement of the overall accuracy and an
increased recall score.

ST-CPN with Dynamic Obstacles

Despite the presence of dynamic objects in the environment,
the Simple CPN made its decision based on only a single
frame of information. This does not allow the network to
model the motion of the ego vehicle as well as other obsta-
cles in the environment. To better deal with moving objects,
the ST-CPN model was introduced, which uses ConvLSTM
to process a contiguous series of 10 frames of images.
Looking at Figure 7 and Figure 5, it is evident that the
ST-CPN model was able to much better identify “unsafe”
situations, thereby reducing the number of false negatives.
This was further visible on comparing the results of the ST-
CPN model against the Simple CPN model in table 1 on
the test set. The disadvantage however was that, due to the



Table 1: Comparison of classification metrics on the test set with clear weather.

Type ACCURACY RECALL PRECISION AUC-PR Note
Simple CPN 0.8018 0.57 0.77 0.7624
Simple CPN 0.8131 0.68 0.74 0.7706  with loss adaption
ST-CPN 0.8773 0.74 0.87 0.8951
Bayesian Simple CPN 0.8015 0.57 0.77 0.7624  Uncertainty: 0.0162
Bayesian ST-CPN 0.8281 0.63 0.71 0.8274  Uncertainty: 0.0166
Bayesian Combined 0.8328 0.62 0.71 0.8382  Uncertainty: 0.0222
higher complexity of the model, the inference time of ST-
CPN increases by a factor of 10 when compared to that of
Simple CPN.
Following the performance of the ST-CPN model, a study
101 - — Simple CPN on the reaction of the model to out-of-distribution data, i.e.,
- - =— ST-CPN
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Figure 6: Performance of the Simple CPN model against the
ST-CPN model on the test set with dynamic obstacles
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Figure 7: ST-CPN model on test data with dynamic obstacles

data that is slightly different from the conditions that the
model was trained on, was performed. For this 3000 images
with clear weather, similar to training conditions, and 3000
images with rainy weather were collected. These were re-
ferred to as “Test small” and “Test rainy”, respectively. As
can be seen in table 2 and Figure 8, the rainy condition
causes the model to misclassify comparatively more “un-
safe” scenarios, thereby dropping the performance of the
model.

[y
o
L

—»— ST-CPN Test (Small)
=— ST-CPN Test (Rain)

Precision
o4 o o o
= ~ @ w
L
L]

o
w

o
S

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 8: Precision-recall curve comparing the performance
of the ST-CPN model on test sets with clear (default) and
rainy weather conditions

Simple CPN with Uncertainty in dynamic
environment

Though accounting for temporal features in the prediction
model helped improve the performance, it suffered from
drop in performance when encountering out-of-distribution
data. Since the real-world is constantly evolving and can-
not be modeled completely in the training data, it is neces-
sary to have in place techniques for the models to deal with
such data. As pointed out in an earlier section, standard deep



Table 2: Comparison of classification metrics on test sets with clear and rainy weather.

Type ACCURACY RECALL PRECISION AUC-PR Note

Bayesian Simple CPN 0.9443 0.90 0.93 0.9740  Uncertainty: 0.0139, training set
Bayesian Simple CPN 0.8030 0.57 0.78 0.7679  Uncertainty: 0.0163, test set
Bayesian Simple CPN 0.6173 0.69 0.45 0.5408  Uncertainty: 0.0212, rainy test set
ST-CPN 0.8816 0.75 0.88 0.8983  testset

ST-CPN 0.7770 0.45 0.79 0.7140  rainy test set

learning gives no information about the confidence of the
model in its prediction. Thus, both the models from the pre-
vious experiments were extended with “MC-Dropout” (Gal
and Ghahramani 2016) by placing a dropout layer after ev-
ery convolutional and dense layer, except the output layer.
The dropout was then applied not just during training but
also during testing, wherein each input was used to generate
T predictions to calculate the mean and variance. The vari-
ance on each observation/data point is an indication of how
certain the model is in its prediction, which in turn shows
how similar the test data is to the training data. Since perfor-
mance improvements of using class weights were negligible,
the Bayesian version of the Simple CPN model was trained
without class weights.

The advantages of using uncertainty becomes clear when
using a dataset that differs considerably from the training
data. Thus, the performance of Bayesian Simple CPN is
evaluated on “Test small” and “Test rainy” from the the pre-
vious experiment. As can be seen from table 2, the test set
with clear weather has similar uncertainty estimates as the
training set, however, while using the test set with the rainy
weather, the uncertainty estimate increases. Thus, even with
a change as small as variation in weather can increase un-
certainty. The uncertainty estimates can therefore be useful
in building trust in the prediction of the CPN models.

The benefit of estimating the confidence of the model in
its decision however comes at the cost of a significantly
longer inference time. During evaluations, the model took
10 times longer to compute the class labels and their corre-
sponding confidence values.

ST-CPN with Uncertainty in Dynamic
Environment

To study the effect of uncertainty estimates, combined with
the benefits of modeling temporal features, the ST-CPN
network, similar to the previous experiment with Simple
CPN, was extended using MC-Dropout. To ensure that the
model was comparable to the Bayesian version of the Sim-
ple CPN model of the previous experiments, both of the
models were trained to have a similar validation accuracy
of about 0.80. Additionally, to capture the essence of the
proposed CPN model with multiple independent neural net-
works, the outputs of the “Bayesian Simple CPN” model
and the “Bayesian ST-CPN” model were combined as a
weighted average with higher weight being assigned to the
latter. This model is referred to as the “Combined” model.
Evaluating the performance over a range of probabil-
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Figure 9: Precision-recall curve comparing the performance
of the Bayesian versions of Simple CPN model, ST-CPN
model and a weighted combination of the two models

ity thresholds, the combined model performs slightly better
than both individual models, as seen in Figure 9, thereby
showing the benefit of modeling CPN as an ensemble of di-
verse networks working in unison to make a prediction about
the future state.

Conclusion

The paper evaluated the proposed system of “Crash Predic-
tion Network™ and demonstrated its advantage in exploiting
the expressiveness of neural networks, while also maintain-
ing robustness due to the ensemble-like setup. CPN provides
redundancy to the setup by adding a layer of “safety pre-
diction”. CPN has the power to re-check the decisions of
the driving module, thereby, sharing the load of safe deci-
sion making with the driving module. More importantly, it
should be noted that CPN is not just a solution for futuris-
tic autonomous vehicles, but can in fact be integrated with
current levels of automation to monitor driving decisions of
human drivers to ensure safer and more conservative driv-
ing, thereby reducing human error on roads.

Based on the evaluations discussed in the paper, the im-
portance of accounting for temporal features to model mo-
tion in the environment is evident. Thus, future work in-
volves extending the CPN model to support other sensory
data as input, along with examining longer history lengths.



Furthermore, one could increase the level of granularity of
the prediction label beyond just ‘safe’ and ‘unsafe’. This
would allow for a more sensitive setup with the ability
to trigger situation-specific interventions, which is not cur-
rently possible. Additionally, the networks that form the en-
semble could be extended beyond merely sensory inputs to
make it geographical region and/or rule-specific with con-
siderably little effort.
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