CEUR-WS.org/Vol-2808/Paper_29.pdf

On the Use of Available Testing Methods for Verification & Validation of AI-based
Software and Systems

Franz Wotawa

Graz University of Technology, Institute for Software Technology
Inffeldgasse 16b/2, A-8010 Graz, Austria
wotawa @ist.tugraz.at

Abstract

Verification and validation of software and systems is the es-
sential part of the development cycle in order to meet given
quality criteria including functional and non-functional re-
quirements. Testing and in particular its automation has been
an active research area for decades providing many methods
and tools for automating test case generation and execution.
Due to the increasing use of Al in software and systems, the
question arises whether it is possible to utilize available test-
ing techniques in the context of Al-based systems. In this po-
sition paper, we elaborate on testing issues arising when using
Al methods for systems, consider the case of different stages
of Al and start investigating on the usefulness of certain test-
ing methods for testing Al. We focus especially on testing at
the system level where we are interesting not only in assuring
a system to be correctly implemented but also to meet given
criteria like not contradicting moral rules, or being depend-
able. We state that some well-known testing techniques can
still be applied providing being tailored to the specific needs.

Introduction

Because of the growing importance of Al methodologies
for current and future software and systems, there is a need
for coming up with appropriate quality assurance measures.
Such measures should come up with certain guarantees that
the resulting products fulfill their requirements, e.g., provide
the requested functionality and safety concerns. Providing
guarantees seem to be essential in order to gain trust in Al-
based system solutions. In particular, in autonomous driving
to mention one more recent application area of Al, we have
to establish a certification and homologation process that as-
sures an autonomous vehicle to follow given regulations and
other requirements.

Because of the fact that artifacts making use of Al tech-
nology are themselves systems, the question is whether it is
possible re-use ordinary testing methodologies and to adapt
them for providing means for certification and homologa-
tion. In particular, besides components like vision systems
relying on machine learning, there are other components that
do not rely on any Al methodology. In Figure 1 we give an
overview of the architecture of such a system comprising the

Copyright © 2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribute 4.0 International (CC BY
4.0).

System

Al/ML GUI

Operating System

il

Firmware / HW

Figure 1: Al-based systems their boundaries, and environ-
ment.

Al component and other components implementing func-
tionality like providing user interfaces or database access. In
addition, such system rely on a computational stack where
we also have to consider the operating system, firmware, and
even the hardware for verification and validation purposes.
As a consequence, we have to consider verification and val-
idation of the whole system for quality assurance.

In a previous paper (Wotawa 2019), we already focused
on the need for system testing. In contrast, in this paper, we
try to give a first answer regarding the usefulness of certain
available system testing methods for testing Al applications.
Furthermore, we discuss the corresponding general verifi-
cation and validation problem of such application in more
detail. We have always to understand what we want to test
and what we want to achieve. We have also to be aware of
shortcomings arising when focusing only a subparts of the
overall verification and validation problem. First, faults of-
ten arise because of untested interactions between different
system components. Such cases may arise because of unin-
tended interactions not considered during development. Sec-
ond, we might not be able to sufficiently make guarantees
regarding the degree of testing. And finally, we may miss
critical inputs or scenarios that lead to trouble. The latter
especially holds for different machine learning approaches
and is referred to adversarial attacks (see e.g., (Su, Vargas,
and Sakurai 2019) and (Goodfellow, McDaniel, and Paper-
not 2018)).

We organize this paper as follows. In the next section, we

discuss the system testing challenge in detail. We focus on
different aspects of testing to be considered and refer to re-
lated literature. Afterwards, we present three approaches of
systems testing that have been proven to find faults when
testing systems using Al techniques. Finally, we summarize
the obtained findings.

The testing challenge

As depicted in Figure 1 systems comprising Al methodology
also rely on other components providing interfaces and func-
tionality, as well as runtime support including operation sys-
tems, firmware, and hardware. As a consequence, we have to
consider festing as a holistic activity that has to take care of
all different parts of the whole system. In particular, we have
to clarify what to test and how to test. For example, a logic-
based reasoning system comprises a compiler for reading
in the logic rules and facts, and the reasoning part. Hence,
we have to test the compiler and the reasoning part first
separately and afterwards together in close interaction. The
compiler can be tested, for example using, fuzzing where
more or less randomly generated inputs are generated (see
e.g., (Kéroglu and Wotawa 2019)). The reasoning engine it-
self can be tested using certain known relations like that the
sequence of rules provided to the system does not influence
the final outcome (see e.g., (Wotawa 2018)). The overall sys-
tem itself may be tested using fault injection, e.g., (Wotawa
2016). All these examples have — more or less — in common
that they only capture some parts of the expected behavior.

If using fault injection, we are interested in how systems
react on inputs that occur in case of faults. When using in-
variants like the order of rules, we do not test all aspects
of reasoning. Hence, in order to thoroughly test such sys-
tems, we need to understand what to test in order to identify
shortcomings of underlying testing methods to be used. Be-
sides this and more specifically to Al methods, we have to
provide some measures that at least indicate the quality of
testing. For ordinary programs, coverage (e.g., (Ammann,
Offutt, and Huang 2003)) and mutation score (e.g., (Jia and
Harman 2011)) are used to determine whether test suites are
good enough, i.e., being likely able to reveal a faulty behav-
ior. Coverage helps to identify those parts of the program
that are executed using the test suite, i.e., code coverage!.
The mutation score is an indicator of the number of program
variants, i.e., the mutations, that can be detected using the
given test suite. It is worth noting that coverage or mutation
score can be seen as a measure or indicator for guaranteeing
that a test suite has the required capabilities for detecting a
failing behavior.

Let us consider testing neural networks as an example.
Neural networks are trained using a set of examples and
evaluated afterwards. Evaluation is used for assuring that a
network reaches a given quality of the prediction outcome.
The set of examples used for training and evaluation have to
be distinct. The question is now whether this evaluation is
good enough for replacing further testing effort. The answer
is no, because but not only of adversarial attacks (Su, Var-

"Note that besides code coverage there are other coverage defi-
nitions used like test input coverage, combinatorial coverage, etc.

«, Q5
b, 0 22

r

Figure 2: Different variants of the ”do not enter” traffic sign
someone sees in reality: (a) is the original sign, (b) the traffic
sign with a bend, a sticker, and partially missing color, and
(c) and (d) are traffic sign with various stickers attached.

gas, and Sakurai 2019) that lead to misclassifications even in
case of small input variations. Other reasons for misclassifi-
cations are the use of a training data set that is not covering
all different examples, and other aspects like the distribu-
tion of examples. Furthermore, note that variations of the
appearance of objects in the real world exists often. In Fig-
ure 2 we depict different images of the traffic sign ’do not
enter” ranging from a bend to occlusions because of stick-
ers attached. An autonomous car would require always to
handle these case, and it is very unlikely that we really have
all of such cases represented in the training data set. More-
over, if so, we still would have misclassifications occurring,
requiring to assure that there is no unwanted effect on the
behavior of the overall system.

There is plenty of literature regarding different testing ap-
proaches for neural networks, e.g., (Pei et al. 2017; Sun,
Huang, and Kroening 2018; Ma et al. 2018b,a) and most
recently (Kim, Feldt, and Yoo 2019; Sekhon and Fleming
2019). In some of the methods also an adapted version of
coverage and mutation score for neural networks has been
used. Unfortunately, coverage information maybe somehow
misleading (Li et al. 2019) leaving the question regarding
the quality of the test suite open.

In the case of neural network we may also ask whether
classical coverage or mutation score used in ordinary soft-
ware engineering can be used as quality measure when test-
ing a current neural network implementation. (Chetouane,
Klampfl, and Wotawa 2019) showed that making use of
these measures when testing the configuration of neural net-
works, i.e., setting the type of neurons, the number of layers
and neurons, can be justified. Unfortunately, this is not the
case when testing the whole neural network library as dis-
cussed in (Klampfl, Chetouane, and Wotawa 2020). Hence,
for neural networks or measures and means for testing shall

be provided.

Although, we may need to live with the challenge that we
cannot completely tests certain system parts and that there
is always a critical case where the Al part of a system may
deliver a wrong result, the further question is whether this
establishes a problem for the whole system. The answer in
this case is no, providing that the system itself is able to de-
tect this critical case and to react appropriately. For example
in autonomous driving, we may make use of more than one
sensor for obtaining information regarding objects around
the vehicle and use sensor fusion to obtain reliable informa-
tion. We only need to assure that the whole system interacts
with the environment in a way that is dependable and ful-
fills our requirements including ethical or moral considera-
tions. Hence, identifying critical scenarios between the sys-
tem and its environment seems to be a crucial factor of test-
ing Al-based systems (Koopman and Wagner 2016; Menzel,
Bagschik, and Maurer 2018).

Moreover, it seems also of importance to consider that
critical scenarios often originate from different settings that
have to occur at the same time. One issue, e.g., missing a
certain traffic sign may not lead to an accident, but in com-
bination with other issues would.

We summarize our discussion in the following position:

Position 1 Testing aims at identifying interactions between
the system under test and its environment leading to an un-
expected behavior. When testing systems utilizing Al, we
have to consider testing all parts of a system including
the one with and the one without Al as well as their in-
teractions. Evaluating performance characteristic of imple-
mented Al methodology may not be sufficient for assuring
meeting quality criteria.

Most of testing is performed during development of sys-
tems before deployment. In some cases certification (or even
homologation), i.e., the formal confirmation that an applica-
tion, product or system, meets its required characteristics, is
needed. In case of Al technology we are interested that the
system fulfills dependability goals like safety but maybe also
given ethical or moral rules. For example, we want a conver-
sational agent or a decision support system not to be racist or
sexist. Furthermore, because of the fact that the system’s un-
derlying software is updated regularly in order to cope with
changes required because of bugs or improved functionality,
there is a need of carrying out any certification regularly as
well. For example, in autonomous driving we have to assure
that a new software update is not going to lead to an unsafe
system. However, regression testing may require a lot of ef-
fort or come with high costs, which may be reduced when
automating testing.

Hence, automating at least part of certification may be a
future requirement. But how can certification of Al be car-
ried out? What we need is a process where we identify what
we want to achieve, and how this can be checked (or tested)?
How can we come up with certain parameters justifying that
testing is appropriate? We shall also think about the meth-
ods for checking, their limitations, and how to assure that
the methods can guarantee (with respect to a given certainty)
that the system fulfills requested needs. However, in any case

in order to bring Al technology into practice, we have to con-
vince customers that the systems are not of harm. Certifica-
tion that takes into account such customer’s considerations
as well as regulations provide the right means for further
supporting the delivery of Al technology into practical ap-
plications we are using on a daily basis.

It is worth noting that there are many initiatives like the
ethics guidelines for trustworthy Al (Pietild et al. 2019) for
coming up with first steps of how Al-based systems have
to be constructed, evaluated, and verified. However, for ex-
ample, in autonomous driving such principles have to be
concretized leading to practical rules companies can follow
when developing Al systems or systems at least partially
based on Al methodologies and tools.

Position 2 There is a need for well-defined certification and
homologation processes for Al-based systems that ideally
can be carried out in an automated way. Such certification
and homologation processes shall rely on existing guidelines
considering all aspects of trustworthy Al

When we want to carry out certification at least partially
automated we may rely on testing. Hence, we have to state
the question whether existing testing techniques can be used
for confirming that an Al-based system fulfills regulation
and other rules and expectations. This includes besides test-
ing functionality the degree of fulfilling generally agreed
ethical and moral rules. In the following section, we intro-
duce three techniques that can (at least partially) serve this

purpose.
Testing Al

As discussed there seems to be a need for testing the whole
system considering functional and non-functional require-
ments including moral and ethical rules. For testing systems
at the system level black-box approaches are used that do
not consider the internal structure. Various methods with
corresponding tools have been proposed including model-
based testing (MBT) (Utting and Legeard 2006), combina-
torial testing (CT) (Kuhn et al. 2015), or metamorphic test-
ing (Chen, Cheung, and Yiu 1998). MBT makes use of a
model of the system for obtaining test cases. In order to find
critical interactions between the system and its environment
this may not be sufficient. It would be required to model the
environment including potential interactions and have a look
about the reactions of the system.

The focus on modeling the environment of the system in
order to obtain test cases is somehow different to ordinary
MBT where a model of the system is used for test case gen-
eration. Changing from modeling the system to modeling
the environment is necessary for finding critical interactions
between an Al-based system and its environment. Moreover,
in this kind of testing we are not interested in showing that
an implementation works accordingly to a model, but is ca-
pable of handling arbitrary interactions that may not be fore-
seen during development.

In contrast to MBT, CT has been developed to search for
critical interactions between configuration parameters and
inputs. It has been shown that CT can effectively detect
faults in many different kinds of software (Kuhn et al. 2009).

Figure 3: The last episode of a failing test case applied to an
implementation of an automated emergency braking system,
close to the time where a simulated pedestrian tries to cross
the street coming from the right side. The crash occurred in
a scenario where another vehicle at the front brakes, caus-
ing the ego vehicle to brake. A first pedestrian crossing the
street from left passing by, and the second one coming from
right who is overseen by the automated emergency braking
system and hit.

The question is whether we can also apply CT for Al test-
ing? In (Li, Tao, and Wotawa 2020) the authors introduced
an approach utilizing a model of the system environment in
combination with CT for obtaining a test suite. In their pa-
per, the authors not only provide the foundations but also re-
ported on a case study where the authors tested an automated
emergency braking (AEB) function. From 319 test cases, 9
test cases lead to crashes (including test cases where pedes-
trians would have been killed (see Figure 3)), and 30 were
considered as being critical. It is worth noting that the pro-
posed overall approach also includes a simulation environ-
ment for carrying out the generated test cases in a realistic
setting automatically.

(Kliick et al. 2019) introduced an alternative method for
generating critical scenarios, where the authors rely on ge-
netic algorithms for obtaining test cases. The idea is to
model test cases as genes that can be crossed and mutated.
The evaluation function maps test cases to a goodness value.
In each generation the best test cases are taken modified
and again evaluated. This kind of testing is also referred to
search-based testing. In (Kliick et al. 2019) the authors also
evaluated the approach using an AEB function too. The ob-
tained results showed that genetic algorithms can be applied
to detect faults in the setting of autonomous and automated
driving leading to the following position:

Position 3 Combinatorial testing and search-based testing
are effective testing techniques for identifying critical sce-
narios.

CT and also search-based testing applied to test au-
tonomous and automated driving functions always has to
fulfill the property that no crash with another car or even a
pedestrian occurs. In this context closeness to a crash is often
represented as the time to collision (TTC), where 0 means
that a crash occurs. Usually, in many applications positive
but small TTC values may also be considered as unwanted.
When testing in the case of the automotive domain includ-

ing autonomous driving, we can always rely on the TTC for
judging whether a test case passes or fails.Hence, there the
test oracle can be automated using the TTC, which is not al-
ways the case when testing Al. We, therefore, require other
means for dealing with the oracle problem, i.e., providing
a function that allows to distinguish passing executions of
programs and systems from failing ones.

The objective behind metamorphic testing (Chen, Che-
ung, and Yiu 1998) is to provide a solution to the oracle
problem of testing. The underlying idea is to define rela-
tions over different inputs that always deliver the same out-
put. For example, sin(x) is equivalent for all values of x
and z + 2 - 7, i.e., sin(x) = sin(x + 2 - 7) always holds.
In (Guichard et al. 2019) and more specifically in (Bozic and
Wotawa 2019) the authors proposed the use of metamorphic
testing for testing conversational agents, i.e., chatbots. The
underlying described idea was to propose relations consid-
ering semantical relationships between words and sentences,
e.g., some sentences have the same semantics when replac-
ing one word with its synonym, or sometimes the sequence
of sentences given to a chatbot, does not change the answer
provided by the chatbot. Moreover, we are able to test for
fulfilling certain moral and ethical regulations. For example,
if an answer of a chatbot should not be influenced by the
race or sex of the chat participant, we can be formulate this
as a metamorphic relation, where we say that a conversion
considering one race or sex should lead to the same results
when changing race or sex. In case of Al systems, where
we are able to come up with metamorphic relations, we are
also able to apply metamorphic testing for solving the oracle
problem.

Position 4 Metamorphic testing seems to be of use for im-
plementing the test oracle problem of Al systems allowing
to identifying contradictions with requirements, which may
include ethical and moral considerations.

There are more system testing approaches that can be also
adapted to fit the purpose of Al testing with the objective of
assuring safety of Al-based systems and software. However,
we have identified approaches where there is experimental
evidence that they could be effectively used for testing Al-
based systems. These approaches may also fit into certifica-
tion and homologation processes. For this purpose, certain
measures have to be developed that can be used for deciding
when to stop testing in cases no failing test case could be
obtained.

Moreover, the presented methods and techniques for test-
ing Al-based systems have disadvantages. They are mainly
focusing on quality assurance of the overall system and not
its comprising parts. For example, the CT approach consid-
ers a model of the environment, which works as basis for ob-
taining the CT input model. The approach is testing whether
certain interactions of the CT with its environment reveal
a fault, and in case of automated or autonomous driving a
crash, but does not consider any knowledge regarding the
SUT’s internal structure or behavior. Finding out the root
cause of any misbehavior within the SUT might be com-
plicated. Moreover, we are not able to make use of quality
assurance measures like code coverage or mutation score for

the particular test suite. Furthermore, CT like MBT requires
to concretize the abstract test cases computed using these
testing methods. This concretization step cause additional
effort and has to be done carefully in order to come up with
good test cases that can be executed and most likely reveal a
fault.

In case of metamorphic testing it is essential to define the
metamorphic relations, which cause additional effort and in-
fluence the ability to work as a good test oracle. There are
maybe metamorphic relations leading to test cases a SUT
can easy fulfill only allowing to test a fraction of function-
ality. In such cases metamorphic testing would not lead to
tests covering most of the functionality and, therefore, can
be considered as incomplete. Search-based testing requires
to implement a search procedure using a function allowing
to estimate the quality of a current test, e.g., the ability of
a test revealing a fault. Again this requires additional effort
and costs. It is worth noting that in some cases random test-
ing, i.e., generating test inputs using a random procedure,
also provides fault revealing test cases requiring even less
time than search-based testing at almost no additional costs.

Conclusion

In this position paper, we focused on providing an answer to
the question whether there exists testing techniques that can
be efficiently used for checking that a software or system
comprising Al methodologies fulfills requirements includ-
ing also moral and ethical rules, and regulations. We also
discussed the involved challenges of testing where we iden-
tified also shortcomings that arise when only focusing on
specific parts and not providing a holistic view. Finally, we
introduced several testing methods that have been developed
in the context of testing ordinary systems and elaborate on
their usefulness in the context of Al-based systems. Search-
based testing, combinatorial testing, and metamorphic test-
ing seem to be excellent candidate for this purpose and may
also be of use for automating certification and homologation
processes for Al applications.

However, further studies have to be carried out. For CT
more experiments making use of other autonomous and au-
tomated functions have to be considered. Moreover, we re-
quire to come up with certain measures of guarantees for the
computed test suites. Parameters of CT like the combinato-
rial strength maybe sufficient but in the context of Al-based
systems there is no experimental evidence. For metamorphic
testing we further need more use cases and experimental
evaluations making use of Al-based systems. In the case of
chatbots and also logic-based reasoning metamorphic test-
ing has already been successfully applied. However, there is
aneed to show the usefulness of metamorphic testing also in
other applications where Al technology is a central part.

Acknowledgments

The research was supported by ECSEL JU under the project
H2020 826060 AI4DI - Artificial Intelligence for Digitising
Industry. AI4DI is funded by the Austrian Federal Ministry
of Transport, Innovation and Technology (BMVIT) under
the program “ICT of the Future” between May 2019 and

April 2022. More information can be retrieved from https:
/fiktderzukunft.at/en/ bm€®

References

Ammann, P.; Offutt, J.; and Huang, H. 2003. Coverage Cri-
teria for Logical Expressions. In Proceedings of the 14th In-
ternational Symposium on Software Reliability Engineering,
ISSRE ’03. Washington, DC, USA: IEEE Computer Society.

Bozic, J.; and Wotawa, F. 2019. Testing Chatbots Us-
ing Metamorphic Relations. In Gaston, C.; Kosmatov, N.;
and Le Gall, P, eds., Testing Software and Systems, 41-55.
Cham: Springer International Publishing. ISBN 978-3-030-
31280-0.

Chen, T.; Cheung, S.; and Yiu, S. 1998. Metamorphic test-
ing: a new approach for generating next test cases. Technical
report, Department of Computer Science, Hong Kong Uni-
versity of Science and Technology, Hong Kong. Technical
Report HKUST-CS98-01.

Chetouane, N.; Klampfl, L.; and Wotawa, F. 2019. Inves-
tigating the Effectiveness of Mutation Testing Tools in the
Context of Deep Neural Networks. In IWANN (1), vol-
ume 11506 of Lecture Notes in Computer Science, 766-777.
Springer.

Goodfellow, I.; McDaniel, P.; and Papernot, N. 2018. Mak-
ing Machine Learning Robust Against Adversarial Inputs.
Commun. ACM 61(7): 56-66. ISSN 0001-0782. doi:10.
1145/3134599. URL http://doi.acm.org/10.1145/3134599.

Guichard, J.; Ruane, E.; Smith, R.; Bean, D.; and Ven-
tresque, A. 2019. Assessing the Robustness of Conversa-
tional Agents using Paraphrases. In 2019 IEEE International
Conference On Artificial Intelligence Testing (AlTest), 55—
62.

Jia, Y.; and Harman, M. 2011. An Analysis and Survey of
the Development of Mutation Testing. [/EEE Transactions
on Software Engineering 37(5): 649-678.

Kim, J.; Feldt, R.; and Yoo, S. 2019. Guiding Deep Learning
System Testing Using Surprise Adequacy. In Proceedings of
the 41st International Conference on Software Engineering,
ICSE’19, 1039-1049. IEEE Press. doi:10.1109/ICSE.2019.
00108. URL https://doi.org/10.1109/ICSE.2019.00108.

Klampfl, L.; Chetouane, N.; and Wotawa, F. 2020. Mutation
Testing for Artificial Neural Networks: An Empirical Eval-
uation. In IEEE 20th International Conference on Software
Quality, Reliability and Security (QRS), 356-365. IEEE.

Kliick, F.; Zimmermann, M.; Wotawa, F.; and Nica, M.
2019. Performance Comparison of Two Search-Based Test-
ing Strategies for ADAS System Validation. In Gaston, C.;
Kosmatov, N.; and Le Gall, P, eds., Testing Software and
Systems, 140—-156. Cham: Springer International Publishing.
ISBN 978-3-030-31280-0.

Koopman, P.; and Wagner, M. 2016. Challenges in Au-
tonomous Vehicle Testing and Validation. SAE Int. J. Trans.
Safety 4: 15-24. doi:10.4271/2016-01-0128. URL https:
//doi.org/10.4271/2016-01-0128.

Koroglu, Y.; and Wotawa, F. 2019. Fully automated com-
piler testing of a reasoning engine via mutated grammar
fuzzing. In Choi, B.; Escalona, M. J.; and Herzig, K., eds.,
Proceedings of the 14th International Workshop on Automa-
tion of Software Test, AST@ICSE 2019, May 27, 2019, Mon-
treal, QC, Canada, 28-34. IEEE / ACM. doi:10.1109/AST.
2019.00010. URL https://doi.org/10.1109/AST.2019.00010.

Kuhn, D.; Kacker, R.; Lei, Y.; and Hunter, J. 2009. Combi-
natorial Software Testing. Computer 94-96.

Kuhn, D. R.; Bryce, R.; Duan, F.; Ghandehari, L. S.; Lei, Y.;
and Kacker, R. N. 2015. Combinatorial Testing: Theory and
Practice. In Advances in Computers, volume 99, 1-66.

Li, Y.; Tao, J.; and Wotawa, F. 2020. Ontology-based test
generation for automated and autonomous driving functions.
Inf. Softw. Technol. 117. doi:10.1016/j.infsof.2019.106200.
URL https://doi.org/10.1016/j.infsof.2019.106200.

Li, Z.; Ma, X.; Xu, C.; and Cao, C. 2019. Structural Cov-
erage Criteria for Neural Networks Could Be Misleading.
In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-
NIER), 89-92.

Ma, L.; Zhang, F; Sun, J.; Xue, M.; Li, B.; Juefei-Xu, F;
Xie, C.; Li, L.; Liu, Y.; Zhao, J.; et al. 2018a. Deepmu-
tation: Mutation testing of deep learning systems. In 2018
IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE), 100-111. IEEE.

Ma, L.; Zhang, F.; Xue, M.; Li, B.; Liu, Y.; Zhao, J.; and
Wang, Y. 2018b. Combinatorial testing for deep learning
systems. arXiv preprint arXiv:1806.07723 .

Menzel, T.; Bagschik, G.; and Maurer, M. 2018. Scenarios
for Development, Test and Validation of Automated Vehi-
cles. In arXiv:1801.08598. URL https://arxiv.org/abs/1801.
08598. Appeared in Proc. of the IEEE Intelligent Vehicles
Symposium.

Pei, K.; Cao, Y.; Yang, J.; and Jana, S. 2017. Deepxplore:
Automated whitebox testing of deep learning systems. In
proceedings of the 26th Symposium on Operating Systems
Principles, 1-18. ACM.

Pietild, P. A.; et al. 2019. Ethics Guidelines For Trustworthy
Al High-Level Expert Group on Al, European Commission.

Sekhon, J.; and Fleming, C. 2019. Towards Improved Test-
ing For Deep Learning. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), 85-88.

Su, J.; Vargas, D. V.; and Sakurai, K. 2019. One Pixel Attack
for Fooling Deep Neural Networks. IEEE Transactions on
Evolutionary Computation 1-1. ISSN 1089-778X. doi:10.
1109/TEVC.2019.2890858.

Sun, Y.; Huang, X.; and Kroening, D. 2018. Testing deep
neural networks. arXiv preprint arXiv:1803.04792 .

Utting, M.; and Legeard, B. 2006. Practical Model-Based
Testing - A Tools Approach. Morgan Kaufmann Publishers
Inc.

Wotawa, F. 2016. Testing Self-Adaptive Systems using Fault
Injection and Combinatorial Testing. In Proceedings of the
Intl. Workshop on Verification and Validation of Adaptive
Systems (VVASS 2016). Vienna, Austria.

Wotawa, F. 2018. Combining Combinatorial Testing
and Metamorphic Testing for Testing a Logic-based Non-
Monotonic Reasoning System. In In Proceedings of the 7th
International Workshop on Combinatorial Testing (IWCT) /
ICST 2018.

Wotawa, F. 2019. On the importance of system testing for
assuring safety of Al systems. In CEUR Workshop Proceed-
ings , Workshop on Artificial Intelligence Safety, AlSafety
2019, volume 2419. Macao, China. URL http://ceur-ws.org/
Vol-2419/.

