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Abstract

In this position paper, we are interested in what test cover-
age measures can, and cannot, tell us about neural networks.
We begin with a review of the role of test coverage measures
in traditional development approaches for safety-related soft-
ware. We show how those coverage measures, in the neural
network sense, cannot achieve the same aims as their equiv-
alents in the traditional sense. We provide indications of ap-
proaches that can partially meet those aims. We also indicate
the utility of current neural network coverage measures.

1 Introduction

Neural Networks (NNs) have demonstrated significant util-
ity in a range of safety and security related applications (e.g.
autonomous cars (Tian et al. 2018)). In such cases there is
a need to provide a commensurate level of assurance that a
particular NN implementation is correct. Approaches to NN
assurance have drawn inspiration from those used for tradi-
tional safety-related software. The concept of test coverage
is one such example.

NNs are different to traditional software. We contend that:
these differences fundamentally change the meaning of sev-
eral types of test coverage (e.g. requirements and structural
measures); there are approaches that can partially achieve
the intent of these traditional test coverage measures in an
NN context; and currently-proposed measures of NN test
coverage have utility in different ways.

The remainder of this paper is structured as follows: Sec-
tion 2 provides an overview of the role of test coverage mea-
sures in the development of traditional safety-related soft-
ware; Section 3 summarises a selection of NN test coverage
measures proposed in the literature; Section 4 outlines NN-
based approaches that can achieve some of the aims of tradi-
tional test coverage; Section 5 summarises the value that can
be gained from current NN coverage measures; Section 6
concludes the paper.

2 Traditional Safety-Related Software
Development

Our discussion of safety-related software development is
based on DO-178C (RTCA 2011), which is commonly used
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in the aerospace domain. This approach is generally appli-
cable, since the principles adopted in DO-178C are mirrored
elsewhere (e.g. (Hawkins, Habli, and Kelly 2013)).

Before the discussion, we note that although a signifi-
cant amount of practical experience provides confidence in
DO-178C, and its predecessor, DO-178B, there is little, if
any, explicit evidence to support the specific coverage cri-
teria that are used (Holloway 2013). This limitation is not
restricted to DO-178C: it applies across many safety-related
software standards (Graydon and Holloway 2015). Never-
theless, we believe a traditional safety-related software de-
velopment standard is an appropriate basis for this work.
This is partly because of the excellent safety record of in-
dustries that use such standards and partly because many NN
test coverage measures are (implicitly or explicitly) based on
measures used in traditional software engineering.

The development of safety-related software begins with
system-level requirements that have been allocated to soft-
ware. These high-level requirements are hierarchically de-
composed, in a traceable manner, from requirements that
detail ‘what’ behaviour is needed, down to requirements
that detail ‘how’ to achieve this. The software require-
ments are also independently used to produce test cases in a
Requirements-Based Testing (RBT) approach. The tests are
run and the coverage of the code structure is measured dy-
namically. RBT is an attractive approach to test design since
it acknowledges that exhaustive testing is (generally speak-
ing) infeasible and it focusses on the demonstration of the
intended behaviour.

Assuming all tests pass, if structural coverage is incom-
plete then one of the following three conditions holds, where
the notion of correctness directly relates to the intent of the
high-level requirements:

e The software’s behaviour is correct, but the software-level
requirements are incomplete;

e The software-level requirements are correct, but the soft-
ware includes additional, unnecessary behaviour (we in-
clude unreachable as well as redundant code here);

e The software behaviour and software-level requirements
are correct, but the fest set is incomplete. This includes,
for example, cases where development tools introduce
code for runtime efficiency.

Considering all three of these conditions provides con-



fidence that (once a suitable level of coverage has been
achieved) the code sufficiently implements the requirements
and, furthermore, it contains no undesirable additional be-
haviour. The link between requirements and behaviour is
important, because requirements are the key mechanism for
communicating expectations about software behavoiur with
actors in the development, test and integration of the soft-
ware.

Structural coverage is typically measured at the software
unit level. Equivalently, at this level behaviour can be de-
fined, and verified. Hierarchical decomposition of require-
ments, supported by architectural design, provides confi-
dence that unit-level behaviour can be aggregated to provide
the required system-level behaviour. Not all behaviour can
be tested at this level, thus testing continues through the in-
tegration processes.

The type of structural coverage that is required depends
on the criticality of the software. In less-critical cases,
statement coverage suffices; more demanding cases require
branch coverage; and the most critical cases require Modi-
fied Condition / Decision Coverage (MCDC) (RTCA 2011).
A useful tutorial on these types of structural coverage can be
found at (Hayhurts et al. 2001). It is apparent that all of these
coverage levels are based on code structure. This reflects an
implicit assumption that code structure, rather than data, is
the main influence on software behaviour. Cases where data
significantly affects behaviour would be expected to be de-
fined in a requirement and addressed by a test case.

The combination of RBT and coverage measurement is
important. Even though behaviour is, typically, not strongly
data-dependent, there is still value in using suitably realistic
test values. Simply optimising a test set to achieve a given
level of coverage, with little or no consideration of the re-
quirements, is less effective than RBT (Gay et al. 2015). The
reverse approach, of testing against requirements without
measuring coverage, cannot provide confidence that the re-
quirements suitably encapsulate the software’s behaviour. It
can say that the software satisfies the requirements, but pro-
vides no information on what else the software may do. This
information is an important part of assuring safety-related
software.

In summary, for traditional software: hierarchical decom-
position of requirements means that software behaviour can
be understood at the unit level; independent interpretation
of requirements provides confidence that requirements have
been implemented correctly; and the combination of RBT
and structural test coverage provide confidence that the re-
quirements suitably describe the software’s behaviour, both
what it does and what it does not do.

3 Neural Network Coverage Measures
Our main interest is in Artificial Intelligence (Al), particu-
larly Al implemented using Machine Learning (ML) tech-
niques. Due to their prevalence, we focus on NNs, but much
of what follows is applicable to other forms of ML.

Historically, NN testing was based on measures like pre-
cision and recall, calculated using a set of data that was held
back from training. The inadequacy of these measures is
demonstrated by adversarial inputs (Szegedy et al. 2014).

Networks that, based on these measures, perform extremely
well against verification data may display significant unde-
sirable behaviour when exposed to previously unseen, but
valid, inputs. This does not necessarily mean concepts like
precision and recall should be abandoned: it means that, in
isolation, they do not provide sufficient confidence for the
use of NNs in safety-related applications.

More recently, a variety of coverage measures, based on
internal properties of an NN, have been proposed. It should
be noted that, to the best of our knowledge, use of these mea-
sures has thus far been demonstrated using von Neumann
architecture hardware. For some, different, architectures it
may not be efficient or even possible to collect the informa-
tion on which these measures are based.

Some notable example coverage measures are sum-
marised below.

DeepXplore (Pei et al. 2017) aims to systematically test
a collection of similar NNs for erroneous corner case be-
haviours. It uses a gradient-guided local search that starts
from a seed input and solves a joint optimisation problem,
seeking to find new inputs that cause different neuron ac-
tivation patterns and lead the NNs to behave differently on
the same task. In the same paper, the notion of neuron cov-
erage is developed based on the fraction of neurons that are
activated for at least one test input, with a neuron consid-
ered active if its output is above a threshold value (e.g. 0).
Equivalently, 100% coverage is achieved if each neuron is
activated at least once by the test set.

DeepGauge (Ma et al. 2018) considers two levels of cov-
erage: neuron-level and layer-level.

e Neuron-level coverage splits the output range of each neu-
ron (established during the training phase) into & equal
sections. The k-multisection coverage of that neuron is
the fraction of sections that the neuron’s output falls into
across all inputs in the test set. The k-multisection cover-
age of the NN is the average of these neuron coverages.

e Layer-level coverage is based on the [ neurons, and com-
binations thereof, in each layer that have the greatest out-
put value. Top-I neuron coverage is the fraction of neurons
that are in the top [ neurons in their layer for at least one
of the test inputs.

DeepCT (Ma et al. 2019) is inspired by combinatorial
testing (see (NIST 2010)). Two, layer-level coverage mea-
sures are defined:

e Sparse coverage considers the fraction of m-way subsets
in which all neurons are activated for at least one test in-
put. For example, a layer of four neurons will have six
2-way subsets.

e Dense coverage considers the fraction of m-way activa-
tion patterns that are activated for at least one test input.
For example, a 2-way subset has four activation patterns.

DeepConcolic (Sun et al. 2019) is based on a variety of
measures, loosely inspired by MCDC:

e Sign-sign coverage measures whether the change in out-
put sign (i.e. moving from zero to non-zero) of a neuron in
layer n independently affects the output sign of a specific
neuron in layer n + 1 (i.e. the subsequent layer).



e Value-value coverage measures whether a change in out-
put value (e.g. similar to the k-sections used by Deep-
Gauge) of a neuron in layer n independently affects the
output value of a specific neuron in layer n + 1.

e The notions of sign-value and value-sign coverage natu-
rally follow.

These measures show a progression, from simple as-
pects of individual neuron behaviour (e.g. activation or non-
activation), through more complex aspects of individual neu-
ron behaviour, to the joint behaviour of combinations of neu-
rons, either in the same layer or in neighbouring layers.

4 Towards Traditional Coverage for Neural
Networks

Constraints

For the purposes of this paper, we are primarily concerned
with structural coverage (although we remain interested in
requirements throughout). For completeness, we note that
other attributes will be important in an overall assurance ar-
gument supporting the use of an NN. A key area is the NN
development process. This is covered in detail in (Ashmore,
Calinescu, and Paterson 2019) and SCSC-153A (SASWG
2020).

Recall, traditional software test structural coverage mea-
sures, when used in conjunction with RBT, provide a level of
confidence that software satisfies requirements and require-
ments cover software behaviour. When viewed in that light
it is apparent that the types of NN coverage measures dis-
cussed above cannot achieve the same aims as traditional
software coverage measures. As illustrated in the following
paragraphs, none of the requisite building blocks, which al-
low traditional coverage to work in this way, are present in
the NN context.

We do not have a complete set of requirements. There is
often a good understanding of the purpose of an NN, for
example: ‘recognise hand-written digits’ or ‘determine sen-
timent from social media messages’. However, in our expe-
rience, there is rarely, if ever, a set of requirements that is
accurate, complete, unambiguous and verifiable.

Not all NN requirements can be hierarchically decom-
posed. Some level of methodical decomposition is often pos-
sible; for example, ‘recognise hand-written digits’ could be
decomposed to explicitly cater for ‘triangular 4s’, ‘open 4s’
and ‘crossed 7s’. But, requirements like these cannot be de-
composed to a level that can be directly coded against. In
particular, in a safety-related environment, if we could de-
compose to a directly-codeable level then there would be no
need to use an NN and traditional software would be the
preferred approach (Salay and Czarnecki 2018).

We do not have a meaningful software unit level at which
software behaviour can be described. As indicated previ-
ously, current NN coverage measures focus on neuron be-
haviour, either individually or in patterns. Although this be-
haviour controls the network’s output, it does not (and can-
not) describe software behaviour in a way that is meaningful
to a user. Some approaches to explainability may help, for
example: identifying pixels that positively weight towards a

particular class (Ribeiro, Singh, and Guestrin 2016) or visu-
alising feature maps from a final convolutional layer (Chat-
topadhay et al. 2018). Whilst useful, these do not provide the
requisite understanding. Furthermore, they do not generalise
across all types of NN or all NN applications.

Software Satisfies Requirements

One of the strengths of NNs is their ability to generalise
from incomplete specifications. It may seem that asking for
a demonstration that an NN satisfies a set of requirements
negates this strength.

From our perspective, the distinction is in the level at
which requirements are expressed. Placing, and verifying,
requirements on the network’s internals does not provide
traceability between requirements and behaviour. That trace-
ability might be achieved by placing (an appropriate set of)
requirements on the NN’s Input — Output behaviour.

Adversarial examples (Szegedy et al. 2014) are one aspect
of this behaviour. ‘Robustness’ to these examples has often
been suggested, sometimes implicitly, as a requirement that
an NN should meet. For feed forward networks, this can be
demonstrated, or a counter-example found, using techniques
based on Satisfiability Modulo Theories (SMT) (Huang et al.
2017).

DeepPoly (Singh et al. 2019) couples an abstract domain
(specifically, a combination of floating-point polyhedra with
intervals) with abstract transformers for common neural net-
work functions. This allows guarantees to be made, for ex-
ample, that all samples within an L, ball will be classified
correctly, or that all image rotations (up to a given angle)
will be classified correctly. Note that, in these cases, ‘classi-
fied correctly’ means all samples in the region will be given
the same class. It is assumed that this behaviour is correct.

Marabou (Katz et al. 2019) is an SMT-based tool that can
be used to check whether a particular NN satisfies a specific
property. If the property is not satisfied then a concrete input
for which the property is violated (i.e. a counter-example)
is provided. Amongst other things, the tool has been used
to prove properties about an Airborne Collision Avoidance
System (ACAS) for unmanned aircraft (Julian et al. 2016).

Deep Learning with Differentiable Logic (DL2) (Fischer
et al. 2018) can support training and querying of NNs. In the
training application, logical constraints are translated into
non-negative loss functions, which are incorporated into the
overall optimisation the training is attempting to complete.
The querying application allows constraints over properties
not directly computed by the network (e.g. constraints can
consider the likelihood of an input being in one of a set
of classes). These types of constraint can readily express
system-level requirements.

Even if the (suitably-measured) performance of an NN
is adequate, this does not necessarily mean that an NN is
making decisions in the same way as a human would. There
is evidence that NNs use highly-predictive, but non-intuitive
(to a human) features to support classification (Ilyas et al.
2019). If the distinction between ‘good performance’ and
‘good performance, deciding like a human’ is important then
it should be captured as a requirement and explicitly tested.



Requirements Cover Software Behaviour

As noted earlier, a key question is whether there are aspects
of software behaviour that are not captured by the require-
ments. That is, if a user fully understands the requirements
then will they ever be surprised by the software’s behaviour?
This latter formulation is helpful as it clarifies what we mean
by ‘behaviour’. In particular, we are interested in behaviour
that is externally observable. From the perspective of an
NN, we are primarily interested in behaviour in the sense
of Input — Output mappings.

In the NN context, one way of categorising different con-
tributors to behaviour is by considering different types of in-
put. Four related spaces are defined in (Ashmore, Calinescu,
and Paterson 2019): the input domain space, which are in-
puts that the NN can accept; the operational domain space,
which are inputs that the NN may receive when used opera-
tionally, the failure domain space, which are inputs the NN
may receive if there are failures elsewhere in the system; and
the adversarial domain space, which are inputs the NN may
receive if it is being attacked by an adversary.

Using this structure there are a number of techniques
that can help increase coverage of potential NN behaviour:
space-filling designs for computer experiments (Santner,
Williams, and Notz 2018) are potentially relevant for the
input domain; the notion of situation coverage (Alexander,
Hawkins, and Rae 2015) is potentially relevant for the opera-
tional domain; Failure Modes and Effects Analysis (FMEA)
should be useful for the failure domain; and ‘red teaming’
(Kardos and Dexter 2017) should inform the adversarial do-
main. Whilst they are useful, none of these techniques define
a precise boundary of testing sufficiency. Greater experience
of the practical use of NNs is likely to be required before
such boundaries can be set.

These approaches provide a ‘forward-looking’ way of un-
derstanding behaviour; they rely on choosing inputs to in-
voke behaviour. This differs from the approach to traditional
software requirements and structural coverage, where be-
haviour is invoked, in a sense, from within the behavioural
regimes defined in the low-level requirements structure.

Generative Adversarial Networks (GANs) could help fill
this gap. For example, they could be used to find plausible
operational domain inputs that exhibit different behaviours
to those observed in the training data. These could be inputs
that are similar to training samples but result in different out-
puts; for classification networks, this is the same as finding
adversarial inputs. Alternatively, they could be used to find
inputs that are sufficiently different from any sample in the
training data.

Another approach involves looking for specific undesir-
able behaviours in an NN. Detection and mitigation of back-
door attacks (Wang et al. 2019) is one example.

In some cases, specifically for feed-forward networks, it
may be possible to automatically infer formal properties
(Gopinath et al. 2019). This is a helpful way of understand-
ing aspects of the NN’s behaviour. However, there is no
guarantee that the inferred properties will be meaningful, in
the sense of system-level requirements.

Summary

The way that NN are constructed means test coverage mea-
sures cannot perform the same function as they do for tradi-
tional software. There are a number of approaches that can
be used to provide some confidence that the NN satisfies re-
quirements. There are also approaches that can provide some
confidence that the NN’s behaviour is understood.

5 The Utility of NN Coverage Measures

The previous discussion highlights a distinction between the
implicit motivation for NN coverage measures and their util-
ity. We propose four ways in which NN coverage measures,
like those discussed in Section 3, could have utility.

Firstly, following the analogy that training data represent
the low-level behavioural requirements, the measures could
be used to optimise training data, for example, by identify-
ing whether a larger, or more diverse, training set was ex-
ercising a larger portion of internal network behaviour. If
it is then this is an argument for using an alternative, pos-
sibly larger, data set, despite the additional overheads and
increased risk of over fitting.

Secondly, the measures could be used to compare training
data, used during development, with verification data, used
by an independent team. Suppose, for example, that the full
set of training and verification data achieves greater cover-
age than just the training data. This outcome would demon-
strate the independent verification activity is exercising ad-
ditional types of internal NN behaviour to those observed
during the development phase. This could be evidence that
a suitably independent verification activity has been con-
ducted.

Thirdly, many of the approaches used to measure NN cov-
erage can also be used fo generate additional inputs that
would extend coverage. As such, they provide an indica-
tion of ways in which training data could be meaningfully
extended. Obviously, for situations where the NN is being
developed using supervised learning, the appropriate output
needs to be produced for each of these new inputs.

Fourthly, the measures can be used fo choose between two
different NNs that otherwise offer similar levels of perfor-
mance. In such situations, the NN for which a fixed set of
training data achieves greater coverage might be preferred.
In general, this would be expected to be the NN with the
simpler structure.

6 Conclusions

NNs have demonstrated significant utility. Their use in
safety-related systems is predicated on confidence in their
behaviour, both what they do and what they do not do. For
traditional safety-related software much of this confidence
comes from test coverage measures in an RBT context. The
approaches used to measure test coverage for NNs cannot
provide an equivalent confidence.

There are approaches that can provide some aspects of
this confidence. Appropriate consideration of different in-
put spaces can help, as can GAN-based methods for finding
‘new’ inputs. NN test coverage measures can provide value
in other ways. They can, for example, provide a principled,



structured way of choosing between different training data
sets, or between different trained models.

In conclusion, NN test coverage measures can have sig-
nificant utility. They represent different types of confidence
than is found in their traditional software testing forebears.
However, more work is required before a holistic and com-
plete understanding is achieved in the relationship between
the coverage measures and confidence in NN behaviour.
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