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Abstract. Datasets of different nature can be effectively analyzed with the help 
of wavelet analysis. There are two types of discrete wavelet transforms – dyadic 
and non-dyadic. The latter one allows for more accurate detection and separation 
of features that are present in analyzed data. A lot of methods use the irreducible 
fractions as a dilation factor for rational wavelet transform. In this paper the gen-
eral case of reducible rational dilation factor will be considered. The procedure 
for building filters will be shown as well as the perfect reconstruction condition. 
Also, an approach for selecting the best reducible rational dilation factor will be 
proposed. 
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1 Introduction 

Wavelet transform (WT) is widely used to analyze datasets of various types. WT has 
proved its efficiency in analysis of medical signals [1], processing of multimedia data 
[2], speech and image recognition, etc. 

According to the value of dilation factor discrete WT are classified into dyadic, 
where dilation factor equals 2, and non-dyadic in other cases. Dyadic WT are often 
used, but non-dyadic wavelet transform can be more suitable for precise localization of 
signal singularities and similar tasks.  

Various authors proposed their own approaches to non-dyadic WT. Their properties 
and main features are shortly described in previous work [3]. 

Rational multiresolution analysis [4] looks like the simplest, but the most effective 
method among all others. 

2 Problem Formulation 

Usually, the irreducible dilation factor is used in rational wavelet transforms. But in 
some cases, using the reducible dilation factor can improve the quality of wavelet anal-
ysis. 

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0). 
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The conditions for building filters for the dilation factor that equals 6/4 were shown 

earlier [3, 5]. The purpose of the current work is to generalize these conditions to the 
arbitrary reducible fraction. Also, authors will generalize the perfect reconstruction 
condition for this case. 

The criteria for selecting the best value of rational dilation factor from a set of pro-
portional fractions will be introduced. 

 

3 Problem Solution 

3.1 Conditions for Filters Coefficients 

Let’s take arbitrary reducible fraction as a dilation factor of rational wavelet trans-
form  

𝑁 ൌ
𝑝
𝑞
, 𝑝 ൌ 𝛼 ∙ 𝑝ᇱ, 𝑞 ൌ 𝛼 ∙ 𝑞ᇱ, 𝛼 ∈ ℕ, 𝛼  2 

where fraction 

𝑝ᇱ

𝑞ᇱ
 

is irreducible. 
We have function 

𝜑 ∈ 𝑉𝑉 ଵ ൌ 𝑆𝑝𝑎𝑛 ൜𝜑 ൬
𝑝
𝑞
∙ െ𝑛൰ൠ

തതതതതതതതതതതതതതതതതതതതതതത
 

that can be represented as 

𝜑ሺ𝑥ሻ ൌ ඨ
𝑝
𝑞
ℎ𝜑 ൬

𝑝
𝑞
𝑥 െ 𝑛൰



 

Let’s define set of functions  

𝜑ሺ𝑥 െ 𝑞𝑙ሻ ൌ ඨ
𝑝
𝑞
ℎ𝜑 ൬

𝑝
𝑞
ሺ𝑥 െ 𝑞𝑙ሻ െ 𝑛൰ ൌ



ඨ
𝑝
𝑞
ℎ𝜑 ൬

𝑝
𝑞
𝑥 െ 𝑝𝑙 െ 𝑛൰ ൌ



 

ൌ ඨ
𝑝
𝑞
ℎି

 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑘൰



 

This set of functions has to be orthonormal, then 
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𝛿 ൌ 〈𝜑ሺ𝑥ሻ,𝜑ሺ𝑥 െ 𝑞𝑙ሻ〉 ൌ න 𝜑ሺ𝑥ሻ ∙ 𝜑ሺ𝑥 െ 𝑞𝑙ሻതതതതതതതതതതതതത 𝑑𝑥
ℝ

ൌ 

ൌ න ቌඨ
𝑝
𝑞
ℎ𝜑 ൬

𝑝
𝑞
𝑥 െ 𝑛൰



ቍቌඨ
𝑝
𝑞
ℎି

 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑘൰

തതതതതതതതതതതതതതതതതതതതതത



ቍ
ℝ

𝑑𝑥 

ൌ
𝑝
𝑞
ℎℎି୮

തതതതതതത



න 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰ ∙ 𝜑 ൬

𝑝
𝑞
𝑥 െ 𝑘൰

തതതതതതതതതതതതതതത
𝑑𝑥 ൌℎℎି

തതതതതതത

ℝ

 

So, orthonormality of the set of functions ሼ𝜑ሺ∙ െ𝑞𝑙ሻሽ implies the condition 

ℎℎି
തതതതതതത



ൌ 𝛿 

Let’s take functions 

𝜑ሺ𝑥 െ 1ሻ, 𝜑ሺ𝑥 െ 2ሻ, … , 𝜑൫𝑥 െ ሺ𝑞 െ 2ሻ൯, 𝜑൫𝑥 െ ሺ𝑞 െ 1ሻ൯ 

from the same V0. Due to this fact we can write each of these functions as 

𝜑ሺ𝑥 െ 𝑗ሻ ൌ ඨ
𝑝
𝑞
ℎ

 ∙ 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰



, 𝑗 ൌ 1… 𝑞 െ 1തതതതതതതതതതതത 

Then for each function 𝜑ሺ𝑥 െ 𝑗ሻ we define a set of functions ሼ𝜑ሺ∙ െ𝑞𝑙 െ 𝑗ሻሽ as 

𝜑ሺ𝑥 െ 𝑞𝑙 െ 𝑗ሻ ൌ ඨ
𝑝
𝑞
ℎ

𝜑 ൬
𝑝
𝑞
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𝑝
𝑞
ℎ

𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑝𝑙 െ 𝑛൰ ൌ



ඨ
𝑝
𝑞
ℎି

୨ 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑘൰



 

Each such set of functions has to be orthonormal, so 

𝛿 ൌ 〈𝜑ሺ𝑥 െ 𝑗ሻ,𝜑ሺ𝑥 െ 𝑞𝑙 െ 𝑗ሻ〉 ൌ න 𝜑ሺ𝑥 െ 𝑗ሻ ∙ 𝜑ሺ𝑥 െ 𝑞𝑙 െ 𝚥ሻതതതതതതതതതതതതതതതതത 𝑑𝑥
ℝ

ൌ 
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𝑝
𝑞
ℎ

𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰
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ℎ
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න 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰ ∙ 𝜑 ൬

𝑝
𝑞
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This gives us q-1 conditions for filter coefficients: 

ℎ




∙ ℎି
ఫതതതതതതത ൌ 𝛿 , 𝑗 ൌ 1… 𝑞 െ 1തതതതതതതതതതതത 

Also, all sets of functions 

ሼ𝜑ሺ∙ െ𝑞𝑙 െ 𝑗ሻሽ, 𝑗 ൌ 0… 𝑞 െ 1തതതതതതതതതതതത 

have be mutually orthogonal 

0 ൌ 〈𝜑ሺ𝑥 െ 𝑗ሻ,𝜑ሺ𝑥 െ 𝑞𝑙 െ 𝚥̃ሻ〉 ൌ න 𝜑ሺ𝑥 െ 𝑗ሻ ∙ 𝜑ሺ𝑥 െ 𝑞𝑙 െ 𝚥̃ሻതതതതതതതതതതതതതതതതത 𝑑𝑥
ℝ

ൌ 

ൌ න ቌඨ
𝑝
𝑞
ℎ

𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰



ቍቌඨ
𝑝
𝑞
ℎି

ఫ̃ 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑘൰

തതതതതതതതതതതതതതതതതതതതതത



ቍ
ℝ
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ℎି୮
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න 𝜑 ൬
𝑝
𝑞
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𝑝
𝑞
𝑥 െ 𝑘൰

തതതതതതതതതതതതതതത
𝑑𝑥 ൌℎ
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where  

𝑗, 𝚥̃ ൌ 0… 𝑞 െ 1തതതതതതതതതതതത, 𝑗 ് 𝚥̃ 

This gives us next conditions: 

ℎ
 ∙ ℎି

ఫ̃തതതതതതത



ൌ 0, 𝑗, 𝚥̃ ൌ 0… 𝑞 െ 1തതതതതതതതതതതത, 𝑗 ് 𝚥̃ 

Finally, we have next conditions for low-pass filter coefficients: 

⎩
⎪
⎨

⎪
⎧ ℎ





∙ ℎି
ఫതതതതതതത ൌ 𝛿 , 𝑗 ൌ 1… 𝑞 െ 1തതതതതതതതതതതത

ℎ
 ∙ ℎି

ఫ̃തതതതതതത



ൌ 0, 𝑗, 𝚥̃ ൌ 0… 𝑞 െ 1തതതതതതതതതതതത, 𝑗 ് 𝚥̃
 

Now let’s denote the Fourier transform of function 𝜑ሺ𝑥ሻ as 𝜑ොሺ𝜔ሻ. Applying the Fourier 
transform to the  

𝜑ሺ𝑥 െ 𝑗ሻ ൌ ඨ
𝑝
𝑞
ℎ

 ∙ 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰



, 𝑗 ൌ 0… 𝑞 െ 1തതതതതതതതതതതത 
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we will get  

𝜑ොሺ𝜔ሻ ∙ 𝑒ିఠ ൌ ඨ
𝑝
𝑞
ℎ

 ∙
𝑞
𝑝
𝜑ො ൬

𝑞
𝑝
𝜔൰ ∙ 𝑒

ି

ఠ



ൌ ቌඨ
𝑞
𝑝
ℎ

 ∙ 𝑒
ି

ఠ



ቍ ∙ 𝜑ො ൬
𝑞
𝑝
𝜔൰ 

that can be rewritten as 

𝜑ොሺ𝜔ሻ ∙ 𝑒ିఠ ൌ 𝑚
 ൬
𝑞
𝑝
𝜔൰ ∙ 𝜑ො ൬

𝑞
𝑝
𝜔൰ 

where functions 𝑚
ሺ𝜔ሻ are defined according to 

 𝑚
ሺ𝜔ሻ ൌ ට




∑ ℎ

 ∙ 𝑒ିఠ  (1) 

Next, we define p-q wavelet functions 

𝜓ሺ𝑥ሻ ൌ ඨ
𝑝
𝑞
𝑔

 ∙ 𝜑 ൬
𝑝
𝑞
𝑥 െ 𝑛൰



, 𝑗 ൌ 1… 𝑝 െ qതതതതതതതതതതതത 

From the orthonormality of these functions and their orthogonality to the functions  
we get next conditions: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑔

 ∙ 𝑔ି
ఫതതതതതതത



ൌ 𝛿 , 𝑗 ൌ 1…pെ 𝑞തതതതതതതതതതതത

𝑔
 ∙ 𝑔ି

ఫ̃തതതതതതത



ൌ 0, 𝑗, 𝚥̃ ൌ 1…pെ 𝑞തതതതതതതതതതതത, 𝑗 ് 𝚥̃

𝑔
 ∙ ℎି

ఫ̃തതതതതതത



ൌ 0, 𝑗 ൌ 1…pെ 𝑞തതതതതതതതതതതത, 𝚥̃ ൌ 0… 𝑞 െ 1തതതതതതതതതതതത

 

Based on wavelet functions we build functions 

 𝑚ሺ𝜔ሻ ൌ ට



∑ 𝑔

 ∙ 𝑒ିఠ , 𝑗 ൌ 1…𝑝 െ 𝑞തതതതതതതതതതതത (2) 

that satisfy 

𝜓ሺ𝜔ሻ ൌ 𝑚 ൬
𝑞
𝑝
𝜔൰ ∙ 𝜓 ൬

𝑞
𝑝
𝜔൰ , 𝑗 ൌ 1… 𝑝 െ 𝑞തതതതതതതതതതതത 

where  𝜓ሺ𝜔ሻ, 𝑗 ൌ 1…𝑝 െ 𝑞തതതതതതതതതതതത  are the Fourier transform of the corresponding wavelet 
functions. 
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3.2 Perfect Reconstruction Condition 

Let’s define matrix M() based on introduced functions 𝑚
ሺ𝜔ሻ and 𝑚ሺ𝜔ሻ : 

⎝

⎜
⎜
⎜
⎛

𝑚
ሺ𝜔ሻ . . 𝑚

ିଵሺ𝜔ሻ 𝑚ଵሺ𝜔ሻ . . 𝑚ିሺ𝜔ሻ

𝑚
ሺ𝜔ଵሻ . . 𝑚

ିଵሺ𝜔ଵሻ 𝑚ଵሺ𝜔ଵሻ . . 𝑚ିሺ𝜔ଵሻ
. . . . . . . . . . . .
. . . . . . . . . . . .

𝑚
൫𝜔ିଶ൯ . . 𝑚

ିଵ൫𝜔ିଶ൯ 𝑚ଵ൫𝜔ିଶ൯ . . 𝑚ି൫𝜔ିଶ൯

𝑚
൫𝜔ିଵ൯ . . 𝑚

ିଵ൫𝜔ିଵ൯ 𝑚ଵ൫𝜔ିଵ൯ . . 𝑚ି൫𝜔ିଵ൯⎠

⎟
⎟
⎟
⎞

 

where arguments 𝜔, 𝑘 ൌ 0…𝑛 െ 1തതതതതതതതതതതത are defined according to the formula: 

𝜔 ൌ 𝜔  2𝜋
𝑘
𝑝
, 𝑘 ൌ0…𝑛 െ 1തതതതതതതതതതതത 

Matrix A is defined as 

𝐀 ൌ 𝐌∗ሺ𝜔ሻ ∙ 𝐌ሺ𝜔ሻ 

where 𝐌∗ሺ𝜔ሻ is a complex conjugate of the transposition of 𝐌ሺ𝜔ሻ. 
Let’s show that matrix A satisfies the condition 

 𝐀 ൌ 𝑞 ∙ 𝐈௫ (3) 

where 𝐈௫  is a unit matrix of dimension p. In [6] Li shows that for the irreducible 
dilation factor of rational wavelet transform such expression gives a necessary and suf-
ficient condition for perfect reconstruction. 

For this purpose, we will calculate elements of matrix A. Diagonal elements of this 
matrix can be written as 

𝑎 ൌ

⎩
⎪
⎨

⎪
⎧
𝑚

ఫିଵ ൬𝜔  𝑙 ∙
2𝜋
𝑝
൰

തതതതതതതതതതതതതതതതതതതതതതത
ିଵ

ୀ

∙ 𝑚
ିଵ ൬𝜔  𝑙 ∙

2𝜋
𝑝
൰ , 𝑗 ൌ 1… 𝑞തതതതതതത

𝑚ఫି ൬𝜔  𝑙 ∙
2𝜋
𝑝
൰

തതതതതതതതതതതതതതതതതതതതതത
ିଵ

ୀ

∙ 𝑚ି ൬𝜔  𝑙 ∙
2𝜋
𝑝
൰ , 𝑗 ൌ 𝑞  1…𝑝തതതതതതതതതതതത

 

After substituting expressions (1) and (2), multiplying sums and grouping of similar 
elements we get 

𝑎 ൌ

⎩
⎪
⎨

⎪
⎧𝑞
𝑝
ℎ

ఫିଵതതതതതത ∙ ℎ
ିଵ ∙ 𝑒ିሺିሻఠ ∙𝑒

ିሺିሻ
ଶగ


ିଵ

ୀ

, 𝑗 ൌ 1… 𝑞തതതതതതത

𝑞
𝑝
𝑔

ఫିതതതതതത ∙ 𝑔
ି ∙ 𝑒ିሺିሻఠ ∙𝑒

ିሺିሻ
ଶగ


ିଵ

ୀ

, 𝑗 ൌ 𝑞  1…𝑝തതതതതതതതതതതത
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Let’s take a look at the last multiplier. After substituting n-k by m it can be written as 

𝑢ሺ𝑚ሻ ൌ𝑒
ି

ଶగ


ିଵ

ୀ

ൌ 1  𝑒
ି

ଶగ
 ⋯ 𝑒

ି
ଶగሺିଶሻ

  𝑒
ି

ଶగሺିଵሻ
  

After denoting 𝜌 ≡ 𝑒
ି

మഏ
   we can write this expression as    

𝑢ሺ𝑚ሻ ൌ 1 ρ ⋯ 𝜌ିଶ  𝜌ିଵ 

If  does not equal to one, then we can multiply last expression by 1- and get  

𝑢ሺ𝑚ሻሺ1െ 𝜌ሻ ൌ ሺ1  ρ ⋯ 𝜌ିଶ  𝜌ିଵሻሺ1െ 𝜌ሻ ൌ 1െ 𝜌 

Due to the fact that 𝜌 ൌ 𝑒
ି

మഏ

∙
ൌ 𝑒ିଶగ ൌ 1 we get that in this case 

𝑢ሺ𝑚ሻ ൌ
1െ 𝜌

1െ ρ
ൌ 0 

If  equals one, i.e. for the values of m that are multiplies of the numerator, then from 
the definition of the function it immediately follows that in this case 

𝑢ሺ𝑚ሻ ൌ 1 

So, now we can write the values of the diagonal elements of matrix A as 

𝑎 ൌ

⎩
⎪
⎨

⎪
⎧𝑞ℎି

ఫିଵതതതതതതത ∙ ℎ
ିଵ ∙ 𝑒ିఠ



, 𝑗 ൌ 1… 𝑞തതതതതതത

𝑞𝑔ି
ఫିതതതതതതത ∙ 𝑔

ି ∙ 𝑒ିఠ



, 𝑗 ൌ 𝑞  1…𝑝തതതതതതതതതതതത
 

that, after taking into account conditions for filters coefficients, gives us 

𝑎 ൌ 𝑞, 𝑗 ൌ 1…𝑝തതതതതതത 

It can be easily shown in a similar way that all extradiagonal elements of the matrix A 
are zeros. 

So, matrix A satisfies condition (3). This means that it can be looked as a condition 
for the perfect reconstruction in the case of reducible dilation factor of rational wavelet 
transform. 

3.3 Dilation Factor Selecting Criterion 

In order to select optimal value from the set of reducible fractions that all are the mul-
tipliers of the same irreducible rational number authors propose to use entropy-based 
criterion. 

Entropy is usually understood as a measure of uncertainty or unpredictability of in-
formation [7]. In [7, 8] entropy was proposed to use in order to find the optimal signal 
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decomposition. In their previous work [9] authors also used entropy for selecting an 
optimal irreducible dilation factor. 

Calculation of entropy for the rational wavelet decomposition at the level N of the 
signal is based on relative energy. First, it is necessary to find the energy Ej at the level 
j of the decomposition 
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where dj,k are the detailed coefficients at this level and Nj is the whole number of the 
coefficients. 

Next, the relative energy Pj that shows the distribution of energy by levels is calcu-
lated  
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And at last entropy is calculated according to the expression 
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3.4 Experimental Results 

We will illustrate the process of selecting the reducible dilation factor by the decompo-
sition of signal of the spontaneous electromagnetic emission of the Earth. 

The whole set of data was measured by “Yugneftegazgeologiya” company during 
the experiments on the September, 2012 in Bazeliyivka, Ukraine. 

Fig. 1 shows the first second of the X channel record made by one of the mobile 
measurement stations at the “zero” point. 

Fourier spectrum of this signal is shown at the Fig. 2. 
Due to the Fourier spectrum and nature of the measured signal a decision to analyze 

it by rational wavelet transform with the value of 5/3 for dilation factor was made first. 
Two other values – 10/6 and 15/9 – for the dilation factor were also considered. 

In order to select the most optimal value entropy-based criterion was used. Results 
are shown in Table 1. The minimum value of entropy is bolded. Entropy for dyadic 
wavelet decomposition is also included for comparison. 

Table 1. Entropy for selected values of dilation factor 

Dilation factor value Entropy 
5/3 0.1071 
10/6 0.1066 
15/9 0.1071 

2 0.3175 
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Fig. 1. Measured signal 

 

Fig. 2. Fourier spectrum of the signal 

Fig. 3 illustrates the advantages of dilation factor 10/6 vs 5/3 in singularities sepa-
rating. 



166 

 

Fig. 3. Detailed components of third level on Fourier spectrum. 

Orange vertical lines bound the frequency band of Fourier spectrum that corresponds 
to the detailed components on third level of wavelet decomposition. 

Dark red vertical line separates the frequency intervals for the detailed components 
of decomposition with dilation factor 5/3. Green vertical lines show the spectrum bands 
for the detailed components of rational wavelet decomposition with dilation factor 10/6. 

It can be easily seen that in the second case singularities of the signal are better sep-
arated from each other. 

Further fragmentation of frequency band into smaller parts leads to the fact that some 
singularities will be placed at the boundaries of intervals, and, so, will not be separated. 
Increasing of wavelet entropy in Table 1 proofs this. 

4 Conclusions 

Authors have proposed to use arbitrary reducible rational fraction as a dilation factor 
for the rational wavelet transform. It has been shown that perfect reconstruction condi-
tion for such values of dilation factor is satisfied. 

Criterion for selecting the optimal dilation factor from the set of reducible fractions 
that all are the multipliers of the same irreducible rational number has been introduced. 
Authors have proposed to use entropy-based criterion. 

Process of selecting the optimal value for the dilation factor of rational wavelet trans-
form is demonstrated on the signal of the spontaneous electromagnetic emission of the 
Earth. 
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