
An Evaluation of Saga Pattern Implementation

Technologies

Karolin Dürr, Robin Lichtenthäler, and Guido Wirtz

Distributed Systems Group, University of Bamberg

Abstract. The Saga pattern is frequently mentioned in the literature

to structure communication workflows in Microservices Architectures.

To ease the implementation of the Saga pattern frameworks and tools

have emerged. By implementing an exemplary use case, we qualitatively

evaluate two of such technological solutions in this paper according to

criteria relevant for Microservices Architectures. This evaluation can be

considered when deciding on which technology to use for implementing

the Saga pattern, or also as a more general insight into what should

be kept in mind when implementing the Saga pattern in Microservices

Architectures.

Keywords: Microservices, Saga pattern, Workflow

1 Introduction

The Microservices Architecture is a pattern that emerged from real-world usage

and constitutes a fast-moving topic [5, 9, 16]. A microservice is a small and

autonomous service modeled around a business domain. A distributed system

that consists of numerous microservices represents the Microservices Architecture

[5] where data storage is ideally not shared, but owned exclusively by each mi-

croservice. Communication between microservices happens via messages over the

network [9]. The main advantage is service independence enabling independent

deployability, maintainability and evolvability of services [11]. A main challenge,

however, is inter-service communication, because communication over the network

is comparatively slow and unreliable [5]. The question arises how this communi-

cation can be structured and managed, especially for complex business scenarios

with multiple services which even require certain transactional guarantees [16].

Such a complex business scenario would be booking a trip where the booking

includes several steps such as booking a flight, a hotel, and a rental car. Applied

to a Microservices Architecture where different microservices are responsible for

the different steps, this scenario has also been used by Catie McCaffrey in a

conference talk1 to motivate the usage of the Saga pattern.

Because all steps are required to book a trip as a whole, a classical approach

would be to use a distributed transaction for example with the 2-Phase Commit

1 https://www.youtube.com/watch?v=xDuwrtwYHu8, last accessed: 2021-02-17

J. Manner, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 13th ZEUS Workshop,
ZEUS 2021, Bamberg, held virtually due to Covid-19 pandemic, Germany, 25-26 February 2021,

published at http://ceur-ws.org
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

https://www.youtube.com/watch?v=xDuwrtwYHu8
http://ceur-ws.org


(2PC) protocol [1, 9]. However, classical distributed transactions contradict the

service independence characteristic of a Microservices Architecture. First, the 2PC

protocol depends on the availability of all participants [7, 11]. If one participant

fails, the system as a whole becomes unavailable. Second, the scalability is

affected, because 2PC participants need to lock resources which can affect the

overall transactional throughput and lead to competitive situations [9, 12]. And

third, distributed transactions are missing support from modern technologies,

like NoSQL databases or message brokers [11].

Therefore, other approaches have been discussed [3, 7, 9] with the Saga pattern

being mentioned frequently [6, 10, 11, 15]. The Saga pattern divides a transaction

that might take a long time into multiple local ones. Thereby, it reduces the

dependence on the availability of all participants at the same time and prevents

the need to lock all included resources until full completion. Although it can

therefore not provide the same transactional guarantees as, for example, the 2PC

protocol, it aligns better with the characteristics of Microservices Architectures.

Using the Saga pattern for the trip booking scenario means that still the whole

trip booking needs to be supervised by one service. However, the included steps,

such as booking a hotel or booking a flight, are done more independently in local

transactions by the different services involved.

Because this separation into multiple more independent transactions leads to

additional challenges, implementing the Saga pattern can get complex. Therefore

framework support is desirable and some technological solutions have emerged.

The goal of this paper is to investigate the capabilities offered by existing

frameworks with a focus on orchestrated Sagas and the context of characteristics

and challenges of Microservices Architectures. This is summarized in the following

research question:

RQ: How well do recent technological solutions support implementing the

Saga pattern concerning the design, the execution and the visualization of

communication between microservices?

In Sect. 2, our approach to answer the research question is described. In

Sect. 3, the details of the Saga pattern are depicted based on literature and the

already introduced example scenario. This is used as a foundation for the following

evaluation in Sect. 4, our main contribution. Finally, we draw a conclusion in

Sect. 5.

An Evaluation of Saga Pattern Implementation Technologies 75



2 Methodology

First, we carried out a literature review to understand the Saga pattern itself and

its applicability to the Microservices Architecture. As sources, we considered the

original paper for the Saga pattern [6], as well as more recent books [3, 10, 11]

and papers [8, 15] which add the context of microservices. The result is the

description of the Saga pattern in Sect. 3 based on the trip booking example.

We then used this example to implement the Saga pattern with available

technological solutions. Solutions that have emerged so far are Axon2, Eventuate

Tram3, Netflix Conductor4, and more recently Long Running Actions for Micro-

Profile5. However, because this work has been done as a part of the bachelor

thesis of the first author, we had to limit the scope and therefore only selected

two solutions. The first solution we selected for our evaluation is Eventuate Tram,

because it is specifically designed for the Saga pattern and described in detail in

[11]. And the second solution is Netflix Conductor, because Netflix as a company

is well-known for its successful microservices approach [2]. Furthermore, Netflix

Conductor was not considered in another similar study [15] which compared

technological solutions for the Saga pattern. The study by Štefanko et al. [15]

includes a small set of criteria for comparing the different solutions which are

not explained in detail in the paper and additionally discusses problems of the

solutions in a qualitative way. Furthermore, Štefanko et al. [15] conducted a

performance test to measure processing times and throughput. In contrast, we

derived a more comprehensive criteria catalog from general Saga execution char-

acteristics as well as from considering Microservices Architecture characteristics

and challenges to evaluate the solutions. Our evaluation is qualitative, because

we assess the solutions according to the criteria catalog based on our imple-

mentations. We have not performed quantitative evaluations, like performance

benchmarks to assess scalability and throughput or user experiments to assess

the ease of use. With respect to the work of Štefanko et al. [15], our work extends

it by evaluating additional criteria and considering an additional solution. The

resulting evaluation of Eventuate Tram and Netflix Conductor based on these

criteria is presented in Sect. 4.

3 The Saga Pattern

The Saga pattern was introduced by Garcia-Molina and Salem [6] for long lived

transactions by designing them as a sequence of local transactions. Although

they focused on a centralized system, they also mentioned the possibility of a

distributed implementation [6]. Therefore, Sagas have been proposed for updating

2 https://docs.axoniq.io/reference-guide/axon-framework/sagas, last accessed

2021-02-17
3 https://eventuate.io/, last accessed 2021-02-17
4 https://netflix.github.io/conductor/, last accessed 2021-02-17
5 https://microprofile.io/project/eclipse/microprofile-lra, last accessed 2021-

02-17

76 Karolin Dürr et al.

https://docs.axoniq.io/reference-guide/axon-framework/sagas
https://eventuate.io/
https://netflix.github.io/conductor/
https://microprofile.io/project/eclipse/microprofile-lra


data in multiple services in a Microservices Architecture without using distributed

transactions [11].

To clarify this, Fig. 1 shows an exemplary execution of the trip booking

example. The system offers the possibility to book a trip which includes booking

a hotel and a flight. This can be considered as a long lived transaction with three

microservices involved: a Travel Service which accepts requests for booking a

trip and initiates the execution, a Hotel Service which manages hotel bookings,

and a Flight Service which manages flight bookings. Using the 2PC protocol

would mean that booking the hotel and the flight would be done within one

ACID [14] transaction coordinated by the Travel Service where the whole trip is

either booked or rejected. During the transaction execution, all services must lock

resources impacting throughput [9, 12]. If one service is temporarily unavailable,

the transaction may fail reducing the availability of the system as a whole [7, 11].

S
a

g
a

 E
x

e
c

u
ti

o
n

C
o

o
rd

in
a

to
r

Start Saga

Travel Service

Start Booking Hotel

End Booking Hotel

Start Booking Flight

Abort Saga

End Saga

Saga Log

Start Canceling Flight

End Canceling Flight

Start Canceling Hotel

End Canceling Hotel

Hotel Service

Microservice

request/ message

writing to logs

Begin Saga

Start Booking Hotel

Flight Service

End Booking Hotels

Start Booking Flights

Abort Sagas

Start Canceling Flights

End Canceling Flights

Start Canceling Hotels

End Canceling Hotels

Fig. 1. Execution of a Saga’s failure scenario based on 6.

Implementing the example as a Saga means that the long lived transaction is

split into three local transactions: Save Trip Information, Booking Hotel, and

Booking Flight. The Save Trip Information transaction is executed upon a trip

booking request locally by the Travel Service to initiate the Saga and ensure

Durability. It is part of the Begin Saga step and does not require communication

with another service which is why it is not explicitly shown in Fig. 1. The Booking

Hotel transaction and the Booking Flight transaction are executed locally in the

Hotel Service and Flight Service, respectively. Each local transaction updates

only the data within one service and then triggers the next one [8, 11] until

all transactions are completed, and hence the Saga itself completes. If one

transaction fails, the Saga aborts and all previously completed transactions have

to be compensated. This case is shown in Fig. 1, where after the booking of a

flight fails, the previously done hotel booking has to be canceled. Consequently,

6 https://speakerdeck.com/caitiem20/applying-the-saga-pattern?slide=70,

slide 70, last accessed: 2021-02-17

An Evaluation of Saga Pattern Implementation Technologies 77

https://speakerdeck.com/caitiem20/applying-the-saga-pattern?slide=70


for each local transaction, a compensating transaction also needs to be provided,

which can compensate the transaction completely or at least semantically [6, 10].

In contrast to the 2PC protocol, a service therefore only holds locks for local

transactions and not for the whole Saga execution enabling it to effectively serve

more requests. One consequence is that the Isolation property is not satisfied

because intermediate results are visible to other Sagas before the executing one

is fully committed [15]. Therefore, countermeasures need to be taken to prevent

anomalies resulting from the lack of Isolation [11]. Also, Atomicity is not given

for the Saga as a whole, solely for each local transaction [6, 10]. Instead of strict

Consistency, only eventual consistency [13] is provided [10, 15]. During execution,

a trip with a hotel, but no flight would be inconsistent, but after completion

consistency is again achieved, when necessary through compensations. Durability

is fully guaranteed through the durability of local transactions and the Saga log,

which is a distributed log to persist every executed transaction. The Saga log

is managed by a component called the Saga Execution Coordinator which is

itself stateless and uses the log to trigger transactions and thereby proceed Saga

executions [6]. Having a Saga Execution Coordinator either as a separate service

or within a service exemplifies the orchestrated Saga approach with the Saga

Execution Coordinator being called the orchestrator [3, 10]. Although out of the

scope of this work, also a choreographed approach would be possible where the

coordination is distributed [10].

4 Technological Evaluation

Before we discuss the evaluation based on a set of criteria, some fundamental

differences need to be mentioned, because they also affect our evaluation re-

sults. Eventuate Tram specifically focuses on Sagas by offering a Java-based

Domain Specific Language (DSL) for specifying a sequence of transactions and

corresponding compensating transactions inside the service acting as the Saga

orchestrator. It is then executed together with the so-called CDC service and

infrastructure components such as a database for persisting the Saga log and a

message broker for communication. The DSL can also be used for the participants,

if implemented with Java. For other languages, participants have to be integrated

based on the used communication mechanisms. We implemented all services as

Spring7 services with the DSL included. In contrast, Conductor is not designed

explicitly for Sagas, but distributed workflows in general. The central component

is the Conductor server which accepts workflows in the form of a JSON-based

DSL. A Saga is registered as a workflow, with tasks representing transactions

for which different types are offered. We used so-called worker tasks which are

more customizable than others. They need to be registered, and the services,

again implemented in Java, can then poll and update these tasks to proceed with

the workflow. All implementations with examples and detailed information on

execution can be found online8.

7 https://spring.io/, last accessed 2021-02-17
8 https://github.com/KarolinDuerr/BA-SagaPattern

78 Karolin Dürr et al.

https://spring.io/
https://github.com/KarolinDuerr/BA-SagaPattern


Table 1. Evaluation overview

Criterion Eventuate Tram Netflix Conductor

General Saga Characteristics

Specifying compensating transactions (CT) ✓ ✓

Automated execution of CTs ✓ ✓

Compensation only where needed ✓ not directly supported

Parallel execution of transactions ✗ ✓

Choreographed Sagas ✓ ✗

Monitoring

Runtime state of Sagas via database UI visualization

Orchestrator metrics from CDC service from Conductor server

Tracing Zipkin integration not directly supported

Logging microservices logs Conductor server logs

Expandability

Relatively simple integration ✓ ✓

Terminating or pausing running Sagas not directly via UI

Versioning Sagas ✗ ✓

Built-in language support Java Java, Python

Any language for orchestrator ✗ ✓

Any language for participant ✓ ✓

Failure performance

Enforced execution timeouts ✗ ✓

Retry of failing participant without restart ✗ ✓

Independent compensating transactions ✓ ✗

Auto-continuation after orchestrator crash ✗ ✓

No. of services for orchestration 2 1

New Sagas while orchestrator unavailable ✓ only with buffering

High availability through replication through replication

An Evaluation of Saga Pattern Implementation Technologies 79



Our first set of criteria (see Table 1 for an overview of all results) covers

general characteristics. Both technologies allow for specifying compensating

transactions which are also automatically triggered. However, only Eventuate

allows for mapping compensating transactions to transactions so that only

needed compensating transactions are executed while Conductor allows for one

failure workflow per workflow. That means the failure workflow must contain

all compensating transactions and even compensating transactions which would

not have been necessary are executed in case of a Saga abort. This is because

Conductor is not specifically focused on Sagas. With Conductor, the central

component is the Conductor server which orchestrates the Saga execution, and

participants are connected to the Conductor server, which is why it does not

support a choreographed approach to Sagas. With Eventuate as a framework

however, the participants could also be connected directly with each other,

enabling also a choreographed approach. In contrast, transaction execution

in Eventuate is strictly sequentially, while Conductor also allows for parallel

execution of transactions.

The second set of criteria considers monitoring, a challenge in Microservices

Architectures [2, 4]. To get insights at runtime, Eventuate offers no pre-built

tool, but the database tracking all transactions and messages could be used as a

source for building a custom monitoring solution. Instead, Conductor offers a UI

which visualizes current workflows and provides useful functionalities for runtime

insights. A metrics endpoint exists for both technologies, which can be used to

collect metrics like the number of sent messages, average execution times, or the

number of failed Saga workflows. A possibility to use distributed tracing is only

given by Eventuate which offers a pre-built Zipkin9 integration. Additionally,

logs are written by both technologies which could help with troubleshooting.

Because Microservices Architecture-based systems change and evolve, the third

set of criteria covers expandability. We extended the example with an additional

service, which can also be found in the repository. For both technologies, the

integration was possible without significant problems. Nevertheless, Conductor

is suited better for updating or extending a running system because currently

executing Sagas can be managed via the UI and workflows can be versioned.

This means that Sagas of a new version can be started at the same time as there

are still Sagas of an old version executing. With Eventuate, handling updates at

runtime requires more effort. Regarding polyglot programming as a characteristic

of Microservices Architectures [9, 16], Eventuate is a bit more restricted because

the DSL is based on Java which means that the orchestrator also needs to be

written in Java. With Conductor, the Conductor server is mainly responsible for

the orchestration which means that the service starting a Saga can be written

in any language. In addition to a pre-built Java client for writing participants,

Conductor also offers a Python client.

As a final set of criteria, we consider the technologies’ handling of failures

which have to be expected in a distributed system. Both technologies tolerate

possible crashes of Saga participants by retrying communications. However, only

9 https://zipkin.io/, last accessed 2021-02-17

80 Karolin Dürr et al.

https://zipkin.io/


Conductor enforces an execution timeout to be set while Eventuate might, per

default, wait indefinitely for a service to restart. Depending on the use case and

volume of requests, this can become an issue. If there is no execution timeout for

Sagas, a service being unavailable for an extended period together with a high

volume of requests might lead to an overloaded system as a whole, because Saga

executions pile up and cannot make progress. An execution timeout can then

protect the system from consequential failures. Then again, there might be use

cases where Sagas should not be stopped at all because of a timeout. In such

a case, the enforced execution timeout of Conductor might be problematic. A

participant responding with a failure is unsubscribed from the message broker

with Eventuate, requiring a full restart of the participant so that it can re-register.

In contrast, Conductor retries even if a participant responded with a failure

that might only be temporary. Because compensating transactions are executed

only where needed with Eventuate, they can be executed independently from

participants where no compensation is necessary. Thus, also crashes of such

participants can be tolerated. Crashes of the Saga coordinator are tolerated by

both technologies and execution can continue afterwards because all necessary

information is persistently logged. However, merely Conductor automatically

continues while Eventuate needs a trigger after restart, such as a new Saga start.

With Eventuate, two services are required for orchestration: The CDC service

as orchestrator and a service in control of the Saga. Therefore, new Sagas can

still be started if only the orchestrator is unavailable. In case of Conductor, the

Conductor server is the exclusive orchestrator and additional logic would be

needed to buffer new requests in another service. Finally, both can be set up as a

highly available system by replicating the CDC service or the Conductor server,

respectively.

To summarize, both technologies enable robust Saga implementations. The

characteristics of the Saga pattern are represented more clearly with Eventuate

than with Conductor. However, Eventuate comes with limitations regarding the

flexibility in operation which is in turn better supported by Conductor.

5 Conclusion and Outlook

Given the Microservices Architecture as a popular software architecture approach,

patterns and technologies are needed to efficiently implement these systems and

tackle their accompanying challenges. Our evaluation of Saga pattern implemen-

tation technologies covers one of the aspects software engineers should consider

to make an informed decision on which technologies to use based on their specific

needs. As future work, we want to include additional technologies into our evalu-

ation, such as Axon and Long Running Actions for MicroProfile, but also the

possible usage of BPMN workflow engines as proposed in a recent talk by Bernd

Rücker10 and also by Niall Deehan at the ZEUS 2020 workshop. Furthermore,

extending the evaluation with quantitative methods is imaginable, for example

by doing a performance benchmark.

10 https://www.youtube.com/watch?v=7uvK4WInq6k, last accessed: 2021-02-17

An Evaluation of Saga Pattern Implementation Technologies 81

https://www.youtube.com/watch?v=7uvK4WInq6k


References

1. Al-Houmailya, Y.J., Samaras, G.: Two-Phase Commit. In: Encyclopedia of Database

Systems, pp. 3204–3209. Springer US (2009), https://dx.doi.org/10.1007/978-0-
387-39940-9_713

2. Alshuqayran, N., Ali, N., Evans, R.: A Systematic Mapping Study in Microservice

Architecture. In: 2016 IEEE 9th International Conference on Service-Oriented

Computing and Applications (SOCA). pp. 44–51. IEEE Computer Society (2016),

https://dx.doi.org/10.1109/SOCA.2016.15
3. Bruce, M., Pereira, P.A.: Microservices in Action. Manning Publications, 1st edn.

(2018), ISBN: 9781617294457
4. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual Understanding of Microservice

Architecture: Current and Future Directions. ACM SIGAPP Applied Computing

Review 17(4), 29–45 (2018), https://dx.doi.org/10.1145/3183628.3183631
5. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F., Mustafin,

R., Safina, L.: Microservices: Yesterday, Today, and Tomorrow. In: Present and

Ulterior Software Engineering, pp. 195–216. Springer International Publishing (2017),

https://dx.doi.org/10.1007/978-3-319-67425-4_12
6. Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the 1987 Association

for Computing Machinery Special Interest Group on Management of Data (ACM

SIGMOD) International Conference on Management of Data. vol. 16, pp. 249–259.

ACM Press (1987), https://dx.doi.org/10.1145/38714.38742
7. Helland, P.: Life Beyond Distributed Transactions: An Apostate’s Opinion. ACM

Queue 14(5), 69–98 (2016), https://dx.doi.org/10.1145/3012426.3025012
8. Limón, X., Guerra-Hernández, A., Sánchez-García, A.J., Arriaga, J.C.P.: SagaMAS: A

Software Framework for Distributed Transactions in the Microservice Architecture.

In: 2018 6th International Conference in Software Engineering Research and

Innovation (CONISOFT). pp. 50–58. IEEE Computer Society (2018), https:
//dx.doi.org/10.1109/CONISOFT.2018.8645853

9. Newman, S.: Building Microservices - Designing Fine-Grained Systems. O’Reilly

Media, Inc., 1st edn. (2015), ISBN: 9781491950357
10. Newman, S.: Monolith to Microservices: Evolutionary Patterns to Transform Your

Monolith. O’Reilly Media, Inc., 1st edn. (2019), ISBN: 9781492047841
11. Richardson, C.: Microservices Patterns. Manning Publications, 1 edn. (2019), ISBN:

9781617294549
12. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: Fast

Distributed Transactions for Partitioned Database Systems. In: Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data. pp. 1–12. Association

for Computing Machinery (2012), https://dx.doi.org/10.1145/2213836.2213838
13. Vogels, W.: Eventually Consistent. Communications of the ACM 52(1), 40–44 (2009),

https://dx.doi.org/10.1145/1435417.1435432
14. Vossen, G.: ACID Properties. In: Encyclopedia of Database Systems, pp. 19–21.

Springer US (2009), https://dx.doi.org/10.1007/978-0-387-39940-9_831
15. Štefanko, M., Chaloupka, O., Rossi, B.: The Saga Pattern in a Reactive Microservices

Environment. In: Proceedings of the 14th International Conference on Software

Technologies (ICSOFT) 2019. pp. 483–490. SciTePress (2019), https://dx.doi.org/
10.5220/0007918704830490

16. Zimmermann, O.: Microservices Tenets. Computer Science - Research and Development

32(3-4), 301–310 (2016), https://dx.doi.org/10.1007/s00450-016-0337-0

82 Karolin Dürr et al.

https://dx.doi.org/10.1007/978-0-387-39940-9_713
https://dx.doi.org/10.1007/978-0-387-39940-9_713
https://dx.doi.org/10.1109/SOCA.2016.15
https://dx.doi.org/10.1145/3183628.3183631
https://dx.doi.org/10.1007/978-3-319-67425-4_12
https://dx.doi.org/10.1145/38714.38742
https://dx.doi.org/10.1145/3012426.3025012
https://dx.doi.org/10.1109/CONISOFT.2018.8645853
https://dx.doi.org/10.1109/CONISOFT.2018.8645853
https://dx.doi.org/10.1145/2213836.2213838
https://dx.doi.org/10.1145/1435417.1435432
https://dx.doi.org/10.1007/978-0-387-39940-9_831
https://dx.doi.org/10.5220/0007918704830490
https://dx.doi.org/10.5220/0007918704830490
https://dx.doi.org/10.1007/s00450-016-0337-0

