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Abstract

An increasing number of tasks is being taken over from the
human driver as automated driving technology is developed.
Accidents have been reported in situations where the auto-
mated driving technology was not able to function according
to specifications. As data-driven Artificial Intelligence (AI)
systems are becoming more ubiquitous in automated vehi-
cles, it is increasingly important to make AI systems situa-
tional aware. One aspect of this is determining whether these
systems are competent in the current and immediate traffic
situation, or that they should hand over control to the driver
or safety system.
We aim to increase the safety of automated driving functions
by combining data-driven AI systems with knowledge-based
AI into a hybrid-AI system that can reason about competence
in the traffic state now and in the next few seconds.
We showcase our method using an intention prediction algo-
rithm that is based on a deep neural network and trained with
real-world data of traffic participants performing a cut-in ma-
neuver in front of the vehicle. This is combined with a uni-
fied, quantitative representation of the situation on the road
represented by an ontology-based knowledge graph and first-
order logic inference rules, that takes as input both the ob-
servations of the sensors of the automated vehicle as well as
the output of the intention prediction algorithm. The knowl-
edge graph utilises the two features of importance, based on
domain knowledge, and doubt, based on the observations and
information about the dataset, to reason about the competence
of the intention prediction algorithm.
We have applied the competence assessment of the intention
prediction algorithm to two cut-in scenarios: a traffic situation
that is well within the operational design domain described
by the training data set, and a traffic situation that includes
an unknown entity in the form of a motorcycle that was not
part of the training set. In the latter case the knowledge graph
correctly reasoned that the intention prediction algorithm was
incapable of producing a reliable prediction.
This shows that hybrid AI for situational awareness holds
great promise to reduce the risk of automated driving func-
tions in an open world containing unknowns.
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Automated driving is one of the most appealing applica-
tions of artificial intelligence in an open world. It holds the
promise of reducing the number of casualties (1.35 million
yearly (WHO 2018)), increasing the comfort of travel by
taking over the driving task from humans, and bringing mo-
bility to those unable to drive. While fleets of fully auto-
mated vehicles that can run unrestrained in an open world
are still far away (Koopman and Wagner 2016), many vehi-
cles are already equipped with Advanced Driver Assistence
Systems (Okuda, Kajiwara, and Terashima 2014), like Lane
Keep Assist and Adaptive Cruise Control. According to The
Geneva Convention on road traffic of 1949 and the Vienna
Convention on road traffic 1968, on which many countries
base their national traffic laws, a human driver has to be
present in the vehicle (Vellinga 2019). Artificial Intelligence
(AI) opens up the possibility of automation in increasingly
complex situations, but also makes it increasingly complex
for human drivers to understand the limitations of the system
(Thill, Hemeren, and Nilsson 2014).

The tremendous success of Deep Neural Networks
(DNNs) in the recent years (LeCun, Bengio, and Hinton
2015) has lead to many applications in automated driving,
ranging from perception (Cordts et al. 2016) and trajec-
tory prediction (Deo and Trivedi 2018) to decision mak-
ing (Bansal, Krizhevsky, and Ogale 2019). The strength
of DNNs is the capability to deal with complex prob-
lems, but one important drawback for their application in
safety-critical systems is how they deal with new situa-
tions (Hendrycks and Gimpel 2017; McAllister et al. 2017).
DNNs learn a (possibly very complex) mapping from input
data to output, but they lack an understanding of the deeper
causes of this output. Hence, these algorithms cannot reason
about whether they are competent to produce reliable out-
put based on the input data. To safely apply DNNs (or any
learning algorithm) in automated vehicles, we need to add
situational awareness: the comprehension whether the sys-
tem understands the current environment and is capable of
producing reliable output.

In this work we describe a hybrid-AI approach (van
Harmelen and ten Teije 2019; Meyer-Vitali et al. 2019) to
situational awareness. In this approach, a data-driven AI is
coupled to a knowledge graph with reasoning capabilities.



The current application is a DNN that predicts the intention
of other road users to merge into the lane of the ego vehicle
(cut-in maneuver). This is combined with a knowledge
graph of the traffic state that relates the current situation
to what the predictor has learned from the training data.
The knowledge graph reasoner returns an estimate on
the reliability of the predictor, which it forecasts into the
immediate future (2 seconds ahead) to be able to warn the
driver or safety system in advance that takeover of control
is imminent in the near future.

Related work
In the automotive domain, situation awareness (Endsley
1995) is a term often used to describe the readiness of human
drivers to make good decisions (Endsley 2020). It is based
on perception of the environment, comprehension of the cur-
rent situation, and projection into future. Here we extend sit-
uation awareness to an AI system in the vehicle, where we
add the assessment of competence in the current situation to
the comprehension of the current situation.

Machine learning methods tend to underperform when the
distributions of the test dataset and training dataset differ
significantly. Throughout the paper, we refer to data samples
drawn from the training set distribution as in-distribution
(ID), while samples drawn from a different distribution as
out-of-distribution (OOD). DNNs often attribute high con-
fidence to the classification or prediction of OOD sam-
ples (Hein, Andriushchenko, and Bitterwolf 2019); this be-
haviour, which is especially valid for softmax classifiers
(Hendrycks and Gimpel 2016), can have dramatic conse-
quences in applications where model reliability and safety
are priorities. Various papers attempt to increase models’ ro-
bustness by calibrating the predicting probability estimates
(Guo et al. 2017) or by injecting small perturbations to the
input data (Liang, Li, and Srikant 2017). Density estimation
methods are also leveraged to detect OOD observations: the
likelihood over the in-distribution sample space can be ap-
proximated (Dinh, Sohl-Dickstein, and Bengio 2016) (Ren
et al. 2019) and used to compute the likelihood of new obser-
vations, thus detecting those samples that lie in low-density
regions.

Another way of dealing with OOD observations is to have
the DNN output more accurate certainty values. Several ap-
proaches have been described in the literature, ranging from
Monte Carlo Dropout (Gal and Ghahramani 2016) to adding
a Gaussian distribution over the weights in the last layer of
a ReLU network (Kristiadi, Hein, and Hennig 2020). It has
been shown that Bayesian deep learning is important for the
safety of automated vehicles (McAllister et al. 2017).

Method
To assess the competence of data-driven-AI automated-
driving capabilities we propose a pipelined framework, de-
picted in Figure 1. The framework receives as input the ob-
servations of the current road situation and, via a pipelined
information flow, outputs the decision on whether the driv-
ing mode should remain autonomous or should be handed

over to the human driver or backup safety system. The
framework’s internal structure is divided into three modules:
Intention Predictor, Reasoner and Competence Assessment.

Raw observations related to each target vehicle, such as
their speed and acceleration, are fed to the Intention Pre-
dictor. This module processes the information via two sub-
modules. The first one is a deep neural network trained to
output (predict) whether a given target vehicle will perform a
cut-in maneuver (Cut-in Classifier). The second sub-module
is a Feature Uncertainty Estimator. It holds univariate den-
sities of the classifier’s training set input features and pro-
vides information on the in-distribution likelihood of the net-
work’s input data.

The Intention Predictor’s output, the observations related
to road geometry (e.g. presence of entry lanes) and lane vis-
ibility are fed to the framework’s second module, the Rea-
soner. The reasoner — characterised by an ontology and
first-order logic rules — fuses the input observations with
domain knowledge (encoded in the ontology and in the
rules) into a knowledge graph. The graph realises the frame-
work’s situational awareness, as it holds a unified represen-
tation of the current situation and is aware of what entities
are important and doubtful.

The graph is then fed to the last module of our frame-
work, Competence Assessment. The module first organ-
ises its present and past situation-aware knowledge. Then
it projects such knowledge into the future. Finally, it decides
whether such forecast is outside the autonomous system’s
competence level.

In the next part, we will describe each module in more
detail.

Simulation Environment
For simulation we use CARLA, an Open Source simulator
which aims to support the development, training, and val-
idation of autonomous driving systems (Dosovitskiy et al.
2017). The scenarios are defined using OpenSCENARIO1,
an open format used to describe synchronized maneuvers of
vehicles.

For a given location of the Ego Vehicle (EV), we use the
API of CARLA to extract a world model of the road situ-
ation. This world model includes the number of lanes, the
presence of an entrance lane and all Target Vehicles (TVs).
For each TV, the velocity, acceleration, angle and position
relative towards EV is determined. The lane visibility v is
calculated as v = d

s , where 0 ≤ v ≤ 1. Here, d is the dis-
tance of the closest TV on that lane and s the scope of EV in
meters (s := 50m by default).

Intention predictor
Predicting the intention of a vehicle to perform a cut-in can
be framed as a binary classification task; the two labels to
classify are ”cut-in” and ”not cut-in”. A data point labeled as
”cut-in” refers to the collected information at timestep t for a
TV that performs a cut-in between t and t + 2s. Since more
than one vehicle can be present at the same time, multiple
data points can be collected at t.

1https://www.asam.net/standards/detail/openscenario/



Figure 1: The overall architecture of our situation-aware competence assessment framework. The dotted arrow from Real-life
Datasets to Intention Predictor is not part of the online information flow.

The dataset consists of 24305 data points, divided into
6348 instances labeled as ”cut-in” and 17957 ones la-
beled as ”not cut-in”, drawn from the StreetWise database
(Paardekooper et al. 2019). While completeness measures
of this database have been developed (de Gelder et al. 2019),
the dataset used for training the intention predictor does not
cover the entire spectrum of cut-ins that are to be expected
in real-life traffic. However, for the purpose of this work a
complete dataset is not essential, as we are interested in the
situations where the intention predictor has not been trained
for.

To date, a variety of physics-based and data-driven ap-
proaches have been developed to detect spatio-temporal pat-
terns in road users’ behaviour. Specifically, DNNs have been
commonly adopted for classification purposes as they can
often outperform other methods for high-dimensional data
(Sakr et al. 2017).

The DNN we developed for this study is a two-layer fully
connected network trained with gradient-based backpropa-
gation. The input x ∈ Rm is mapped into an output y ∈ Rn,
where m = 30 and n = 1 are respectively the input and
output dimensionality. The two hidden layers contain 512
neurons each and are activated by a ReLU function (Nair
and Hinton 2010). The 30 features used as input represent
continuous values related to the dynamics of a TV present
at a given time t. Some of these variables, such as the TV’s
speed, acceleration, and the relative lateral and longitudinal
distance to EV, have been directly collected in real-life driv-
ing scenarios; other variables are the result of feature engi-
neering techniques to develop expressive variables. The out-
put, which is a single non-linear sigmoid layer defined over
a domain o ∈ [0, 1], represents the predicted confidence in
the TV performing a cut-in within the next 3 seconds. The
result of this two-class logistic regression is converted into
a binary output by defining a maximum threshold λ on the
output.

During training, the cross-entropy logarithmic loss is
weighted for the two different classes to take into account
their imbalance in the dataset. The threshold λ, the learn-
ing rate and the number of neurons per layer are fine-tuned
using a Bayesian approach for global optimization (Brochu,
Cora, and De Freitas 2010). To reduce overfitting, dropout
and early stopping are used.

Feature uncertainty estimator To assess the robustness
of the trained DNN predictor on unseen test scenarios, we
first analyzed the univariate distribution of each feature xi
in the training setX = {x1, ...,x30}. Among these features,
the most expressive ones for situational awareness were ex-
tracted for further analysis. The following features were cho-
sen: the absolute EV and TVs’ velocity and acceleration,
their relative velocity and acceleration, the relative longitu-
dinal and lateral distance between the vehicles, their relative
heading, and the distance between EGO and the closest lane
marker. A desired characteristic of these features concerns
their distribution. We observed that the distribution of these
data samples can be approximated to multimodal skewed
distributions when the dynamic properties of the vehicles
change incrementally over time. Such distributions can be
approximated by traditional non-parametric density estima-
tions methods, such as the Kernel Density Estimation (KDE)
(Parzen 1962).

KDE is a technique used to reconstruct the probability
density function of given data samples, and it can be adopted
for a single feature (univariate KDE) or to multiple features
(multivariate KDE). In the case of the univariate version,
this technique consists of fitting a kernel function, such as
a Gaussian, over each of the k samples in the chosen fea-
ture vector. The resulting k densities are then summed and
normalized to return the final density estimate of the fea-
ture. The main hyperparameter of KDE, the bandwidth h,
controls the variance of the kernel function; its value deter-
mines how smooth the final density estimate is. The opti-



mization of this parameter, which is necessary to guarantee
that the kernel function fits the data samples correctly, was
optimized using the Maximum Likelihood Cross-Validation
(MLCV) approach (Habbema et al. 1974):

MLCV =
1

k

k∑
i=1

log

∑
j 6=i

K

(
xj − xi
h

)− log[(k− 1)h]

(1)
where k is number of data samples to fit, K(·) is a Gaussian
kernel, xj is a data point over the defined domain chosen,
and xi is the i-th sample in the feature vector. Once the fi-
nal density estimate is computed, it is possible to evaluate
the likelihood of new samples for each feature; this compu-
tation can be performed synchronously with the observation
of new data in unseen scenarios, as required in our study. For
practical purposes, the log-likelihood of the samples is used
instead of the likelihood.

A main assumption in our investigation is that samples
with low likelihood lead to higher uncertainty on the DNN’s
competence. To quantify this intuition, we define the ratio ri
as:

ri =
L(xi |Mi)

Lmax,i
(2)

where xi is an observation that belongs to the i-th feature.
The value ri represents the ratio between the estimated log-
likelihood of the new sample xi given the fitted model Mi

and the maximum log-likelihood Lmax,i observed for the i-
th feature. The maximum log-likelihood was pre-computed
and stored during the kernel fitting phase. Finally, we define
the feature uncertainty φ as:

φ = 1 − 1

m

m∑
i=0

ri (3)

where m is the dimensionality of the feature space x. This
quantity is intrinsically related to the frequency of the ob-
servation in the training set and reflects our previously men-
tioned assumption on the DNN’s competence. The subtrac-
tion guarantees that the feature uncertainty tends to 1 when
all the features are out-of-distribution, thus maximizing the
uncertainty in the predictor’s output, and to 0 when the fea-
tures are in-distribution, thus following the same trend as the
competence.

Reasoner The second module of our framework, the Rea-
soner, is in charge of aggregating all observations — namely
target vehicle data, road geometry, lane visibility and the
output of the Intention Predictor — to have a unified and
quantitative representation of the situation on the road. This
view is represented by means of a knowledge graph based
on an underlying ontology and a set of first-order logic infer-
ence rules. We will hereafter refer to the ontology-rule pair
as the schema. The Reasoner is implemented in Grakn 2. The
ontology specifies (part of) the automotive domain via enti-
ties, attributes and relations. Example of entities are vehicles

2https://grakn.ai/. Last accessed 18 December 2020.

and road lanes. An example of relations is “drive-on”, link-
ing vehicles and lanes. An example of attributes is “distance-
from-ego”, which both vehicles and lanes have.

Given a set of observations in input, the reasoner first ini-
tialises the related knowledge graph by creating nodes —
corresponding to entities and attributes — and edges — cor-
responding to relations. Subsequently, the rules, defined as
Horn clauses (Horn 1951), augment the graph by creating
the two attributes ”importance” and ”doubt”, linked to en-
tities and relations. The importance aims to encode domain
expert knowledge of the automotive domain. Its purpose is
to categorise and rank nodes and edges. The doubt, on the
other hand, can be interpreted as a measure of uncertainty
associated to the nodes and edges. Its purpose is to assign a
unique type of weight across the whole graph elements. The
two features are orthogonal to each other: the schema could
specify that a fully visible entry lane is important indepen-
dently on its doubt value. On the other hand, the cut-in clas-
sifier prediction of a target vehicle that drives far away from
ego, yet in an erratic way (high feature uncertainty), could
have a high doubt value associated to it and, concurrently, a
low importance value because of its position. We consider
three possible importance values, namely low,medium and
high, and 11 doubt values, bounded in the [0, 1] interval,
equidistant from each other (0, 0.1, 0.2, . . . 1).

Figure 2: The main schematics of the entities of our ontology
and their hierarchical organisation.

An excerpt of the ontology’s entity organisation is de-
picted in Fig.2, whilst a schematic representation of the re-
lations is shown in Fig. 3. The entities are organised hi-
erarchically and along three main branches: one represent-
ing the possible vehicles, one the driving infrastructure, and
one the computational models external to the reasoner. The
non-ego vehicles are divided into two key-categories: known
and unknown. The categorisation is done based on the types
of vehicles present in the dataset the cut-in classifier was
trained on. For instance, if the dataset contained only pas-
senger cars, such entity would be placed under the known
branch, whilst other vehicles such as lorries and motorcy-
cles would be inferred as children of the unknown entity. The
known/unknown information associated to observed TVs is
used by the rules to assign doubt values to the classifier’s
output and importance values to the graph nodes. The driv-
ing infrastructure describes all non-vehicle entities present
on the road, such as lanes, ramps and signs, in accordance
with (Zhao et al. 2015; Czarnecki 2018a,b). Lanes have a



Figure 3: The observation-relation implemented in our
schema. Orange items are attributes, blue items are entities,
has entity-attribute relations are straightforward, whilst the
entity-entity relation is depicted with a rhombus.

Figure 4: The instantiation of the schema of Figure 2 given
fictional observations. A truck drives on a one-way lane.
The intention predictor, due to the truck’s high feature un-
certainty, assigns a cut-in probability of 0.6. This rather un-
certain value leads to a high doubt value. Nonetheless, the
truck is rather far from EV, as it can be hinted by the high
visitibility value of the lane3. Hence, the importance value
for the lane is low. The truck has a higher importance value
due to its non-likely behaviour. Finally, the doubt value as-
sociated to the truck-lane relation is low mainly because of
the lane, though not extremly low due to the feature uncer-
tainty related to the vehicle and the fact that it is not entirely
sure whether it will perform a cut-in.

fundamental attribute: visibility. The rules implement a neg-
ative correlation: the lower the visibility, the higher the doubt
associated to that lane. In this way, the framework aims to
speculate about the possible existence of hidden entities in
adjacent lanes. Computation entities represent framework
models which process raw observations to generate new in-
formation, in our case the cut-in classifier. In case the models
are machine learned, the Reasoner infers, via positive cor-
relation, doubt values associated to the model outputs de-
pending on the related in-distribution likelihood values: the
lower the likelihood, the lower the doubt. An example of an
observation-reasoned knowledge graph is shown in Fig. 4.

Competence Assessment
The last module in our framework — Competence Assess-
ment — leverages previous and current knowledge graphs to
determine whether the EV should maintain an autonomous
driving modality or leave the control to the human driver
or backup safety system. Competence Assessment follows a
remember-forecast-decide processing flow.

Remember A time-indexed memory of η graph embed-
dings

e1, . . . eη

is kept. The embedding of a particular time corresponds to
a single value encoding the graph related to that particular
time’s road observations. Currently, the embedding proce-
dure corresponds to a weighted average of all doubts, where
the weights are associated to the relative importance values:
the higher the importance, the higher the weight.

Forecast The remembered embeddings represent, albeit in
a compact way, reasoned (importance/doubt-aware) situa-
tions. Intuitively, the lower an embedding, the more com-
petent the autonomous vehicle was in that situation, as low
importance and doubt attributes would predominantly exist
in the corresponding graph. We therefore define the Compe-
tence related to a graph embedding as:

ci = 1 − ei, ∀ i ∈ [1, . . . η] (4)
Intuitively, cη corresponds to the latest (current) compe-

tence value. The ci values are then fed to a regressor to esti-
mate ρ future competence values

ĉ1, . . . ĉρ

Currently, the framework implements a linear regressor,
based on the assumption that a short-term linear dependency
across observations holds.

Decide The decision whether the driving should remain
autonomous or handed over to a human is made based on
the lowest future competence value

ĉmin = min ĉi, ∀ i ∈ [1, . . . ρ] (5)
and by comparing it to an assessing threshold τc

decision =

{
takeover if ∃ ci < τc
AD mode otherwise

(6)

where AD stands for Autonomous Driving.

Results and Discussion
We have trained the DNN for intention prediction on 24305
instances, divided into 6348 cut-ins and 17957 non cut-ins.
Since the dataset was unbalanced, we weighted the loss
function to compensate for the difference in the observa-
tions per class. The algorithm was tested on 7200 instances,
resulting in a Fscore = 0.98 (accuracy = 0.99).

We have assessed the competence of the intention predic-
tor in two cut-in scenarios. The first scenario describes a cut-
in by a passenger car on an otherwise empty road (Fig. 5a).



Case Potential Risk Reasoner
Competence

1 - φ
Decision

Current Minimum Future w/o Reasoner w/ Reasoner
cη ĉmin τφ = 0.7 τc = 0.7

1 Low not present - - 0.57 takeover -
2 Low present 0.71 0.84 0.57 - AD mode
3 High not present - - 0.31 takeover -
4 High present 0.15 0.14 0.31 - takeover

Table 1: Results on the four different cases tested with and without the Reasoner.

The velocity, distance and driving profile of the TV was de-
signed not to pose any risk to the EV. In addition, every ve-
hicle present in the scenario was known to the knowledge
graph.

(a) The cut-in scenario is within the operational design
domain. Corresponds to Case 1 and 2 in Table 1.

(b) The lane entrance scenario which is outside the
operational design domain. Corresponds to Case 3 and 4

in Table 1.

Figure 5: Snapshots from the two different scenarios as
shown in the CARLA simulator.

The second scenario (Fig. 5b) describes multiple vehicles
(two trucks and a motorcycle) on the first right-most lane
and a truck approaching from the entrance lane. The EV is
in the left lane and cannot see the approaching truck as it is
occluded by the vehicles on its right. The features in this sce-
nario are out-of-distribution, as only two features lie within
the training set domain (Fig. 6). Moreover, the scenario in-
cludes an unknown entity in the form of a motorcycle that
was not part of the training set. The rationale for this is that
a type of vehicle not present in the training set might dis-
play a driving profile that the intention prediction does not

Figure 6: Likelihood ratio r of the features used to compute
the feature uncertainty in the cut-in manoeuvre performed
by the motorcycle (second scenario)

expect. In other words, the output of the predictor might be
incorrect since it relies on the detection of spatio-temporal
patterns in the vehicle’s driving behaviour. The visibility on
the road was reduced by the traffic on the first lane; this lane
was considered of high importance due to the road entrance.
This scenario was designed to pose potential risk to the au-
tonomous system, due to the out-of-distribution features and
unknown entities. The two scenarios were evaluated at the
moment that one of the TVs performs a cut-in.

The two settings were first tested without the contribution
of the symbolic reasoning inference, shown as Case 1 and
Case 3 in Table 1. Since the Reasoner was not in place, the
feature uncertainty φ was used as a proxy to relate the Inten-
tion Predictor to its ability to correctly perform in the given
situation. For clarity, the quantity 1 − φ is reported; hence,
a score equal to 1 represents full confidence in the Inten-
tion Predictor output and can be directly compared with the
Competence score. The threshold τφ = 0.7 was defined to
establish whether it was necessary for the human driver to
take over (1 − φ < τφ), or the vehicle could maintain AD
mode (1− φ ≥ τφ). In both cases, the system decides not to
maintain the AD mode, due to the high feature uncertainty,
even if the scenario was safe. The absence of the Reasoner
causes a lack of situational awareness: the speed of the TV
was lower than the average velocities collected in the train-
ing set —– thus making the velocity an OOD feature —–
but the large distance between the EV and TV is not used by
the Intention Predictor to reduce the importance attributed to
this quantity.

Results of the competence assessment with the Reasoner
are shown as Case 2 and Case 4 in Table 1. The Current



Figure 7: Future estimation of the competence correspond-
ing to Case 4.

Competence column refers to the competence cη as inferred
by the first-order rules of the knowledge graph at the cur-
rent moment. In the event that more than one vehicle was
predicted to perform a cut-in, the reported value is the low-
est cη estimated among all the vehicles. The Minimum Fu-
ture Competence ĉmin was computed converting the future
doubt-embedding extrapolated by the forecaster (Fig. 7) as
described in Eq. 4 and Eq. 5 (ρ = 2). Thus, the future compe-
tence was calculated for a prediction horizon of 2 seconds.
The decision whether the vehicle should remain autonomous
was performed by a thresholding function (τc = 0.7) on the
future competence, as detailed in Eq. 6.

We found that ĉmin evaluated for Case 4 was six times
lower than in Case 2. In Case 2 the threshold for takeover
was never reached and the system did not hand over the au-
tonomous control. Due to the large distance of the TV and
the high visibility of the lanes, the Reasoner determined that
the vehicle could stay in AD mode despite the low likeli-
hood of the input data expressed by the average feature un-
certainty. In contrast, the system decided that a takeover of
the AD mode was necessary in Case 4, because the numer-
ous sources of risk in this setting caused a low future compe-
tence. This is expressed by a competence value that is sub-
stantially lower than solely based on the feature uncertainty.
Using the likelihood of the input data expressed by the fea-
ture uncertainty alone is not sufficient to correctly assess the
confidence in the Intention Predictor output. This is evident
by the results of Case 1 and Case 3 (Table 1), where the ab-
sence of the Reasoner fails to correctly assess the situation.
In addition, the competence returned by the Reasoner shows
a larger contrast between these two extreme cases than the
method based on the feature uncertainty alone.

We found that the linear regression used to assess the fu-
ture competence was strongly affected by small variations
in the history of doubt-embeddings ρ. Thus, we do not con-
sider that a prediction horizon higher than 2 seconds would
be reliable enough to support the decision making process.

Conclusions and future work
We have presented a hybrid-AI framework for the safe appli-
cation of AI functions in automated driving. The framework
aggregates road observations and the results of data-driven
AI computations — such as a DNN for intention prediction
in our case study — into a knowledge graph. The graph is
built by means of an ontology, which specifies the entities
that can exist on the road, and a set of first-order logic in-
ference rules, the latter aiming to estimate the severity level
of the road situations. The knowledge graph is then com-
pressed into a single value (embedding), stored in a work-
ing memory, and used to forecast imminent severity levels.
A final decision maker modules establishes whether the ve-
hicle should continue driving autonomously or whether the
steering wheel should be handed over to a human driver or
backup safety system. The knowledge graphs encode the
situational awareness capabilities of the vehicle, whilst the
forecasting and decision making processes realise the vehi-
cle’s competence assessment capability.

We have shown that the reasoner correctly assigns high
competence to the Intention Predictor in a situation in which
some features of the DNN are uncertain, but the TV poses no
safety threat to the EV due to the large distance and high lane
visibility. The added value of the Reasoner is also shown in
a situation that contains a vehicle (in this case a motorcy-
cle) that has never been seen before by the predictor, in an
environment with important entities that require attention (in
this case an entrance lane). The predictor output is unreliable
in this case, potentially leading to erratic and dangerous be-
haviour of the EV if taken at face value. Here, the Reasoner
correctly assigns a low competence to the predictor based on
the presence of the motorcycle (high doubt) and the presence
of the entrance lane (high importance).

These results provide a solid starting point for future in-
vestigations on situational awareness. In future work, we
will extend situational awareness to the entire automated
vehicle instead of a single component. In addition, the rea-
soner will aggregate more types of observations, for exam-
ple those regarding road works or weather conditions, and
its first-order logic inference rules could be parameterised
via data-driven approaches instead of solely relying on do-
main knowledge. Combining the DNN with the knowledge
graph into a graph neural network will result in a better esti-
mation of competence, especially further into future. Graph
neural networks might also aid in enhanced explainability
on why takeover is needed.

While limited to a single function in a simulation envi-
ronment, our work shows that a hybrid-AI approach to situ-
ational awareness is essential for the safe application of AI
systems in automated driving.
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