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Abstract

Prior work in document summarization has mainly
focused on generating short summaries of a
document. While this type of summary helps get
a high-level view of a given document, it is desirable in
some cases to know more detailed information about
its salient points that can’t fit in a short summary.
This is typically the case for longer documents
such as a research paper, legal document, or a
book. In this paper, we present a new method for
generating extended summaries of long papers.
Our method exploits hierarchical structure of the
documents and incorporates it into an extractive
summarization model through a multi-task learning
approach. We then present our results on three long
summarization datasets, arXiv-Long, PubMed-Long,
and Longsumm. Our method outperforms or matches
the performance of strong baselines. Furthermore, we
perform a comprehensive analysis over the generated
results, shedding insights on future research for
long-form summary generation task. Our analysis
shows that our multi-tasking approach can adjust
extraction probability distribution to the favor of
summary-worthy sentences across diverse sections.
Our datasets, and codes are publicly available at https:
//github.com/Georgetown-IR-Lab/ExtendedSumm.

Introduction
In the past few years, there has been a significant
progress on both extractive (e.g., Nallapati, Zhai,
and Zhou 2017; Zhou et al. 2018; Liu and Lapata
2019; Xu et al. 2020; Jia et al. 2020) and abstractive
(e.g., See, Liu, and Manning 2017; Cohan et al.
2018; MacAvaney et al. 2019; Zhang et al. 2019;
Sotudeh, Goharian, and Filice 2020; Dong et al.
2020) approaches for document summarization.
These approaches generate a concise summary of a
document, capturing its salient content. However, for
a longer document containing numerous details, it
is sometimes helpful to read an extended summary,
providing details about its different aspects. Scientific
papers are examples of such documents; while their
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abstracts provide a short summary about their main
methods and findings, the abstract does not include
details of the methods or experimental conditions.
To those who seek more detailed information about
a document without having to cover the entire
document, an extended or long summary can be
desirable (Chandrasekaran et al. 2020; Sotudeh,
Cohan, and Goharian 2020; Ghosh Roy et al. 2020).

Many long documents, including scientific
papers, follow a certain hierarchical structure where
content is organized throughout multiple sections
and sub-sections. For example, research papers
often describe objectives, problem, methodology,
experiments, and conclusions (Collins, Augenstein,
and Riedel 2017). Few prior studies have noted the
importance of documents’ structure in shorter-form
summary generation (Collins, Augenstein, and
Riedel 2017; Cohan et al. 2018). However, we are not
aware of existing summarization methods explicitly
approaching modeling the document structure when
it comes to generating extended summaries.

We approach the problem of generating extended
summary by incorporating document’s hierarchical
structure into the summarization model. Specifically,
we hypothesize that integrating the processes of
sentence selection and section prediction improves
the summarization model’s performance over the
existing baseline models on extended summarization
task. To substantiate our hypothesis, we test our
proposed model on three extended summarization
datasets, namely, arXiv-Long, PubMed-Long, and
Longsumm. We further provide comprehensive
analyses over the generated results for two long
datasets, demonstrating the qualities of our model
over the baseline. Our analysis reveals that the
multi-tasking model helps with adjusting sentence
extraction probability to the advantage of salient
sentences scattered across different sections of the
document. Our contributions are threefold:

1. A multi-task learning approach for leveraging
document structure in generating extended
summaries of long documents.

2. In-depth and comprehensive analyses over the
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generated results to explore the qualities of our
model in comparison with the baseline model.

3. Collecting two large-scale extended summarization
datasets with oracle labels for facilitating ongoing
research in extended summarization domain.

Related Work
Scientific document summarization Summarizing
scientific papers has garnered vast attention from the
research community during recent years, although
it has been studied for decades. The characteristics
of scientific papers, namely the length, writing
style, and discourse structure, lead to special model
considerations to overcome the summarization
task in scientific domain. Researchers have utilized
different approaches to address these challenges.
In earlir work, Teufel and Moens (2002) proposed
a Naïve bayes classifier to do content selection
over the documents’ sentences with regard to their
rhetorical sentence role. More recent works have
given rise to the importance of discourse structure
and its usefulness in summarizing scientific papers.
For example, Collins, Augenstein, and Riedel (2017)
used a set of pre-defined section clusters that source
sentences are appeared in as a categorical feature
to aid the model at identifying summary-worthy
sentences. Cohan et al. (2018) introduced large-scale
datasets of arXiv and PubMed (collected from public
repositories), and used a hierarchical encoder to
model the discourse structure of a paper, and then
used an attentive decoder to generate the summary.
More recently, Xiao and Carenini (2019) proposed a
sequence-to-sequence model that incorporates both
the global context of the entire document and local
context within the specified section. Inspired by the
fact that discourse information is important when
dealing with long documents (Cohan et al. 2018),
we utilize this structure in scientific summarization.
Unlike prior works, we integrate sentence selection
and sentence section labeling processes through a
multi-task learning approach. In a different line of
research, the use of citation context information has
been shown to be quite effective at summarizing
scientific papers (Abu-Jbara and Radev 2011).
For instance, Cohan and Goharian (2015, 2018)
utilized a citation-based approach, denoting how
the paper is cited in the reference papers, to form
the summary. Here, we do not exploit any citation
context information.

Extended summarization While summarization
research has been extensively explored in literature,
extended summarization has recently gained a huge
deal of attention from the research community.
Among the first attempts to encourage the ongoing
research in this field, Chandrasekaran et al. (2020)
set up the Longsumm shared task 1 on producing

1https://ornlcda.github.io/SDProc/sharedtasks.html

extended summaries from scientific documents
and provided a extended summarization dataset
called Longsumm over which participants were
urged to generate extended summaries. To tackle this
challenge, researchers used different methodologies.
For instance, Sotudeh, Cohan, and Goharian (2020)
proposed a multi-tasking approach to jointly learn
sentence importance along with its section to
be included in the summary. Herein, we aim at
validating the multi-tasking model on a variety of
extended summarization datasets and provide a
comprehensive analysis to guide future research.
Moreover, Ghosh Roy et al. (2020) utilized section-
contribution pre-computations (training set) to
assign weights via a budget module for generating
extended summaries. After specifying the section
contribution, an extractive summarizer is executed
over each section separately to extract salient
sentences. Unlike their work, we unify sentence
selection and sentence section prediction tasks to
effectively aid the model at identifying summary-
worthy sentences scattered around different sections.
Furthermore, Reddy et al. (2020) proposed a CNN-
based classification network for extracting salient
sentences. Gidiotis, Stefanidis, and Tsoumakas (2020)
proposed to use a divide and conquer (DANCER)
approach (Gidiotis and Tsoumakas 2020) to identify
the key sections of the paper to be summarized. The
PEGASUS abstractive summarizer (Zhang et al. 2019)
then runs over each section separately to produce
section summaries, which are finally concatenated
to form the extended summary. Beltagy, Peters,
and Cohan (2020) proposed “Longformer” that
utilizes “Dilated Sliding Windows”, enabling the
model to achieve better long-range coverage on
long documents. With all being mentioned above,
to the best of our knowledge, we are the first to
conduct quite a comprehensive analysis over the
generated summarization results in the extended
summarization domain.

Dataset
We use three extended summarization datasets in
this research. The first one is Longsumm dataset,
which has been provided in the Longsumm 2020
shared task (Chandrasekaran et al. 2020). To further
validate the model, we collect two additional datasets
called arXiv-Long and PubMed-Long by filtering the
instances of arXiv and PubMed corpora to retain
those whose abstract contains at least 350 tokens.
Also, to measure how our model works on the mixed
varied-length scientific dataset, we exploit the arXiv
summarization dataset (Cohan et al. 2018).

Longsumm The Longsumm dataset was provided
for the Longsumm challenge (Chandrasekaran
et al. 2020) whose aim was to generate extended
summaries for scientific papers. It consists of two
types of summaries:
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• Extractive summaries: these summaries are coming
from the TalkSumm dataset (Lev et al. 2019),
containing 1705 extractive summaries of scientific
papers according to their video talks in conferences
(i.e., ACL, NAACL, etc.). Each summary within this
corpus is formed by appending top 30 sentences of
the paper.

• Abstractive summaries: an add-on dataset
containing 531 abstractive summaries from several
CS domains such as Machine Learning, NLP, and
AI, that are written by NLP and ML researchers on
their blogs. The length of summaries in this dataset
ranges from 50-1500 words per paper.

In our experiments, we use the extractive set
along with 50% of the abstractive set as our training
set, containing 1969 papers; and 20% of it as the
validation set. Note that these splits are made for
the purpose of our internal experiments as the
official test set containing 22 abstractive summaries
is blind (Chandrasekaran et al. 2020).

arXiv-Long & PubMed-Long. To further test our
methods on additional datasets, we construct
two extended summarization datasets for our
task. For creating the first dataset, we take arXiv
summarization dataset introduced by Cohan et al.
(2018) and filter the instances whose abstract
(i.e., ground-truth summary) contains at least 350
tokens. We call this dataset arXiv-Long. We repeat
the same process on the PubMed papers obtained
from the Open Access FTP service 2 and call this
dataset PubMed-Long. The motivation is that we
are interested in validating our model on extended
summarization datasets to investigate its effects
compared to the existing works, and 350 is the
length threshold that we use to characterize papers
with “long” summaries. The resulting sets contain
11,149 instances for arXiv-Long, and 88,035 instances
for PubMed-Long datasets. Note that the abstract
of papers are used as ground-truth summaries
in these two datasets. The overall statistics of the
datasets are shown in Table 1. We release these
datasets to facilitate future research in extended
summarization. 3

Methodology
In this section, we discuss our proposed method
that aims at jointly learning to predict sentence
importance and its corresponding section. Before
discussing the details of our summarization model,
we investigate the preliminary background that
provides a fair basis for implementing our method.

Background
Extractive Summarization The extractive
summarization system aims at extracting salient

2https://www.ncbi.nlm.nih.gov/pmc/tools/ftp
3https://github.com/Georgetown-IR-Lab/

ExtendedSumm

Datasets # docs
avg. doc. length avg. summ. length

(tokens) (tokens)

arXiv 215K 4938 220
Longsumm 2.2K 5858 920
arXiv-Long 11.1K 9221 574
PubMed-Long 88.0K 5359 403

Table 1: Statistics on arXiv (Cohan et al. 2018),
Longsumm (Chandrasekaran et al. 2020), and two
extended summarization datasets (arXiv-Long,
PubMed-Long), collected by this work.

sentences to be included in the summary. Formally,
let P show a scientific paper containing sentences
[s1, s2, s3, ..., sm], where m is the number of sentences.
The extractive summarization is then defined as the
task of assigning a binary label (ŷi ∈ {0,1}) to each
sentence si within the paper, signifying whether the
sentence should be included in the summary.

BERTSUM: BERT for Summarization As our base
model we use the BERTSUM extractive summarization
model (Liu and Lapata 2019), a BERT-based sentence
classification model fine-tuned for summarization.

After BERTSUM outputs sentence representations
within the input document, several inter-sentence
Transformer layers are stacked upon the BERTSUM

to collect document-level features. The final output
layer is a linear classifier with Sigmoid activation
function to decide whether the sentence should be
included or not. The loss function is defined as below:

L1 =− 1

N

n∑
i=1

yi log(ŷi )+ (1− yi )log(1− ŷi ) (1)

where N is the output size, ŷi is the output of the
model, and yi is the corresponding target value. In
our experiments, we use this model to extract salient
sentences (i.e., those with the positive label) to form
the summary. We set this model as the baseline called
BERTSUMEXT (Liu and Lapata 2019).

Our model: a section-aware summarizer
Inspired by few prior works that have studied
the effect of document’s hierarchical structure in
summarization task (Conroy and Davis 2017; Cohan
et al. 2018), we define a section prediction task,
aiming at predicting the relevant section for each
sentence in the document. Specifically, we add
an additional linear classification layer on top of
BERTSUM sentence representations to predict the
relevant section to each sentence. The loss function
for the section prediction network is defined as
follows:

L2 =−
S∑

i=1
yi log(ŷi ) (2)

where yi and ŷi are the ground-truth and the model
scores for each section i in S.
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Figure 1: The overview of BERTSUMEXTMULTI model. The baseline model (i.e., BERTSUMEXT) is dash-boarded.
The extension to the baseline model is addition of Section Prediction linear layer (specified in green box).

The entire extractive network is then trained to
optimize both tasks (i.e., sentence selection and
section prediction) in a multi-task setting:

LMulti =αL1 + (1−α)L2 (3)

where L1 is the binary cross-entropy loss from
sentence selection task, L2 is the categorical cross-
entropy loss from section prediction network, and
α is the weighting parameter that balances the
learning procedure between the sentence and section
prediction tasks.

Experimental Setup
In this section, we give details about the pre-
processing steps on the datasets and parameters that
we used for the experimented models.

For our baseline, we used the pre-trained BERTSUM

model and implementation provided by the authors
(Liu and Lapata 2019).4 The BERTSUMEXTMULTI

is that of the model used in (Sotudeh, Cohan,
and Goharian 2020), but without post-processing
module at inference time, which utilizes trigram-
blocking (Liu and Lapata 2019) to hinder repetitions
in the final summary. We intentionally removed the
post-processing part as the model could attain higher
scores in the absence of this module throughout
our experiments. In order to obtain ground-truth
section labels associated with each sentence, we
utilized the external sequential-sentence package5

by Cohan et al. (2019). To provide oracle labels for
source sentences in our datasets, we use a greedy

4https://github.com/nlpyang/PreSumm
5https://github.com/allenai/sequential_sentence_

classification

labelling approach (Liu and Lapata 2019) with slight
modification for labelling up top 30, 15, and 25
sentences for Longsumm, arXiv-Long, and PubMed-
Long datasets, respectively, since these numbers of
oracle sentences yielded the highest oracle scores. 6

For the joint model, we tuned α (loss weighting
parameter) at 0.5 as it resulted in the highest scores
throughout our experiments. In all our experiments,
we pick the checkpoint that achieves the best average
of ROUGE-2 and ROUGE-L scores on the validation
intervals as our best model for inference.

Results
In this section, we present the performance of the
baseline and our model over the validation and test
sets of the extended summarization datasets. We then
discuss our proposed model’s performance compared
to baseline over a mix of varied-length summarization
dataset (i.e., arXiv). As the evaluation metrics, we
report the summarization systems’ performance in
terms of ROUGE-1 (F1), ROUGE-2 (F1), and ROUGE-
L (F1)) metrics.

As we see in Table 2, we notice that having section
predictor model incorporated into summarization
model (i.e., BERTSUMEXTMULTI model) performs
fairly well compared to the baseline model. This is a
particularly important finding since it characterizes
the importance of injecting documents’ structure
when summarizing a scientific paper. While the score
gap is relatively higher in arXiv-Long and Longsumm
datasets, it is similar in PubMed-Long dataset.

As observed in Table. 3, it is noticeable that

6The modification was made to assure that the oracle
sentences are sampled from diverse sections.
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Validation Test
Model Dataset RG-1(%) RG-2(%) RG-L(%) RG-1(%) RG-2(%) RG-L(%)

BERTSUMEXT
Longsumm

43.2 12.4 16.8 – – –
BERTSUMEXTMULTI 43.3 13.0∗ 17.0 53.1 16.8 20.3

BERTSUMEXT
arXiv-Long

47.1 18.2 20.8 47.2 18.4 21.1
BERTSUMEXTMULTI 47.8∗ 18.9∗ 21.3∗ 47.8∗ 19.2∗ 21.5∗
BERTSUMEXT

PubMed-Long
49.1 24.3 25.7 49.1 24.5 25.8

BERTSUMEXTMULTI 48.9 24.1 25.5 48.9 24.1 25.5

Table 2: ROUGE (F1) results of the baseline (i.e., BERTSUMEXT) and our proposed model (i.e., BERTSUMEXTMULTI)
on extended summarization datasets. ∗ shows the statistically significant improvement (paired t-test, p < 0.01).
The validation set for Longsumm refers to our internal validation set (20% of the abstractive set) as there was no
official validation set provided for this dataset.

RG-1 RG-2 RG-L F-Measure average

Other systems
Summaformers (Ghosh Roy et al. 2020) 49.38 16.86 21.38 29.21
Wing 50.58 16.62 20.50 29.23
IIITBH-IITP (Reddy et al. 2020) 49.03 15.74 20.46 28.41
Auth-Team (Gidiotis, Stefanidis, and Tsoumakas 2020) 50.11 15.37 19.59 28.36
CIST_BUPT (Li et al. 2020) 48.99 15.06 20.13 28.06

This work
BERTSUMEXTMULTI 53.11 16.77 20.34 30.07

Table 3: ROUGE (F1) results of our multi-tasking model on the blind test set of Longsumm shared task containing
22 abstractive summaries (Chandrasekaran et al. 2020), along with the performance of other participants’ systems.
We only show top 5 participants in this table.

BERTSUMEXTMULTI approach performs top
among the state-of-the-art long summarization
methods on the blind test set of LongSumm
challenge (Chandrasekaran et al. 2020). While
this model improves ROUGE-1 quite significantly
over the other state-of-the-art, it stays competitive on
ROUGE-2 and ROUGE-L metrics. In terms of ROUGE

(F1) F-Measure average, BERTSUMEXTMULTI model
ranks first by a huge margin compared to the other
systems.

To test the model on mixed varied-length
summarization datasets, we trained and tested it
on arXiv (Cohan et al. 2018) dataset, which contains
a mix of varying length abstracts as ground-truth
summaries. Table 4 shows that our model can achieve
competitive performance on this dataset. While the
model does not yield any improvement on arXiv
dataset, our hypothesis was to investigate if our
model is superior to existing models on longer-form
datasets –such as those we have used in this research,
which we validated by presenting the evaluation
results on long summarization datasets.

Analysis
In order to gain insights into how our multi-
tasking approach works on different long datasets,
we perform an extensive analysis in this section
to explore the qualities of our multi-tasking system
(i.e., BERTSUMEXTMULTI) over the baseline (i.e.,
BERTSUMEXT). Specifically, we perform two types
of analyses: 1) quantitative analysis; 2) qualitative
analysis.

For the first part, we choose to use two metrics:
RGdiff which denotes the average ROUGE (F1)
difference (i.e., gap) between the baseline and our
model 7. Positive values indicate the improvement,
while negative values denote the decline in scores.
Similarly, Fdiff is the average difference of F1 score
between the baseline and our model. We create three
bins sorted by RGdiff: IMPROVED which contains the
reports whose average ROUGE (F1) score is improved
by the multi-tasking model; TIED including those
that the multi-tasking model leaves unchanged in
terms of modifying average ROUGE (F1) score; and
DECLINED containing those whose average ROUGE

(F1) score has decreased by the joint model.
For the qualitative analysis section, we specifically

7The average is defined on ROUGE-1 (F1), ROUGE-2



Validation Test
Model Dataset RG-1(%) RG-2(%) RG-L(%) RG-1(%) RG-2(%) RG-L(%)

BERTSUMEXT
arXiv

43.6 16.6 20.2 44.0 16.8 20.4
BERTSUMEXTMULTI 43.4 16.5 19.8 43.5 16.5 20.0

Table 4: ROUGE (F1) results of the baseline (i.e., BERTSUMEXT) and our proposed model (i.e., BERTSUMEXTMULTI)
on arXiv summarization dataset.

52
-38

5

38
9-5

91

62
4-8

72

89
5-1

37
0

13
75

-16
31

Summary Length (tokens)

0.00

0.05

0.10

0.15

0.20

0.25

Ro
ug

e-
2

Baseline
Multi-tasking

35
0-3

70

37
0-3

84

38
4-3

99

39
9-4

17

41
7-4

47

44
7-4

90

49
0-5

69

56
9-7

34

73
4-1

07
4

10
74

-21
23

Summary Length (tokens)

0.00

0.05

0.10

0.15

0.20

0.25

Ro
ug

e-
2

Baseline
Multi-tasking

(a) ROUGE-2 scores on Longsumm (b) ROUGE-2 scores on arXiv-Long

Figure 2: Bar charts exhibiting the correlation of ground-truth summary length (in tokens) with the baseline (i.e.,
BERTSUMEXT) and our multi-tasking model’s (i.e., BERTSUMEXTMULTI) performance. The diagrams are shown for
Longsumm and arXiv-Long datasets’ test set. Each bin contains 31 summaries for Longsumm, and 196 summaries
for arXiv-Long. As denoted, the multi-tasking model generally outperforms the baseline on later bins which
include longer-form summaries.

aim at comparing the methods in terms of section
distribution since that is where our method’s
improvements are expected to come from.
Furthermore, we conduct an additional length
analysis over the results generated by the baseline
versus our model.

Quantitative Analysis

We first perform the quantitative analysis over
the long summarization datasets’ test sets in two
parts including 1) Metric analysis which aims at
comparing different bins based on the average ROUGE

score difference of the baseline and our model; 2)
Length analysis that targets at finding the correlation
between the summary length on different bins and
models’ performance.

Metric analysis Table 5 shows the overall quantities
of Longsumm and arXiv-Long datasets in terms
of average difference of ROUGE and F1 scores.
As shown, the multi-tasking approach is able to
improve 76 summaries with an average ROUGE (F1)
improvement of 2.05%. This is even more when it

(F1), and ROUGE-L (F1) scores.

comes to evaluating the model on arXiv-Long dataset
with average ROUGE improvement of 2.40%.

Interestingly, our method can consistently improve
F1 measure in general (See total F1 scores in Table. 5).
Seemingly, F1 metric directly correlates with ROUGE

(F1) metric on arXiv-Long dataset, whereas this is
not the case on DECLINED bin of the Longsumm
dataset. This might be due to the relatively small test
set size of Longsumm dataset. It has to be mentioned
that IMPROVED bin holds relatively higher counts and
improved metrics than that of DECLINED bin across
both datasets in our evaluation.

Length analysis We analyze the generated results
by both models to see if the summary length affects
the models’ performance using bar charts in Figure 2.
The bar charts are intended to provide the basis for
comparing both models on different length bins (x-
axis), which are evenly-spaced (i.e., having the same
number of papers). It has to be mentioned that we
used five bins (each bin with 31 summaries) and ten
bins (each bin with 196 summaries) for Longsumm
and arXiv-Long datasets, respectively.

As shown in Figure 2 (a), for Longsumm dataset,
as the length of the ground-truth summary increases,
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(a) Extraction probability distribution of the baseline model (i.e., BERTSUMEXT) over the source sentences.
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(b) Extraction probability distribution of the multi-tasking model (i.e., BERTSUMEXTMULTI) over the source sentences.

Figure 3: Heat-maps showing the extraction probabilities over the source sentences (Paper ID:
astro-ph9807040 sampled from arXiv-Long dataset). For simplicity, we have only shown the sentences
that gain over 15% extraction probability by the models. The cells bordered in black show the models’ final
selection, and oracle sentences are indicated with *.

Bin Dataset Count RGdiff Fdiff

IMPROVED

Longsumm
76 2.05 6.16

TIED 4 0 0
DECLINED 74 −1.47 1.95

Total 154 0.31 4.11

IMPROVED

arXiv-Long
1,084 2.40 4.47

TIED 67 0 0.32
DECLINED 801 −1.82 −1.34

Total 1952 0.59 1.94

Table 5: IMPROVED, TIED, and DECLINED bins on
the test set of Longsumm and arXiv-Long datasets.
The numbers show the improvements (positive) and
drops (negative) compared to the baseline model (i.e.,
BERTSUMEXT).

the multi-tasking model generally improves over the
baseline consistently on both datasets, except for
the last bin on Longsumm dataset where it achieves
comparable performance. This behaviour is also
observed on ROUGE-1 and ROUGE-L for Longsumm
dataset. The ROUGE improvement is even more
noticeable when it comes to analysis over arXiv-Long
dataset (See Figure 2 (b)). Thus, the length analysis
supports our hypothesis that the multi-tasking model
outperforms the baseline more significantly when the
summary is of longer-form.

Qualitative analysis

As the results of the qualitative analysis on the
IMPROVED bin is observed, we found out that the
multi-tasking model can effectively sample sentences
from diverse sections when the ground-truth
summary is also sampled from diverse sections. It
improves significantly over the baseline when the
extractive model can detect salient sentences from

important sections.

By investigating the summaries from DECLINED

bin, we noticed that in declined summaries, while
our multi-tasking approach can adjust extraction
probability distribution to diverse sections, it has
difficulty picking up salient sentences (i.e., positive
sentences) from the corresponding section; thus, it
leads to relatively lower ROUGE score. This might
be improved if two networks (i.e., sentence selection
and section prediction) are optimized in a more
elegant way such that the extractive summarizer can
further select salient sentences from the specified
sections when they could be identified. For example,
the improved multi-tasking methods can involve
task prioritization (Guo et al. 2018) to dynamically
balance the learning process between two tasks
during training, rather than using a fixedα parameter.

In the cases where the F1 score and ROUGE (F1)
were not consistent with each other, we observed
that adding non-salience sentences to the final
summary hurts the final ROUGE (F1) scores. In
other words, while the multi-tasking approach can
achieve a higher F1 score compared to the baseline
since it chooses different non-salient (i.e., negative)
sentences than baseline, the overall ROUGE (F1)
scores drop slightly. Having conditional decoding
length (i.e., sentences) might help with this as done
in (Mao et al. 2020).

Fig. 3 shows the extraction probabilities that
each model outputs on the source sentences. It is
observable that the baseline model picks most of the
sentences (47%) from the beginning of the paper,
while the multi-tasking approach (b) can effectively
distract probability distribution to summary-worthy
sentences that are all around different sections of the
paper, and pick those with higher confidence. Our
model achieves the overall F1 score of 53.33% on this
sample paper, while the baseline’s F1 score is 33.33%.



Conclusion & Future Work
In this paper, we approach the problem of generating
extended summaries, given a long document. Our
proposed model is a multi-task learning approach
that unifies sentence selection and section prediction
processes, extracting summary-worthy sentences. We
further collect two large-scale extended summary
datasets (arXiv-Long and PubMed-Long) from
scientific papers. Our results on three datasets show
the efficacy of the joint multi-task model in the
extended summarization task. While it achieves
fairly competitive performance with the baseline on
one of three datasets, it consistently improves over
the baseline in the other two evaluation datasets.
We further performed extensive quantitative and
qualitative analyses over the generated results by
both models. These evaluations revealed our model’s
qualities compared to the baseline. Based on the error
analysis, it could be noticed that the performance
of this model highly depends on the multi-tasking
objectives. Future studies could fruitfully explore this
issue further by optimizing the multi-task objectives
in a way that both sentence selection and section
prediction tasks can benefit.
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