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Abstract

An adversarial example (AX) is a maliciously crafted input
that humans can recognize correctly, while machine learn-
ing models cannot. This paper considers how to turn deep
learning-based face recognition systems to be robust against
AXs. A large number of studies have proposed methods for
protecting machine learning-classifiers from AXs. One of the
most successful methods among them is to prepare an ensem-
ble of classifiers and promote diversity among them. Face
recognition typically relies on feature extractors instead of
classifiers. We found that directly applying this successful
method to feature extractors leads to failure. We show that
this failure is due to a lack of true diversity among the feature
extractors and fix it by synchronizing the direction of fea-
tures among models. Our method significantly enhances the
robustness against AXs under the white box and black box
settings while slightly increasing the accuracy. We also com-
pared our method with adversarial training.

Introduction
Deep neural networks (DNNs) have become core com-
ponents of many essential services as their performance
has gone beyond the human capability of recognition in
many tasks (Parkhi, Vedaldi, and Zisserman 2015; Schroff,
Kalenichenko, and Philbin 2015; Szegedy et al. 2015; He
et al. 2016). Face recognition is one of the most widely used
services that rely on DNNs (Sun et al. 2014), ranging from
immigration inspection to smartphone authentication. How-
ever, the vulnerability of deep learning under adversarial ex-
amples has begun to threaten its promises (Szegedy et al.
2014). (Singh et al. 2020) discuss a wide variety of attacks.

An adversarial example (AX) is an inconceivably per-
turbed input that deceives the machine learning model into
miss-classification of it, while a human can correctly clas-
sify it. Some attacking methods need an entire code of the
model, a white-box setting, while some need only oracle ac-
cess to the model, a black-box setting. The threat became
very plausible when Sharif et al. (2016) showed physical
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Figure 1: We promote the diversity of feature vectors by pro-
moting a larger volume spanned by them. We share the same
weight vectors of the last layer by all models, making the
diversity concerning the same weight. Two t-SNE visualiza-
tions of features show how they are affected by the synchro-
nizing of the weight vector. Here, the same classes are of the
same color.

glasses could deceive the machine learning model in the
black-box setting. As a result of such an attack, a person
on the blacklist may wear a slightly fancy glass to evade im-
migration inspection performed by machines.

Many works proposed how to prevent AXs, and many
of them are broken back, leading to an arms race between
defenders and attackers. A model ensembling (Abbasi and
Gagné 2017; Dabouei et al. 2020; Kariyappa and Qureshi
2019) is one of the most successful prevention methods
among them. In particular, the adaptive diversity promoting
(ADP) method (Pang et al. 2019) that promotes the diver-
sity of models in the ensemble is the most successful. Al-
though its defense is immature like all others when attacked
adaptively (Tramèr et al. 2020), such a strategy has an ad-



vantage. It is orthogonal to other defensive approaches that
focus on enhancing single-model adversarial robustness and
can be used in tandem to achieve further adversarial robust-
ness. Adversarial training (Zhong and Deng 2019), another
successful AX prevention method, is an example of such a
tandem method.

We are interested in applying the ADP method to enhance
the robustness of face recognition against AXs. Face recog-
nition commonly relies on a machine learning feature ex-
tractor since it enables the service to register a huge num-
ber of new faces without retraining the network. We experi-
mented with ADP’s direct application and found that it does
not improve feature extractors’ robustness against AXs.

We consider the cause of failure is that the directions of
different models’ features are not comparable in a mean-
ingful way, and thus their diversity is insignificant. We pro-
pose letting all the models in the ensemble share weight vec-
tors of their final layers so that features in different models
can compare themselves in a common coordinate. We also
propose to promote the diversity of feature vectors directly
rather than the diversity of the classifier. Figure 1 illustrates
our method.

We have experimented with ADP, our methods, and sev-
eral variants. We trained them in various methods such as
ArcFace (Deng et al. 2019) and CosFace (Wang et al. 2018),
with the MS1MV2 dataset (Deng et al. 2019), the refined
version of the MS-Celeb-1M, and verified by VGG2 (Cao
et al. 2018). We measured the robustness by AXs adaptively
generated by I-FGSM, an iterative variant of Fast Gradient
Signed Method (FGSM) (Goodfellow, Shlens, and Szegedy
2015), Basic Iterative Method (BIM) (Kurakin, Goodfellow,
and Bengio 2017a; Madry et al. 2018), and Carlini & Wag-
ner (CW) attack (Carlini and Wagner 2017b). We confirmed
that ADP affects neither accuracy nor robustness against
AXs. On the other hand, our method significantly enhanced
the robustness to AXs in both white-box and black-box set-
tings without harming its accuracy at all.

Despite its enhancement, our model’s robustness was not
so distinctly high that we can still generate successful AXs
for all legitimate samples in the white-box setting if with suf-
ficiently large perturbation. Although our method does show
significantly lower transferability than others in a black-box
setting, we found that very well forged AXs often, with suf-
ficiently large perturbation, can again deceive the machine
recognition with very high probability.

Preliminaries
Face Recognition by DNN Feature Extractor
Face recognition typically belongs to either face identifica-
tion or face verification. The former is also called closed-set
face classification and assumes the probed image belongs to
one of the objects enrolled in the gallery. The latter is also
called open-set face classification and can reject a probed
image with no corresponding object in the gallery. We focus
on open-set face recognition.

Modern open-set face recognition systems commonly
consist of a DNN-based feature extractor that maps an input
image into a low dimensional feature space (Sun et al. 2014).

Then we can measure the similarity of the two images by
the distance between their two corresponding feature vec-
tors. The commonly used distances are the Euclidean dis-
tance and the cosine distance. A feature extractor excels in
face recognition service as it requires no retraining, unlike
classifiers when it registers a new face. 1

There are two major ways of training the DNN-based
feature extractors. One way is to train a normal multiclass
DNN classifier initially and then regard the output of the
penultimate layer of the DNN as the feature vector (i.e.,
the DNN without the last fully connected layer is a fea-
ture extractor) (Parkhi, Vedaldi, and Zisserman 2015; Sun
et al. 2014). Another approach is to train the feature extrac-
tor directly using the triplet loss (this is also called met-
ric learning) (Schroff, Kalenichenko, and Philbin 2015). A
triplet consists of two matching face thumbnails and a non-
matching face thumbnail, and the loss aims to separate the
positive pair from the negative by a distance margin. As
the number of triplet combinations increases exponentially,
triplet loss tends to be harder to scale. We focus on the for-
mer approach in this work.

Feature extractors trained through simple softmax outputs
are effective for closed-set classification tasks but are not
discriminative enough for open-set verification. An angular
margin penalty such as ArcFace (Deng et al. 2019), Cos-
Face (Wang et al. 2018), and Sphereface (Liu et al. 2017),
and other approaches such as (Wan et al. 2018) is a form of
the loss function that has successfully improved the discrim-
inative power of face verification by feature vectors. The an-
gular margin penalty modifies the final prediction layer to
enforce the true label’s predictions to be more restrictive and
discriminative than the vanilla softmax by penalty. In such a
way, the loss transfers the penalty against the prediction into
the distance between features, features with high inter-class
variance and low intra-class variance.

We briefly review the angular margin penalty. We start
from the cross-entropy lossLCE(x, y) for a trainable param-
eter φ, an input x, and its true label y. We assume g(x, φ)
is the classification over n classes and is the fully con-
nected final layer’s softmax output whose input is the output
f(x, φ) ∈ Rd of the d-dimensional penultimate layer. Then,
letting Wj ∈ Rd and bj ∈ R for j = 1, . . . , n, respectively,
an final weight vector and a final bias for the j-th prediction,

LCE(x, y) := T 1y · log g(x) = log
eWy·f(x)+by∑n
`=1 e

W`·f(x)+b`
.

The loss function of ArcFace LARC,σ,µ(x, y) L2-
normalizes f and Wj , lets b` = 0, and introduces penalty
µ and smoothness hyperparameter σ. With cos θ(x, `) =
W`·f(x)

‖W`‖·‖f(x)‖ , it is;

LARC,σ,µ(x, y)

= log
eσ cos(θ(x,y)+µ)

eσ cos(θ(x,y)+µ) +
∑
`∈{1,...,n}\y e

σ cos θ(x,`)
.

1Because of this property, we need to evaluate the accuracy
of feature extractor based face recognition by datasets that do not
share the labels (identities of the owners of faces) with the training
dataset.



The loss function of CosFace is with a slightly different form
of the penalty. We call each model of both ArcFace and Cos-
Face as a single model and compare it with other models in
our experiments. The feature extractor trained by this net-
work is f̃(·, φ) ∈ Rd, which is the normalization of f(·, φ).

Adversarial Examples
While deep neural networks are successful to show high ac-
curacy in their tasks, they are vulnerable to AXs (Goodfel-
low, Shlens, and Szegedy 2015; Carlini and Wagner 2017b).
An AX is a crafted input xadv , which is different from
a source image xs by δ, i.e., xadv = xs + δ, so that
the target classifier misclassifies it but not by the humans.
Many works search for a small δ that humans cannot per-
ceive, while some works such as (Kakizaki and Yoshida
2020) search for a large δ that humans consider natural.
I-FGSM, an iterative variant of the Fast Gradient Signed
Method (FGSM) (Goodfellow, Shlens, and Szegedy 2015;
Madry et al. 2018), searches δ by moving in the negative
gradient direction to the target label. Basic Iterative Method
(BIM) (Kurakin, Goodfellow, and Bengio 2017a) is an ex-
tension of I-FGSM where the search is within a given bound-
ary. Carlini & Wagner (CW) attack (Carlini and Wagner
2017b) searches the best δ by formalizing the problem as op-
timization. The above I-FGSM, BIM, and CW methods are
the major strong attacks available today to generate AXs.

(Rozsa, Günther, and Boult 2017) proposed a general
method, called LOTS, to generate AXs such that an internal
layer representation is close to that of a target by iteratively
adding perturbations to the source input. It uses a Euclidean
loss defined on the internal layer representations of the ori-
gin and the target. It applies its gradient to the source input to
manipulate the source input’s internal layer representation.
We can generate an AX for feature extractors by applying
LOTS to the features layer, which is also an internal rep-
resentation of the classifier that is to be a feature extractor.
LOTS is sufficiently general to employ I-FGSM, BIM, and
CW for the underlying perturbation method.

Defenses against Adversarial Examples
Various studies have proposed methods to make DNNs
robust against AXs. They include adversarial train-
ing (Goodfellow, Shlens, and Szegedy 2015; Madry et al.
2018), feature transformation (Xu, Evans, and Qi 2018),
statistical analysis (Zheng and Hong 2018), manifold
learning (Samangouei, Kabkab, and Chellappa 2018),
knowledge distillation (Papernot et al. 2016), selective
dropout (Goswami et al. 2018, 2019), an ensemble of mod-
els, and more. Despite their partial success, none of them
completely prevents AXs from deceiving DNNs with clev-
erer attack techniques such as (Carlini and Wagner 2017a;
Athalye, Carlini, and Wagner 2018). An adversarial train-
ing, a relatively successful defense, trains DNNs by gener-
ating AXs and including them in the training data (Goodfel-
low, Shlens, and Szegedy 2015; Kurakin, Goodfellow, and
Bengio 2017b). However, it can not sufficiently defend the
model against some of the AXs that have not appeared dur-
ing the training (Gilmer et al. 2019). There have also been

studies on certified defenses, of which the aim is to train
DNNs in a provably robust fashion (Cohen, Rosenfeld, and
Kolter 2019; Hein and Andriushchenko 2017; Wong et al.
2018; Raghunathan, Steinhardt, and Liang 2018; Wong and
Kolter 2018). However, this approach’s successes are largely
limited to simple DNN architectures and datasets with low
resolution.

Some works such as (Russakovsky et al. 2015) showed
that an ensemble of different models improves the general-
izability in image classification tasks. It then turns out that
the ensemble model is also successful defenses against AXs.
(Pang et al. 2019) proposed adaptive diversity promotion
(ADP), which trains an ensemble of models so that their
non-maximal predictions vary largely. Since non-maximal
predictions differ greatly, it is hard to align them to maximal
prediction in an AX.

Direct Integration Adaptive Diversity Promoting
(ADP) Method into Feature Extractors
Despite the relative success of the ensemble model, all of the
works are validated only for classifications. We can directly
integrate the adaptive diversity promoting (ADP) method
into the angular margin penalty for feature extraction. We
assume that our ensemble is composed of K models, and
thus all parameters have K duplicates. Each model predicts
over n labels in training. Let the output of the k-th model that
represents the j-th label in the ensemble be gk,j . The ensem-
ble prediction Gj for the j-th label is the average of all the
output of predictions. That is, Gj(x) = 1

K

∑K
k=1 gk,j(x).

Then, Shannon Entropy of the distribution {Gj}j=1,...,n is

H(G(x)) = −
N∑
j=1

Gj(x) log(Gj(x)).

Let gk,\y ∈ Rn−1 be such an (n − 1)- dimensional
vector that is gk ∈ Rn except for the y-th element,
i.e., true prediction. Let g̃k,\y ∈ Rn−1 be L2-normalized
gk,\y ∈ Rn−1, and let an (n − 1) × K matrix M(x, y) =

(g̃1,\y(x), . . . , g̃K,\y(x)) ∈ R(n−1)×K . Then, the ensemble
diversity of non-maximal (y) prediction of x is

ED(x, y) = det(TM(x, y) ·M(x, y)).

Here, the operation of ”·” is the multiplication of K ×
(n − 1) matrix and (n − 1) × K matrix, whose result is
K × K matrix. Geometrically, it is the volume of spaces
that {g̃1,\y(x), . . . , g̃K,\y(x)} spans. With hyperparameters
α and β, the regularizer for promoting adaptive diversity is

ADPα,β(x, y) = α · H(G(x)) + β · log(ED(x, y)).

With {LkM,σ,µ(x, y)}k=1,...,K where M represents either
ArcFace or CosFace by ARC or COS, the ADP method
trains the model by optimizing parameters for minimum

LE,M,ADP,σ,µ,α,β :=

K∑
k=1

LkM,σ,µ(x, y)− ADPα,β(x, y).

The feature extractor is the normalized penultimate layer
output (f̃k ∈ Rd)k=1,...,K . We let the ensemble features F



be the average of all the output of features extractors as

F(x) = 1

K

N∑
k=1

f̃k(x).

Here, we omitted φ. We use the Euclidean distance between
the above ensemble feature F(x) of the input x and the reg-
istered feature F(x′) of another input x′ as a measure of
similarity for our verification task.

Our Approach
Problem and Challenge
We will later see in our experiments that ADP scarcely en-
hances the robustness of the network against AXs. We see
its cause as below. Let normalized weight vectors of the fi-
nal layer by all the models be {W̃ k

` }(k,`)∈{1,...,K}×{1,...,n}.
Here, k runs for models in the ensemble, and ` runs for la-
bels. Let {f̃k}k be the feature extractors. Again, k runs for
models in the ensemble. The diversity promotion in the en-
semble aims to enforce any perturbation δ to input x brings
it to such x′ that features {f̃k(x′)}k of different models are
close to W̃ k

` of different `’s. The ADP is likely to achieve
such a property. However, the difference in directions of
features does not imply the difference of directions from
learned features, i.e., the weight vectors. For example, sup-
pose that f̃1(x) near W̃ 1

1 moves to a very different direction
from the direction of which f̃2(x) near W̃ 2

1 moves when we
perturb x by δ. However, if these directions are such that
f̃1(x) moves to W̃ 1

2 and that f̃2(x) moves to W̃ 2
2 , the dif-

ference in directions does not prevent AXs. Since weight
vectors are independent among different models, the previ-
ous approaches do not prevent such situations from occur-
ring. Therefore, we need to promote the diversity of features
among all the ensemble models to be diverse relative to re-
spective weight vectors’ positions.

Our Solution
Shared Representative Vector: We propose to share
weight vectors {W̃ k

` }(k,`)∈{1,...,K}×{1,...,n} of the final
layer by all the models. We propose W̃ k

` for all k are the
same and let W̃` denote it. The change promotes all the la-
bel y features to be close to the same W̃y independent of
models. Hence, the adversary needs to find the perturbation
of x, which moves all features {f̃k(x)}k=1,...,K from W̃y to
W̃y′ . Suppose the directions of the susceptibility of features
to perturbation are different among different models. Then,
it is hard for an adversary to find perturbation that moves
features in the same direction. If we promote diversity of
features, we can expect the chart of features around weight
vector are different among models and can expect that the
ensemble increases its robustness to AXs.

We call the weight vector W̃` that all models share as
shared representative weight vectors (SRV). Let ψk(x, `) be
the angle, i.e., the arc, between W̃` and f̃k(x) in Rd. That is,
ψk(x, `) is such that,

cosψk(x, `) = W̃` · f̃k(x),

which we can compare to the original θk(x, `) such that

cos θk(x, `) =
W k
` · fk(x)

‖W k
` ‖ · ‖fk(x)‖

= W̃ k
` · f̃k(x).

We have the loss function with the shared representative
weight vector as

LE,ARC,SRV,σ,µ(x, y)

=

K∑
k=1

log
eσ cos(ψk(x,y)+µ)

eσ cos(ψk(x,y)+µ) +
∑
`∈{1,...,n}\y e

σ cosψk(x,`)
.

We expect that feature extractors trained by the following
loss function are robust to AXs.

LE,ARC,SRV,FDP,σ,µ,γ(x, y)
= LE,ARC,SRV,σ,µ(x, y)− FDPγ(x).

We define LE,COS,SRV,FDP,σ,µ,γ(x, y) similarly.

Feature Diversity Promotion: In ADP, we promote non-
maximal predictions of models in the ensemble to be di-
verse. However, it is a feature that we want it hard for ad-
versaries to manipulate rather than predictions. Hence, we
choose to promote the diversity of ensemble features di-
rectly. We can measure the diversity EDfeat of ensemble
features at x in the same manner as before. Let F̃ (x) =

(f̃1(x), . . . , f̃K(x)) ∈ Rd×K be d×K matrix. Then,

EDfeat(x) = det(T F̃ (x) · F̃ (x))

Here, the determinant is on the K ×K matrix. We promote
the ensemble feature extractors to be such that their features
are diverse by the following regularizer.

FDPγ(x) = γ log(EDfeat(x))

The weighting coefficient γ is a hyperparameter. The reg-
ularizer has no term of Shannon entropy, unlike ADPα,β ,
since we do not need to balance features with values such as
maximal prediction in ADP.

Experiments
Implementation Details
We followed the same training process that is in (Deng et al.
2019). We adopt an MS1MV2 dataset (Deng et al. 2019), the
refined version of the MS-Celeb-1M dataset, for the train-
ing, and VGG2 for the verification. The training dataset in
the MS1MV2 dataset includes 5.8M face images and 85K
identities. For data preprocessing, we crop face images to
the size of 112 × 112 and align face images by utilizing
MTCNN (Zhang et al. 2016).

For the embedding network, we employ the widely used
CNN architecture, MobileFacenet (Chen et al. 2018). Af-
ter the last convolutional layer, we explore the BN (Ioffe
and Szegedy 2015)-Dropout (Srivastava et al. 2014)-FC-BN
structure to get the final 512-dimensional embedding fea-
ture.

We follow (Wang et al. 2018) to set the feature to scale
σ = 64 and choose the angular margin of ArcFace at µ =
0.5. We choose the angular margin of CosFace at µ = 0.35.



Method ROC-AUC
ArcFace CosFace

Single model 0.96326 0.96034
ADP 0.94269 0.95964
AdvT 0.96437 -

Our method 0.96417 0.97093

Table 1: ROC-AUCs of face verification by VGG2 among
single model, ADP, and our method shows that our method
does not sacrifice accuracy at all.

We set the batch size to 256 and train the ensemble consist-
ing of three feature extractors on one NVIDIA Tesla V100
(32GB) GPU. We set the initial learning rate is 10−3, and we
divide it by 10 at 12, 15, and 18 epoch. The training process
finishes at 20 epoch.

We have experimented with the effectiveness of regu-
larizers ADPα,β(x, y) and FDPγ(x) to the robustness of
feature extractors trained by the ensemble model of Arc-
Face and CosFace. The hyperparameter of regularizers we
tested are (α, β) = (2.0, 0.5), (2.0, 10.0), and (2.0, 50.0)
for ADP, and γ = 1.0, 10.0, and 50.0 for FDP. We also com-
pared our method with one of the best adversarial training,
which exploits margin-based triplet embedding regulariza-
tion (Zhong and Deng 2019). They have not experimented
with MobileFacenet that we adopted. They also observed
that the robustness varies depending on the margin in the
triplet embedding regularization term. Hence, we tried sev-
eral hyperparameter values of m = 0.2, 0.6, 1.4, and 3.0 to
find the best one for MobileFacenet.

We applied attacks such as I-FGSM, BIM, and CW to
the following models in the LOTS framework. (1) ”single
model,” which is the original model, (2) ”baseline,” which
is a simple ensemble of original models, (3) ”ADP,” which
is a simple ensemble model with ADP regularizer, and (4)
”FDP” which is a simple ensemble model with FDP regu-
larizer. (5) ”SRV,” which is an ensemble with a shared rep-
resentative vector, (6) ”SRV+ADP,” which is SRV with ADP
regularizer, (7) ”AdvT for m = 0.2, 0.6, 1.4, 3.0,” which is
adversarial training, and (8) ”Our method,” which is our full
model that has SRV with FDP regularizer. The number of
models in each ensemble is three (K = 3).

All the attacks are adaptive, which means we applied
methods to robustified networks. We could compare our
method to only those previous methods we experimented
with ourselves since their reported results are in different
conditions.

Performance on Legitimate Samples
We verified the accuracy of verifications on the VGG2
dataset. Table 1 shows ROC-AUCs of the single model,
ADP, AdvT, and our method (SRV+FDP) for ArcFace and
CosFace. The hyperparameters resulting from best ROC-
AUC are (α, β) = (2.0, 0.5), m = 0.6, and γ = 10.0. Our
proposed SRV+FDP is not only no worse than the original
single model but performs best.

We also show the accuracy of verification on sev-
eral legitimate datasets of different conditions in Table 2.

Loss method LFW CFP-FP AgeDB-30
single model 99.30 89.60 94.22

Baseline 99.12 89.71 94.15
ADP 98.90 86.20 90.52
FDP 99.40 89.94 94.13

ArcFace SRV 99.26 90.94 94.93
SRV+ADP 99.38 86.62 93.98

AdvT 99.21 90.80 94.38
Our method 99.40 89.97 95.15
single model 99.40 88.29 93.07

CosFace SRV+ADP 99.33 88.33 92.43
Our method 99.28 91.14 94.97

Table 2: Accuracies of verifications by different methods
with various datasets show our method does not sacrifice ac-
curacy.

These datasets are FW (Huang et al. 2007), AgeDB-
30 (Moschoglou et al. 2017), and CFP-FP (Sengupta et al.
2016), which provide face data in an unconstrained setting.
We can see that our SRV+FDP is remarkably often better
slightly than the single model. On the other hand, ADP and
SRV+ADP are often worse than the single model. We can
use our method in tandem with other methods. The experi-
ments are with ArcFace and CosFace.

Robustness against Adversarial Examples in
White-Box Setting
We generate AXs by LOTS with I-FGSM, BIM, and CW in
a white-box setting. We did not limit the number of itera-
tions in all attacks, which swells more than 1,000 in some
cases. We chose a rather large boundary (ε = 0.1) in BIM.
We randomly sample 1000 pairs of different identity images
from the VGG2 test dataset and generated 500 AXs. As we
imposed less on AXs, all the attacks have been successful
with their different perturbation sizes. We let the learning
rate of underlying SGD to be 0.1. We note that we can still
recognize images with the largest perturbation by our human
eyes.

We compared the robustness of various methods through
the size of perturbation. We define the τ -attack success rate
as

τAcc =
|{xadv|xadv ∈ AX ; ‖xadv − xs‖2 < τ}|

|AX |
. (1)

Here, xs is a legitimate sample, and xadv is the AX created
from xs. AX is a set of all the successful AXs generated
in the white-box setting. This measurement represents the
proportion of adversarial samples whose perturbation size
is less than τ to all legitimate images. We can say that the
larger perturbation we need to fool feature extractors, the
more robust they are.

Graphs in the upper row of Figure 2 show the τAcc of
LOTS via I-FGSM, BIM, and CW, respectively, for Arc-
Face. We observed that (1) the baseline, ADP, and the FDP
do not enhance the robustness against AXs in a noticeable
manner, (2) SRV alone enhances robustness, (3) the addi-
tion of ADP to SRV does not enhance robustness, (4) Our



LOTS via I-FGSM (ArcFace) LOTS via BIM (ArcFace) LOTS via CW (ArcFace)

LOTS via I-FGSM (CosFace) LOTS via BIM (CosFace) LOTS via CW (CosFace)

Figure 2: White-Box Attacks: the decrease of attack accuracy measures robustness compared to the single model.

LOTS via I-FGSM (ArcFace) LOTS via BIM (ArcFace) LOTS via CW (ArcFace)

Figure 3: White-Box Attacks: robustness of the single model, our method, and the adversarial training method with various
values of hyperparameter ”m.” Differences of robustness among them are marginal.

FDP+SRV has the best robustness. We see the same trends
for another common loss function of CosFace in graphs in
the lower row of Figure 2.

Graphs in Figure 3 compare our method with adversar-
ial training by the τAcc of LOTS via I-FGSM, BIM, and
CW, respectively, for ArcFace. The adversarial training is
with several values of hyperparameter ”m.” Differences in
robustness among them are marginal. We see our method
enjoys the stronger robustness in all the cases.

Robustness against Adversarial Examples in
Black-Box Setting
We first generate AXs by LOTS with I-FGSM, BIM, and
CW to the single model in a white-box setting. We gener-
ated several sets of AXs with different distances between
their features and the target features. All of their distances
are sufficiently small that all AXs are successful attacks. Al-
though a class with a smaller distance is hard to generate, we
successfully generated AX for all input images by searching
for a longer time. On average, it took 10.97 seconds to gen-
erate an AX whose distance from the target is 0.2. As in the

white-box setting experiments, we did not restrict the num-
ber of iterations; we chose a rather large perturbation bound-
ary. We applied these AX to each model for the evaluation,
whose results are in graphs in Figure 4.

The results show that our method has significantly sup-
pressed the transferability of AXs. We could also see a clear
relation between the transferability of the AXs and the dis-
tance between features. We consider it because our ensem-
ble uses the same single model. The transferability surpris-
ingly reaches 1 when the distance between AX and the tar-
get in feature space becomes sufficiently small. However,
this comes with a much larger perturbation in input im-
ages, as shown in Figure 5. The transferability of all mod-
els approaches zero as the distance between features be-
comes large. It is so because AX becomes no longer a suc-
cessful one with such a large distance. That we eventually
have complete transferability with a small distance in fea-
ture space indicates that an essential improvement within a
single model is necessary, unless we can strictly forbid the
small size of perturbation by some means. We consider this
is a clear limitation of the ensemble model method.
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Figure 4: Black-Box Attacks: the decrease of attack accuracy measures robustness compared to the baseline.

Figure 5: The trade-off between the average size of pertur-
bation and the distance in feature space (ArcFace).

Conclusion
Introducing ensemble diversity in feature extractors for ad-
versarial robustness was not direct. We proposed a novel
method that could effectively increase the robustness of fea-
ture extractors. Our method might not completely prevent
adversarial examples if the perturbation is large. However,
it can potentially be used with other tandem methods to in-
crease their robustness. Our method also showed stronger
robustness than one of the adversarial training methods.
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