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Abstract The ability of cloud computing to provide resources on demand
encourages the development of elastic applications. Differently from the
popular threshold-based solutions used to drive elasticity, we aim to design
a flexible approach that can customize the adaptation policy without
the need of manually tuning various configuration knobs. In this paper,
we propose two Reinforcement Learning (RL) solutions (i.e., Q-learning
and Deep Q-learning) for controlling the application elasticity. Although
Q-learning represents the most popular approach, it may suffer from a
possible long learning phase. To improve scalability and identify better
adaptation policies, we propose Deep Q-learning, a model-free RL solution
that uses a deep neural network to approximate the system dynamics.
Using simulations, we show the benefits and flexibility of Deep Q-learning
with respect to Q-learning in scaling applications.

Keywords: Deep Q-learning · Elasticity · Reinforcement Learning ·
Self-adaptive systems.

1 Introduction

The dynamism of working conditions calls for an elastic application deployment,
which can be adapted in face of changing working conditions (e.g., incoming
workload) so to meet stringent Quality of Service (QoS) requirements. Cloud
providers, e.g., Amazon, Google, that support multi-component applications
usually use static thresholds on system-oriented metrics to carry out the adapta-
tion of each application component. As shown in [11,12], the manual tuning of
such scaling thresholds is challenging, especially when we need to specify critical
values on system-oriented metrics and the application exposes its requirements in
terms of user-oriented metrics (e.g., response time, throughput, cost). Differently
from the popular static threshold-based approaches, we aim to design a flexible
policy that can adapt the application deployment, according on user-defined
goals, without the need of manually tuning various configuration knobs.

In this paper, we use Reinforcement Learning (RL) to adapt the application
deployment. RL allows to express what the user aims to obtain, instead of how it
should be obtained (as required by threshold-based policies). Most of the existing
works consider model-free RL algorithms, e.g., Q-learning, to drive the application
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deployment (e.g., [2,5]). However, one of the main issue with Q-learning is the
possibly long learning phase, which is especially experienced when the number of
system states increases. An approach to boost the learning process is to provide
the agent with system knowledge. By exploiting it, the agent can more easily
find a suitable trade-off between system- and user-oriented metrics (i.e., resource
utilization and target response time). Therefore, together with Q-learning, we
propose Deep Q-learning [8]. It uses deep neural networks to approximate the
system dynamics and to drive the application elasticity. Using simulation, we
demonstrate the advantages of the Deep Q-learning solution, which learns a
suitable scaling policy while meeting QoS requirements expressed in term of
target application response time (i.e., Rmax).

2 Related Work

The existing elasticity solutions rely on a wide set of methodologies, that we
classify in the following categories: mathematical programming, control theory,
queuing theory, threshold-based, and machine-learning solutions. The mathemat-
ical programming approaches exploit methods from operational research in order
to solve the application deployment problem (e.g., [13,21]). The main drawback
of these solutions is scalability; since the deployment problem is NP-hard, other
efficient solutions are needed. As surveyed in [15], few solutions use control theory
to change the replication degree of application containers (e.g., [3]). The critical
point of the control-theoretic approaches is the requirement of a good system
model, which can sometimes be difficult to be formulated. The key idea of queuing
theory is to model the application as a queuing system with inter-arrival and
service times having general statistical distributions (e.g., [4,10]). Nevertheless,
queuing theory often requires to approximate the system behavior, discouraging
its adoption in a real environment. Most of the existing solutions exploit best-effort
threshold-based policies based on the definition of static thresholds for adapting
the application deployment at run-time (e.g., [7,16]). Although a threshold-based
scaling policy can be easily implemented, it is a best-effort approach that moves
complexity from determining the reconfiguration strategy to the selection of
critical values that act as thresholds. In the last few years, machine learning has
become a widespread approach to solve at run-time the application deployment
problem. RL is a machine learning technique by which an agent can learn how
to make good (scaling) decisions through a sequence of interactions with the
environment [17]. After executing an adaptation action in the monitored system
state, the RL agent experiences a cost that contributes to learning how good
the performed action was. The obtained cost leads an update of a lookup table
that stores the estimation of the long-term cost for each state-action pair (i.e.,
the Q-function). Many solutions considered the classic model-free RL algorithms
(e.g., [9,18]), which however suffer from slow convergence rate. To tackle this
issue, different model-based RL approaches have been proposed, e.g., [14,19].
They use a model of the system to drive the action exploration and speed-up
the learning phase. Although model-based RL approaches can overcome the slow
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convergence rate of model-free solutions, they can suffer from poor scalability in
systems with a large state space. In this solution, the lookup table has to store
a separate value for each state-action pair. An approach to overcome this issue
consists in approximating the system behavior, so that the agent can explore
a reduced number of system configurations. Integrating deep neural networks
into Q-learning, Deep Q-learning has been widely applied to approximate the
system dynamics in a variety of domains, e.g., traffic offloading [1]. However, to
the best of our knowledge, it is so far poorly applied in the context of application
elasticity. Differently from all the above contributions, in this paper we propose
an application scaling policy based on Deep Q-learning; then, we compare it
against Q-learning.

3 RL-based Scaling Policy

RL is a special method belonging to the branch of machine learning. It refers
to a collection of trial-and-error methods by which an agent must prefer actions
that it found to be effective in the past (exploitation). However, to discover such
actions, it has to explore new actions (exploration).

At each discrete time step i, according to the monitored metrics, the RL agent
determines the application state and updates the expected long-term cost (i.e.,
Q-function). We define the application state as s = (k, u), where k is the number
of application instances, and u is the monitored CPU utilization. We denote
by S the set of all the application states. We assume that k ∈ {1, 2, ...,Kmax};
being the CPU utilization (u) a real number, we discretize it by defining that u ∈
{0, ū, ..., Lū}, where ū is a suitable quanta and L ∈ N such that L · ū = 1. For each
state s ∈ S, we define the set of possible adaptation actions as A(s) ⊆ {−1, 0, 1},
where +1 is the scale-out action, −1 the scale-in action, and 0 is the do nothing
decision. We observe that not all the actions are available in any application
state, due to the lower and upper bounds on the number of application instances
(i.e., 1 and Kmax, respectively). According to an action selection policy, the RL
agent identifies the scaling action a to be performed in state s. The execution
of a in s leads to the transition in a new application state (i.e., s′) and to the
payment of an immediate cost. We define the immediate cost c(s, a, s′) as the
weighted sum of different normalized terms, such as the performance penalty,
cperf , and resource cost, cres. Formally, we have:

c(s, a, s′) = wperf · cperf + wres · cres (1)

where wperf and wres, wperf + wres = 1, are non negative weights that allow us
to express the relative importance of each cost term. The performance penalty is
paid whenever the average application response time exceeds the target value
Rmax. The resource cost is proportional to the number of application instances.
We can observe that the formulation of the immediate cost function c(s, a, s′) is
general enough and can be easily customized with other QoS requirements.

The received immediate cost contributes to update the Q-function. The Q-
function consists in Q(s, a) terms, which represent the expected long-term cost
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that follows the execution of action a in state s. The existing RL policies differ in
how they update the Q-function and select the adaptation action to be performed
(i.e., action selection policy) [17]. In [14], for example, we propose a model-based
RL approach that enriches the RL agent with a model of the system to drive
the exploration actions and speed up the learning phase. Since determining the
system model can be a not trivial task, in this paper we consider two model-free
RL solutions to adapt the application deployment. First, we consider the simple
model-free Q-learning (QL) algorithm that uses a table (i.e., Q-table) to store the
Q-value for each state-action pair. The Q-table allows to store the real experience
without approximation. However, this approach may suffer from slow convergence
rate when the number of state-action pairs increases. Then, to tackle this issue,
we present a Deep Q-learning (DQL) approach that combines Q-learning with
deep neural networks. The neural network allows to approximate the Q-function
using a non-linear function; in such a way, the agent can directly compute Q(s, a)
using s and a, instead of performing a Q-table lookup. By using a Q-function
approximation, the RL agent does not need to explore all the state-action pairs
before learning a good adaptation policy.
Q-learning. At time i, the QL agent selects the action a to perform in state s
using an ε-greedy policy on Q(s, a); the application transits in s′ and experiences
an immediate cost c. The ε-greedy policy selects the best known action for a
particular state (i.e., a = argmina∈A(s)Q(s, a)) with probability 1− ε, whereas
it favors the exploration of sub-optimal actions with low probability, ε. At the
end of time slot i, Q(s, a) is updated using a simple weighted average:

Q (s, a)← (1− α)Q (s, a) + α

[
c+ γ min

a′∈A(s′)
Q(s′, a′)

]
(2)

where α, γ ∈ [0, 1] are the learning rate and the discount factor, respectively.
Deep Q-learning. DQL uses a multi-layered neural network, called Q-network,
to approximate the Q-function. For each time slot i, the DQL agent observes
the application state and selects an adaptation action using an ε-greedy policy
and the estimates of Q-values, as Q-learning does. Note that DQL is model-free:
it solves the RL task directly using samples, without explicitly modeling the
system dynamics. In a given state s, the Q-network outputs a vector of action
values Q(s, ·, φ), where φ are the network parameters. By approximating the
Q-function, the RL agent can explore a reduced number of system configurations
before learning a good adaptation policy. At the end of each time slot i, the
Q-network is updated by performing a gradient-descent step on (yi−Q(s, a, φi))2

with respect to the network parameters φi. yi is the estimated long-term cost,
defined as yi = c+ γ ·mina′Q(s′, a′, φi), where γ is the discount factor. When
only the current experience is considered, i.e., (s, a, c, s′), this approach is too
slow for practical real scenarios. Moreover, it is unstable due to correlations
existing in the sequence of observations. To overcome these issues, we consider a
revised DQL algorithm that uses a replay buffer and a separate target network
to compute yi [8]. To perform experience replay, the agent store its experience in
a buffer with finite capacity. A mini-batch of experience is drawn uniformly at
random from the replay buffer to remove correlations in the observation sequence
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and to smooth over changes in the data distribution. In the classic DQL, the
same Q-network is used both to select and to evaluate an action. This can lead
to select overestimated values, resulting in overoptimistic estimates. To prevent
this, two networks are used (i.e., on-line and target network) and two value
functions are learned. The on-line network is used to determine the greedy policy
and the target network to determine its value. The target network parameters
are updated to the on-line network values only every τ steps and are held fixed
between individual updates.

4 Results

We evaluate the proposed deployment adaptation solutions using simulations.
Without lack of generality, at each discrete time step i, we model the application
as an M/M/ki queue, where ki is the number of application replicas. We set
the service rate µ to 120 requests/s. As shown in Fig. 1, the application receives
a varying number of requests. It follows the workload of a real distributed
application [6]. The application expresses the QoS in terms of target response
time Rmax = 15 ms. The RL algorithms use the following parameters: α = 0.1
and discount factor γ = 0.99. We discretize the application state with Kmax = 10
and ū = 0.1. To update the application deployment, QL and DQL use an ε-greedy
action selection policy, with ε = 0.1. DQL uses a replay memory with capacity of
50 observations and a batch size of 30; the target Q-network update frequency
is τ = 5 time units. We use Deeplearning4j1 library to implement the neural
networks. Correctly configuring the Q-network is an empirical task, which requires
some effort and several preliminary evaluations. In particular, we use ReLu as the
neuron activation function; due to its non-linear behavior, it is one of the most
commonly used function. To initialize the Q-network weights, we use the Xavier
method [20]. To avoid weights to diminish or explode during network propagation,
this method scales the weight distribution on a layer-by-layer basis. To this end,
it uses a normal distribution with centered mean and standard deviation scaled
to the number of layer’s input and output neurons. The Q-network architecture
1 https://deeplearning4j.org/
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Figure 1: Workload used for the reference application.
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Table 1: Application performance under scaling policies.
Elasticity Configuration Rmax violations Average CPU Average number Median of Response
Policy (%) utilization (%) of replicas time (ms)

QL wperf = 1, wres = 0 3.15 56.20 4.17 9.51
wperf = 0.5, wres = 0.5 13.26 51.27 5.13 8.81
wperf = 0, wres = 1 42.27 65.56 3.90 11.88

DQL wperf = 1, wres = 0 1.05 36.85 6.63 8.38
wperf = 0.5, wres = 0.5 39.23 66.64 3.58 11.11
wperf = 0, wres = 1 88.51 89.18 1.58 +∞

DQL with wperf = 1, wres = 0 1.39 35.54 7.41 8.35
pre-trained wperf = 0.5, wres = 0.5 31.91 58.53 4.30 9.06

network wperf = 0, wres = 1 83.48 86.12 1.71 +∞
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(b) Q-learning

Figure 2: Application performance using the weights wres = 0 and wperf = 1.

is fully-connected with 4 layers having {2, 15, 15, 3} neurons (i.e., there are 2
hidden layers).

Table 1 summarizes the experimental results, including also the application
performance obtained with a pre-trained DQL. We can see that the application
has a different performance when different weights for the cost function are used
(Eq. 1). We first consider the set of weights wperf = 1 and wres = 0: in this
case, optimizing the application response time is more important than saving
resources. As shown in Fig. 2b, the QL solution often changes the application
deployment performing scaling operations. Moreover, the application response
time exceeds Rmax for 3.15% of the time. Conversely, taking advantage of the
approximated system knowledge, the DQL solution learns a better elasticity
policy that successfully controls the application deployment (Fig. 2a). It registers
1.05% of Rmax violations and a median of the application response time lower
than the target application response time (i.e., 8.38 ms). We now consider the
case when saving resources is more important than meeting the Rmax bound, i.e.,
wres = 1 and wperf = 0. Intuitively, the RL agent should learn how to improve
resource utilization at the expense of a high application response time (i.e.,
that exceeds Rmax). Table 1 and Fig. 3 show that, in general, DQL performs
better than QL in terms of resource usage. DQL registers 89.18% of resource
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Figure 3: Application performance using the weights wres = 1 and wperf = 0.
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Figure 4: Application performance using the weights wres = 0.5 and wperf = 0.5.

utilization running with 1.58 application replicas. This is very close to the lowest
amount of resources assignable to the application. Run-time adaptations are
also avoided. As a consequence, the application is overloaded and the resulting
median response time is unbounded. Conversely, the QL solution struggles to find
a stable configuration. It identifies an adaptation policy that runs the application
using, on average, 3.90 instances. On average, its resource usage is lower than
in DQL (65.56% and 89.18%, respectively), as also the percentage of the target
application response time Rmax violations. Besides the weight configurations
at the opposite ends, we can obtain a wide set of adaptation strategies that
differ by the relative importance of the two deployment goals. In Table 1 we
propose a simple case, where we set wperf = wres = 0.50. To visualize the update
of the application deployment by the two RL policies, we report in Fig. 4 the
application behavior during the whole experiment, when we want to optimize the
performance avoiding resource wastage (wperf = wres = 0.5). Intuitively, the RL
agent has to find a trade-off between the resource usage and the number of Rmax
violations. The neural network allows to approximate the Q-function using a
non-linear function; in such a way, DQL can explore a reduced number of system
configurations before learning a good adaptation policy. On average, it runs
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the application with 3.58 replicas, registering a 66.64% of CPU utilization. The
median application response time is 11.11 ms, with about 39% of Rmax violations.
Although we could pre-train the Q-network to further improve the DQL learned
policy (mitigating also the initial exploration phase), we observe that the obtained
results are already remarkable, considering that DQL is model-free. Conversely,
when QL updates the application deployment, it continuously performs scaling
actions, meaning that QL is still exploring the best actions to perform. This
behavior is also reflected on the number of application instances, whose average
value is greater than those used in the wperf = 1 configuration. Being model-
free and storing experience without approximation, QL cannot quickly learn a
suitable adaptation strategy for intermediate cost weight configurations during
the experiment.
Discussion. In this paper, we evaluated QL and DQL to adapt the application
deployment at run-time. First, we showed the flexibility provided by a RL-
based solution for updating the application deployment. By correctly defining the
relative importance of the deployment objectives through the cost function weights
in Eq. 1, the RL agent can accordingly learn a suitable application deployment
strategy. Very different application behavior can be obtained when we aim to
optimize the application response time, resource saving, or a combination thereof.
Second, we showed that a DQL approach takes advantage of the approximate
system knowledge and outperforms QL, especially when we pre-train the Q-
network. We observe that, although we do not need to define the system model
as in a model-based approach, DQL introduces the effort of defining a suitable
Q-network architecture. However, this is an empirical process that may require a
large number of preliminary experiments and trial-and-error repetitions.

5 Conclusion

Most policies for scaling applications resort on threshold-based heuristics that
require to express how specific goals should be achieved. In this paper, aiming to
design more flexible solution, we have proposed Q-learning and Deep Q-learning
policies for controlling the application elasticity. Relying on a simulation-based
evaluation, we have shown the benefits of the proposed RL-based approaches. Deep
Q-learning exploits deep neural networks to approximate the system dynamics,
estimated through system interactions. The deep neural network speeds up the
learning phase, improving the application performance; however, modeling the
neural network architecture can be challenging.

As future work, we plan to further investigate RL approaches for elasticity. We
will investigate more sophisticated techniques for improving the convergence speed
of the learning process (e.g., by leveraging Bayesian Decision Trees, Function
Approximation). Moreover, we plan to extend our model by explicitly considering
multiple system-oriented metrics within the adaptation policies.
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