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Abstract
Designing reward functions for reinforcement learning is dif-
ficult: besides specifying which behavior is rewarded for a
task, the reward also has to discourage undesired outcomes.
Misspecified reward functions can lead to unintended nega-
tive side effects, and overall unsafe behavior. To overcome
this problem, recent work proposed to augment the specified
reward function with an impact regularizer that discourages
behavior that has a big impact on the environment. Although
initial results with impact regularizers seem promising in mit-
igating some types of side effects, important challenges re-
main. In this paper, we examine the main current challenges
of impact regularizers and relate them to fundamental design
decisions. We discuss in detail which challenges recent ap-
proaches address and which remain unsolved. Finally, we ex-
plore promising directions to overcome the unsolved chal-
lenges in preventing negative side effects with impact regu-
larizers.

1 Introduction
Specifying a reward function in reinforcement learning (RL)
that completely aligns with the designer’s intent is a difficult
task. Besides specifying what is important to solve the task
at hand, the designer also needs to specify how the AI sys-
tem should behave in the environment in general, which is
hard to fully cover. For example, RL agents playing video
games often learn to achieve a high score without solving
the desired task by exploiting the game (e.g. Saunders et al.
2018). Side effects occur when the behavior of the AI system
diverges from the designer’s intent because of some consid-
erations that were not anticipated beforehand, such as the
possibility to exploit a game. In this work, we focus on side
effects that are tied to the reward function, which we define
as side effects that would still occur if we had access to an or-
acle that finds an optimal policy for a given reward function.
We explicitly do not consider side effects resulting from the
used RL algorithm, which are often discussed using the term
safe exploration (Garcıa and Fernández 2015).

In practice, the designer typically goes through several it-
erations of reward specification to optimize the agent’s per-
formance and minimize side effects. This is often a tedious
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process and there is no guarantee that the agent will not ex-
hibit side effects when it encounters new situations. In fact,
such problems with misspecified reward functions have been
observed in various practical applications of RL (Krakovna
et al. 2020b).

In most situations, it is useful to decompose the re-
ward R(s) into a task-related component Rtask(s) and an
environment-related component Renv(s), where the latter
specifies how the agent should behave in the environment,
regardless of the task.1 As Shah et al. (2019) observe,Renv is
related to the frame problem in classical AI (McCarthy and
Hayes 1969): we not only have to make a prediction about
what is supposed to change, but also what is supposed to re-
main unchanged.Renv is more prone to misspecification, be-
cause it needs to specify everything that can happen beyond
a task, that can result in undesired outcomes. Because the
designer builds an RL agent to solve a specific problem, it
is relatively easy to anticipate considerations directly related
to solving the task in Rtask. Shah et al. (2019) point out that
environments are generally already optimized for humans,
hence, definingRenv primarily requires to specify which fea-
tures of the environment the AI systems should not disturb.
Therefore, penalizing large changes in the current state of
the world can be thought of as a coarse approximation for
Renv.

Impact regularization (IR) has emerged as a tractable and
effective way to approximate Renv (Armstrong and Levin-
stein 2017; Krakovna et al. 2019; Turner, Hadfield-Menell,
and Tadepalli 2020). The main idea behind IR is to approx-
imate Renv through a measure of “impact on the environ-
ment”, which avoids negative side effects and reduces the
burden on the reward designer.

In this paper, we discuss IR of the form

R(st) = Rspec(st)− λ · d(st, b(s0, st−1, t)) (1)

where st denotes the state at time step t, Rspec denotes the
reward function specified by the designer,2 and:

• the baseline b(s0, st−1, t) provides a state obtained by fol-
lowing a “default” or “safe” policy at timestep t and uses

1We write the reward function only as a function of states for
simplicity, as the state-space can be formally extended to include
the last action.

2Rspec contains the specified parts of both Rtask and Renv.



either the initial state and the current time (s0, t) to com-
pute it, or else the current state st−1,

• d measures the deviation of the realized state from the
baseline state, and

• λ ≥ 0 gives a global scale at which to trade off the speci-
fied reward and the regularization.

Composing these three terms gives a general formulation
of regularization that encompasses most proposals found in
the literature, but permits separate analysis (Krakovna et al.
2019).

We start by giving an overview of the related work on
IR (Section 2), before we discuss the three main design de-
cisions for IR. First, we discuss how to choose a baseline
(Section 3), emphasizing considerations of environment dy-
namics and a tendency for agents to offset their actions. Sec-
ond, we discuss how to quantify deviations from the base-
line (Section 4), especially the distinction between negative,
neutral, and positive side effects. Third, we discuss how to
choose the scale λ (Section 5). Finally, we propose some
directions to improve the effectiveness of IR (Section 6) .

The main contribution of this work is to, discuss in de-
tail the current main challenges of IR, building upon previ-
ous work, and to suggest possible ways forward to overcome
these challenges.

2 Related Work
Amodei et al. (2016) reviewed negative side effects as one
of several problems in AI safety, and discussed using im-
pact regularization (IR) to avoid negative side effects. Since
then, several concrete approaches to IR have been proposed,
of which eq. (1) gives the underlying structure. Armstrong
and Levinstein (2017) proposed to measure the impact of the
agent compared to the inaction baseline, starting from the
initial state s0. The inaction baseline assumes the agent does
nothing, which can be formalized by assuming a non-action
exists.3 Armstrong and Levinstein (2017) emphasized the
importance of a semantically meaningful state representa-
tion for the environment when measuring distances from the
inaction baseline. While Armstrong and Levinstein (2017)
discussed the problem of measuring the impact of an agent
abstractly, Krakovna et al. (2019) proposed a concrete de-
viation measure called Relative Reachability (RR). RR mea-
sures the average reduction in the number of states reachable
from the current state, compared to a baseline state. This
captures the intuition that irreversible changes to the envi-
ronment should be penalized more, but has advantages over
directly using irreversibility as a measure of impact (as e.g.
in Eysenbach et al. (2018)), such as allowing to quantify the
magnitude of different irreversible changes.

Turner, Hadfield-Menell, and Tadepalli (2020) and
Krakovna et al. (2019) generalized the concept of RR to-
wards Attainable Utility (AU) and Value Difference (VD)

3Armstrong and Levinstein (2017) define this baseline as the
state the environment would be in when the agent would have never
been deployed. This is slightly different from the definition of the
inaction baseline we give here and that later work used, as the mere
presence of the agent can influence the environment.

measures respectively, which both share the same structural
form for the deviation measure:

dVD(st, s
′
t) =

X∑
x=1

wxf
(
Vx(s

′
t)− Vx(st)

)
, (2)

where x ranges over some sources of value, Vx(st) is the
value of state st according to x, wx is its weight in the sum
and f is a function characterizing the deviation between the
values. AU is a special case of this with wx = 1/X for all x
and the absolute value operator as f . This formulation cap-
tures the same intuition as RR, but allows to measure the
impact of the agent in terms of different value functions, in-
stead of just counting states. Concretely, AU aims to mea-
sure the agent’s ability to achieve high utility on a range of
different goals in the environment, and penalizes any change
that reduces this ability. Turner, Hadfield-Menell, and Tade-
palli (2020) also introduced the stepwise inaction baseline to
mitigate offsetting behavior (c.f. Section 3.2). This baseline
follows an inaction policy starting from the previous state
st−1 rather than the starting state s0. Follow-up work scaled
AU towards more complex environments (Turner, Ratzlaff,
and Tadepalli 2020).

Krakovna et al. (2020a) built upon the VD measure and
introduced an auxiliary loss representing how well the agent
could solve future tasks in the same environment, given its
current state. This can be seen as a deviation measure in e.q.
(1) that rewards similarity with a baseline instead of penal-
izing deviation from it. Eysenbach et al. (2018)’s approach
to penalize irreversibility can be seen as a special case of
Krakovna et al. (2020a).

Aside from IR, Rahaman et al. (2019) proposed to learn
an arrow of time, representing a directed measure of reach-
ability, using the intuition that irreversible actions tend to
leave the environment in a more disorderly state, making it
possible to define an arrow of time with methods inspired by
thermodynamics. As another alternative to IR, Zhang, Dur-
fee, and Singh (2018, 2020) proposed to learn which envi-
ronmental features an AI system is allowed to change by
querying a human overseer. They provided an active query-
ing approach that makes maximally informative queries.
Shah et al. (2019) developed a method for learning which
parts of the environment a human cares about by assum-
ing that the world is optimized to suit humans. Saisubra-
manian, Kamar, and Zilberstein (2020) formulated the side
effects problem as a multi-objective Markov Decision Pro-
cess, where they learn a separate reward function penaliz-
ing negative side effects and optimize this secondary objec-
tive while staying close to the optimal policy of the task ob-
jective. Saisubramanian, Zilberstein, and Kamar (2020) pro-
vide a broad overview of the various existing approaches for
mitigating negative side effects, while we zoom in on one
class of approaches, IR, and discuss the corresponding chal-
lenges in detail.

3 Choosing a Baseline
Recent work mainly uses two types of baselines in impact
regularization (IR): (i) the inaction baseline b(s0, st, t) =
T (st|s0, πinaction) and (ii) the stepwise inaction baseline



b(s0, st, t) = T (st|st−1, πinaction), where T is the distribu-
tion over states st when starting at state s0 or st−1 respec-
tively and following the inaction policy πinaction that always
takes an action anop that does nothing.

Unfortunately, the inaction baseline can lead to undesir-
able offsetting behavior, where the agent tries to undo the
outcomes of their task after collecting the reward, moving
back closer to the initial baseline (Turner, Hadfield-Menell,
and Tadepalli 2020). The stepwise inaction baseline re-
moves the offsetting incentive of the agent by branching off
from the previous state instead of the starting state (Turner,
Hadfield-Menell, and Tadepalli 2020). However, Krakovna
et al. (2020a) argued that offsetting behavior is desirable in
many cases. In section 3.2 we contribute to this discussion
by breaking down in detail when offsetting behavior is desir-
able or undesirable, whereas in section 3.3, we argue that the
inaction baseline and step-wise inaction baseline can lead
to inaction incentives in nonlinear dynamical environments.
We start, however, with the fundamental observation that the
inaction baseline and stepwise inaction baseline do not al-
ways represent safe policies in section 3.1.

3.1 Inaction Baselines are not Always Safe
The baseline used in IR should represent a safe policy where
the AI system does not harm its environment or itself. In
many cases, taking no actions would be a safe policy for the
agent, e.g. for a cleaning robot. However, if the AI system is
responsible for a task requiring continuous control, inaction
of the AI system can be disastrous. For example, if the agent
is responsible for driving a car on a highway, doing noth-
ing likely results in a crash. This is particularly problematic
for the stepwise inaction baseline, which follows an inaction
policy starting from the previous state. The inaction policy
starting from the initial state can also be unsafe, for example,
if an agent takes over the control of the car from a human,
and therefore the initial state s0 already has the car driving.

For this reason, designing a safe baseline for a task or en-
vironment that requires continuous control is a hard prob-
lem. One possible approach is to design a policy that is
known to be safe based on expert knowledge. However, this
can be a time-consuming process, and is not always feasible.
Designing safe baselines for tasks and environments that re-
quire continuous control is an open problem that has to be
solved before IR can be used in these applications.

3.2 Offsetting
An agent engages in offsetting behavior when it tries to undo
the outcomes of previous actions, i.e. when it “covers up its
tracks”. Offsetting behavior can be desirable or undesirable,
depending on which outcomes the agent counteracts.

Undesirable offsetting. Using IRs with an inaction base-
line starting from the initial state can lead to undesirable off-
setting behavior where the agent counteracts the outcomes
of its task (Krakovna et al. 2019; Turner, Hadfield-Menell,
and Tadepalli 2020). For example, Krakovna et al. (2019)
consider a vase on a conveyor belt. The agent is rewarded
for taking the vase off the belt, hence preventing that it will
fall off the belt. The desired behavior is to take the vase and
stay put. The offsetting behavior is to take the vase off the

belt, collect the reward, and afterwards put the vase back on
the conveyor belt to reduce deviation from the baseline. To
understand this offsetting behavior recall the decomposition
of the true reward into a task-related and an environment-
related component from section 1. A designer usually spec-
ifies a task reward Rtask

spec that rewards states signaling task
completion (e.g. taking the vase off the belt). However, each
task has consequences to the environment, which often are
the reason why the task should be completed in the first place
(e.g. the vase being not broken). In all but simple tasks, as-
signing a reward to every task consequence is impossible,
and so by omission, they have a zero reward. When IR pe-
nalizes consequences of completing the task, because they
differ from the baseline, this results in undesirable offset-
ting behavior. The stepwise inaction baseline (Turner, Rat-
zlaff, and Tadepalli 2020) successfully removes all offsetting
incentives. However, in other situations offsetting might be
desired.

Desirable Offsetting. In many cases, offsetting behavior
is desired, because it can prevent unnecessary side effects.
Krakovna et al. (2020a) provide an example of an agent
which is asked to go shopping, and needs to open the front
door of the house to go to the shop. If the agent leaves the
door open, wind from outside can knock over a vase in-
side, which the agent can prevent by closing the door after
leaving the house. When using the stepwise inaction base-
line (with rollouts, c.f. Section 4.2), the agent gets penal-
ized once when opening the door for knocking over the vase
in the future, independent of whether it closes the door af-
terwards (and thus prevents the vase from breaking) or not.
Hence, for this example, the offsetting behavior (closing the
door) is desirable. The reasoning behind this example can be
generalized to all cases where the offsetting behavior con-
cerns states that are instrumental towards achieving the task
(e.g. opening the door) and not a consequence of completing
the task (e.g. the vase being not broken).

A Crucial Need for a New Baseline. The recently pro-
posed baselines either remove offsetting incentives alto-
gether or allow for both undesirable and desirable offsetting
to occur, which are both unsatisfactory solutions. Krakovna
et al. (2020a) proposed resolving this issue by allowing all
offsetting (e.g. by using the inaction baseline) and rewarding
all states where the task is completed in the specified reward
function. However, we attribute three important downsides
to this approach. First, states that occur after task comple-
tion can still have negative side effects. If the reward asso-
ciated with these states is high enough to prevent offsetting,
it might also be high enough to encourage the agent to pur-
sue these states and ignore their negative side effects. Sec-
ond, not all tasks have a distinct goal state that indicates the
completion of a task, but rather accumulate task-related re-
wards at various time steps during an episode. Third, this
approach creates a new incentive for the agent to prevent
shut-down, as it continues to get rewards after the task is
completed (Hadfield-Menell et al. 2017).

We conclude that offsetting is still an unsolved problem,
highlighting the need for a new baseline, to prevent undesir-
able offsetting behavior, but allow for desirable offsetting.



3.3 Environment Dynamics and Inaction
Incentives

In dynamic environments that are highly sensitive to the
agent’s actions, the agent will be susceptible to inaction in-
centives. Either the agent does not act at all (for all but small
magnitudes of λ) or it will be insufficiently regularized and
possibly result in undesired side effects (for small λ).

Sensitivity to Typical Actions. Many real-world environ-
ments exhibit chaotic behavior, in which the state of the en-
vironment is highly sensitive to small perturbations. In such
environments, the environment state where the agent has
performed an action will be fundamentally different from
the environment state for the inaction baseline (Armstrong
and Levinstein 2017). Furthermore, for the step-wise inac-
tion baseline, the same argument holds for the non-action
compared to the planned action of the agent. Hence, when
using these baselines for IR, all actions of the agent will be
strongly regularized, creating the inaction incentive. When
λ is lowered to allow the agent to take actions, the agent can
cause negative side effects when the IR cannot differentiate
between negative side effects and chaotic changes in the en-
vironment. Here, it is useful to distinguish between typical
and atypical actions. We say (informally) that an action is
typical if it is commonly used for solving a wide variety of
tasks (e.g. moving). When the environment is highly sen-
sitive to typical actions, IRs with the current baselines will
prevent the agent from engaging in normal operations. How-
ever, it is not always a problem if the environment is highly
sensitive to atypical actions of the agent (e.g. discharging
onboard weaponry), as preventing atypical actions impedes
less with the normal operation of the agent.

Capability of the Agent. The inaction incentive will be-
come more apparent for agents that are highly capable of
predicting the detailed consequences of their actions, for ex-
ample by using a powerful physics engine. As the ability to
predict the consequences of an action is fundamental to min-
imizing side effects, limiting the prediction capabilities of an
agent to prevent the inaction incentive is not desired. Rather,
for agents that can very accurately predict the implications
of their actions, it is necessary to have an accompanying in-
telligent impact regularizer.

State Features. Armstrong and Levinstein (2017) point
out that for IR one should not represent states with overly
fine-grained features, as presenting an agent with too much
information exposes them to basing decisions on irrelevan-
cies. For example, it would be counterproductive for an
agent attempting to forecast demand in an online sales sit-
uation to model each potential customer separately, when
broader aggregates would suffice. However, there remain
two issues with this approach to mitigate the inaction in-
centive. First, the intrinsic dynamics of the environment re-
main unchanged, so it is still highly sensitive to small per-
turbations, of which the results can be visible in the coarser
features (e.g. the specific weather conditions). Second, for
advanced AI systems, it might be beneficial to change their
feature representation to become more capable of predicting
the consequences of their actions. In this case, one would
have no control over the granularity of the features.

Deviation Measures. At the core of the inaction prob-
lem is that some negative side effects are worse than others.
Usually, it does not matter if the agent changes the weather
conditions by moving around, however, it would matter if
the agent causes a serious negative side effect, for example
a hurricane. While both outcomes can be a result of com-
plex and chaotic dynamics of the environment, we care less
about the former and more about the latter. Differentiating
between negative, neutral and positive side effects is a task
of the deviation measure used in the IR, which is discussed
in the next section.

4 Choosing a Deviation Measure
A baseline defines a “safe” counterfactual to the agent’s ac-
tions. The deviation measure determines how much a de-
viation from this baseline by the agent should be penal-
ized or rewarded. Currently, the main approaches to a de-
viation measure are the relative reachability (RR) measure
(Krakovna et al. 2019), the attainable utility (AU) measure
(Turner, Hadfield-Menell, and Tadepalli 2020) and the fu-
ture task (FT) reward (Krakovna et al. 2020a). In the prac-
tical implementations of AU and FT, they use reachability
tasks, which can be considered as a sub-sampling of RR. In
this section, we argue that the current deviation measures
should be augmented with a notion of value of the impact to
avoid unsatisfactory performance of the agent and that new
rollout policies should be designed that allow for a proper
incorporation of delayed effects into the deviation measure.

4.1 Which Side Effects are Negative?
The goal of IRs is to approximate Renv for all states in a
tractable manner. It does this by penalizing impact on the en-
vironment, built upon the assumption that the environment is
already optimized for human preferences (Shah et al. 2019).
The IR aims to penalize impact proportionally to the mag-
nitude of this impact which corresponds with the magnitude
of the side effect (Krakovna et al. 2019; Turner, Hadfield-
Menell, and Tadepalli 2020). However, not all impact is neg-
ative, but it can also be neutral or even positive.Renv does not
only consider the magnitude the impact on the environment,
but also to which degree this impact is negative, neutral or
positive. Neglecting the associated value of impact can lead
to suboptimal agent behavior, as highlighted in the example
below.

Example: The Chemical Production Plant. Consider
an AI system controlling a plant producing a chemical prod-
uct for which various unknown reactions exist, each produc-
ing a different combination of waste products. The task of
the AI system is to optimize the production rate of the plant,
i.e. it gets a reward proportional to the production rate. To
minimize the impact of the plant on the environment, the
reward function of the agent is augmented with an impact
regularizer, which penalizes the mass of waste products re-
leased in the environment, compared to an inaction baseline
(where the plant is not operational). Some waste products
are harmless (e.g. O2), whereas others can be toxic. When
the deviation measure of the impact regularizer does not
differentiate between negative, neutral or positive impact,



the AI system is incentivized to use a reaction mechanism
that maximizes production while minimizing waste. How-
ever, this reaction might output mostly toxic waste product,
whereas another reaction outputs only harmless waste prod-
ucts and hence has no negative side effects. Tuning the regu-
larizer magnitude λ does not provide a satisfactory solution
in this case, as either the plant is not operational (for high
lambda), or the plant is at risk of releasing toxic waste prod-
ucts in the environment.

Positive Side Effects. The distinction between positive,
neutral and negative impact is not only needed to allow for
a satisfactory performance of the agent in many environ-
ments, it is also desirable for encouraging unanticipated pos-
itive side effects. Expanding upon the example in 4.1: if the
agent discovered a way to costlessly sequester carbon diox-
ide alongside its other tasks it should do so, whilst an IR
would encourage the robot to not interfere. While very posi-
tive unexpected outcomes might be unlikely, this possibility
should not be neglected in the analysis of impact regulariz-
ers.

Value Differences. To distinguish between positive, neu-
tral and negative side effects, we need an approximation of
Renv that goes beyond measuring impact as a sole source
of information. The value difference framework (Turner,
Hadfield-Menell, and Tadepalli 2020) allows for differenti-
ating between positive and negative impact by defining the
deviation measure as a sum of differences in value between
a baseline and the agent’s state-action pair for various value
functions. Hence, it is possible to reflect how much the de-
signer’s values different kinds of side effects in these value
functions. However, the challenge remains to design value
functions that approximate Renv to a sufficient degree on the
complete state space, which is again prone to reward mis-
specification. So although the value difference framework
allows for specifying values for side effects, how to specify
this notion of value is still an open problem.

4.2 Rollout Policies
Often, the actions of an agent cause delayed effects, i.e. ef-
fects that are not visible immediately after taking the action.
The stepwise inaction baseline (Turner, Hadfield-Menell,
and Tadepalli 2020) ignores all actions that took place be-
fore t − 1, hence, to correctly penalize delayed effects, the
deviation measure needs to incorporate future effects. This
can be done by collecting rollouts of future trajectories us-
ing a simulator or model of the environment. These rollouts
depend on which rollout policy is followed by the agent in
the simulation. For the baseline states, the inaction policy
is the logical choice. For the rollout of the future effects of
the agent’s action, it is less clear which rollout policy should
be used. Turner, Hadfield-Menell, and Tadepalli (2020) use
the inaction policy in this case. Hence, this IR considers a
rollout where the agent takes its current action, after which
it cannot do any further actions. This approach has signifi-
cant downsides, because IR does not allow the agent to do a
series of actions when determining the impact penalty (e.g.
the agent can take an action to jump, but cannot plan for its
landing accordingly in the rollout). Therefore, we argue that
future work should develop rollout policies different from

the inaction policy, such as the current policy of the agent.

5 Choosing the Magnitude of the Regularizer
To combine the IR with a specified reward function, the
designer has to choose the magnitude of the regularizer
λ. Turner, Hadfield-Menell, and Tadepalli (2020) say that
“loosely speaking, λ can be interpreted as expressing the
designer’s beliefs about the extent to which R [the specified
reward] might be misspecified”.

It is crucial to choose the correct λ. If λ is too small, the
regularizer may not reduce the risk of undesirable side ef-
fects effectively. If λ is too big, the regularizer will overly
restrict necessary effects of the agent on the environment,
and the agent will be less effective at achieving its goal.
Note, that while the regularizers proposed by Krakovna et al.
(2019) and Turner, Hadfield-Menell, and Tadepalli (2020)
already measure utility, in general λmust also handle a unit-
conversion of the regularizer to make it comparable with the
reward function.

Some intuition for choosing λ comes from a Bayesian per-
spective, where the regularizer encodes prior knowledge and
λ controls how far from the prior the posterior should have
moved. Another distinct view on setting λ comes from the
dual optimization problem, where it represents the Lagrange
multiplier on an implied set of constraints: λ is the magni-
tude of the regularizer for which the solution to the penal-
ized optimization problem coincides with a constrained opti-
mization problem. Hence, the designer can use λ to commu-
nicate constraints to the AI system, which is a natural way
to phrase some common safety problems (Ray, Achiam, and
Amodei 2019).

Armstrong and Levinstein (2017) discuss the problem of
tuning λ and note that contrary to intuition the region of use-
ful λ’s can be very small and hard to find safely. In practice λ
is often tuned until the desired behavior is achieved, e.g., by
starting with a high λ and reducing it until the agent achieves
the desired behavior. This approach is in general insufficient
to find the correct trade-off. For a fixed step-size in decreas-
ing λ, the tuning might always jump from a λ that leads to
inaction, to a λ that yields unsafe behavior. The same holds
for other common procedures to tune hyperparameters.

6 Ways Forward
In this section, we put forward promising future research di-
rections to overcome the challenges discussed in the previ-
ous sections.

6.1 A Causal Framing of Offsetting
In Section 3.2, we highlighted that some offsetting behavior
is desired and some undesired. To design an IR that allows
for desired offsetting but prevents undesired offsetting, one
firsts needs to have a mechanism that can predict and dif-
ferentiate between these two types of offsetting. Undesired
offsetting concerns the environment states that are a conse-
quence of the task. The difficulty lies in determining which
states are a causal consequence of the task being completed
and differentiate them from states that could have occurred
regardless of the task.



Goal-based Tasks. When the task consists of reaching a
certain goal state, the consequences of performing a task can
be formalized in a causal framework (Pearl 2009). When a
causal graph of the environment-agent-interaction is avail-
able, the states that are a consequence of the task can be
obtained from the graph as the causal children nodes of the
goal state. Hence, a baseline that allows for desired offset-
ting behavior but prevents undesired offsetting behavior pre-
vents the agent from interfering with the children nodes of
the goal states, while allowing for offsetting on other states.

General Tasks. Not all tasks have a distinct goal state
which indicates the completion of a task, but accumulate in-
stead task-related rewards at various time steps during an
episode. Extending this argument to general tasks remains
an open issue, for which causal influence diagrams (Everitt
et al. 2019) can provide a mathematical framework.

6.2 Probabilities Instead of Counterfactuals as
Baseline

Armstrong and Levinstein (2017) made the interesting argu-
ment that probabilities are better suited than counterfactuals
for measuring the impact of actions. Current implementa-
tions of IRs use a counterfactual as baseline (e.g. the inaction
baseline or stepwise inaction baseline). Because this base-
line is one specific trajectory, it will differ considerably from
the actual trajectory of the agent in environments that ex-
hibit chaotic dynamics. However, chaotic environments will
also be highly sensitive to perturbations that do not orig-
inate from the agent’s actions. One possible way forward
towards a more robust measure of the agent’s impact on the
environment is hence to compare probabilities that marginal-
ize over all external perturbations instead of comparing spe-
cific trajectories. Define p(st|A) as the probability of having
state st, given the trajectory of actions A the agent took and
p(st|B) as the probability of st given actions prescribed by
the baseline. All influences of perturbations that did not arise
from the agent are marginalized out in these probabilities.
Hence, a divergence measure between these two probabili-
ties can give a more robust measure of potential impact of
the agent, without being susceptible to non-necessary inac-
tion incentives. To our best knowledge, this idea has not yet
been implemented as a concrete IR method and would hence
be a promising direction for future research.

6.3 Improved Human-Computer interaction
Side effects occur if there is a difference between the out-
come an AI system achieves and the intent of its (human)
designer. Thus improving how well the designer can com-
municate their intent to the AI system is an important aspect
of eliminating side effects (Leike et al. 2018). This empha-
sis on the human component of learning to avoid negative
side effects connects it closely to the problem of scalable
oversight proposed by Amodei et al. (2016).

Improved Tools for Reward Designers. Commonly, a
designer will aim to iteratively improve the AI system and
its reward function. Similarly, when choosing an impact reg-
ularizer, a designer will iterate on the choice of baseline, de-
viation measure, and regularization strength and test them

in a sequence of environments that increasingly resemble
the production environment. At each iteration, the designer
identifies weaknesses and corrects them, such that the cri-
terion being optimized becomes increasingly true to the de-
signer’s intent. For example, an AI with the goal to trade
financial assets may be run against historical data (“back-
tested”) in order to understand how it might have reacted
in the past, and presented with deliberately extreme inputs
(“stress-tested”) in order to understand likely behavior in
“out of sample” situations. To design a reward function and
a regularizer, it is crucial for the designer to be able to un-
derstand how the system would react in novel situations and
how to fix it in case it exhibits undesired behavior. Further
research aiming to increase the designer’s ability to under-
stand how a system will react, will substantially help the de-
signer to communicate their intent more effectively. Recent
work in this direction concerning interpretability (Gilpin
et al. 2018), verification (e.g. Huang et al. 2017) of machine
learning models is particularly promising.

Actively Learning from Humans. Considering the prob-
lem from the perspective of the AI system, the goal is to
improve its ability to understand the designer’s intent, espe-
cially in novel, unanticipated, scenarios. Instead of the de-
signer telling the system their intent, this problem can be
addressed by the system asking the designer about their in-
tent. To decide what to ask the designer, the system may be
able to determine which states it is highly uncertain about,
even if it is not able to accurately ascribe values to some
of them. Recent work shows that such an approach can be
effectively used to learn from the human about a task at
hand (Christiano et al. 2017), but it may also be used to
learn something about the constraints of the environment
and which side effects are desired or undesired (Zhang, Dur-
fee, and Singh 2018). Active learning could also provide a
different perspective on impact regularizers: instead of di-
rectly penalizing impact on the environment, a high value
of the regularization term could be understood as indicating
that the designer should give feedback. In particular, this ap-
proach could help to resolve situations in which a positive
task reward conflicts with the regularization term.

7 Conclusion

Avoiding negative side effects in systems that have the ca-
pacity to cause harm is necessary to fully realize the promise
of artificial intelligence. In this paper, we discussed a pop-
ular approach to reduce negative side effects in RL: impact
regularization (IR). We discussed the practical difficulty of
choosing each of the three components: a baseline, a devia-
tion measure and a regularization strength. Furthermore, we
pointed to fundamental problems that are currently not ad-
dressed by state-of-the-art methods, and presented several
new future research directions to address these. While our
discussion showed that current approaches still leave signif-
icant opportunities for future work, IRs are a promising idea
for building the next generation of safe AI systems, and we
hope that our discussion is valuable for researchers trying to
build new IRs.
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