
Generating maximal models using the stable
model semantics

Juan Carlos Nieves1 and Mauricio Osorio2

1 Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
jcnieves@lsi.upc.edu

2 Universidad de las Américas, CENTIA,
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@gmail.com

Abstract. Given a propositional formula X, we present a mapping that
constructs a general program P, such that the maximal models of X
correspond to the stable models of P, after intersecting each stable model
with the relevant atoms. Maximal models are of interest for di�erent
applications.

1 Introduction
Generating maximal models of a propositional formula is of interest in di�erent
applications. For instance, it has been shown that in argumentation theory the
preferred semantics of an argumentation framework can be expressed in terms
of maximal models of a propositional formula [1]. Also, to compute maximal
models in model-preference default inference [5], it is an essential tool.

Given a propositional formula X, we present a mapping that constructs a
general program P, such that the maximal models of X correspond to the stable
models of P, after intersecting each stable model with the relevant atoms. We
present this mapping as a sequence of basic steps in a way that they represent a
simple methodology that can be applied to any problem of this nature. In fact,
we can infer the maximal models of a formula by using disjunctive answer set
solvers e.g., DLV [2]. Nowadays, there are fast answer set solvers e.g., DLV [2],
SMODELS [6], which have contributed to extend the applications of Answer Set
Programming (ASP).

The rest of the paper is divided as follows: In �2, some basic concepts of logic
programs and stable model semantics are presented. In �3, our characterization
of the maximal models in terms of stable models is presented. Finally in the last
section, we present our conclusions.

2 Background
In this section, we present the syntax of a valid logic program in ASP and the
de�nition of a stable model.

2.1 Logic Programs: Syntax

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...
(ii) connectives : ∨,∧,←,¬,⊥,>
(iii) auxiliary symbols : (,).

where ∨,∧,← are binary connectives, ¬ is an unary connective and⊥,> are zero-
ary connectives. The proposition symbols and ⊥ stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom ¬a. Given a set of atoms {a1, ..., an}, we write
¬{a1, ..., an} to denote the set of literals {¬a1, ...,¬an}. Formulas are constructed
as usual in logic. A theory T is a �nite set of formulas. By LT , we denote the
signature of T , namely the set of atoms that occurs in T.

A general clause, C, is denoted by a1 ∨ . . . ∨ am ← l1, . . . , ln,3 where m ≥ 0,
n ≥ 0, each ai is an atom, and each li is a literal. When every literal li is an
atom, the clause is considered positive. When n = 0 and m > 0, the clause is
an abbreviation of a1 ∨ . . . ∨ am ← >, where > is ¬⊥. When m = 0 the clause
is an abbreviation of ⊥ ← l1, . . . , ln. Clauses of this form are called constraints
(the rest, non-constraint clauses). A general program, P , is a �nite set of general
clauses. A positive general program P is a �nite set of positive general clauses. A
given program {α1, ..., αn} is also represented as {α1; ...; αn} to avoid ambiguities
with the use of the comma in the body of the clauses.

We point out that whenever we consider logic programs our negation ¬ cor-
responds to the default negation not used in Logic Programming. Also, it is
convenient to remark that in this paper we are not using at all the so called
strong negation used in ASP.

2.2 Stable models semantics

First, to de�ne the stable model semantics, let us de�ne some relevant concepts.

De�nition 1. Let T be a theory. An interpretation I is a mapping from LT to
{0, 1} meeting the conditions:

1. I(a ∧ b) = min{I(a), I(b)},
2. I(a ∨ b) = max{I(a), I(b)},
3. I(a ← b) = 0 if and only if I(b) = 1 and I(a) = 0,
4. I(¬a) = 1− I(a),
5. I(⊥) = 0.
6. I(>) = 1.

It is standard to provide interpretations only in terms of a mapping from LT

to {0, 1}. But then it is easy to prove that it is unique by virtue of the de�nition
by recursion.
3 l1, . . . , ln represents the formula l1 ∧ · · · ∧ ln.

An interpretation I is called a model of P if and only if for each clause
c ∈ P , I(c) = 1. Given a theory T and a formula α, we say that α is a logical
consequence of T , denoted by T |= α, if for every model I of T we have I(α) = 1.
A theory (or a formula) is consistent if it admits a model, otherwise it is said to
be inconsistent. It is well known that T |= α i� T ∪ {¬α} is inconsistent.

It is possible to identify an interpretation with a subset of a given signature.
For any interpretation, the corresponding subset of the signature is the set of
all atoms that are true with respect to the interpretation. Conversely, given an
arbitrary subset of the signature, there is a corresponding interpretation de�ned
by specifying that the mapping assigned to an atom in the subset is equal to 1
and otherwise to 0. We use this view of interpretations freely in the rest of the
paper.

We say that a model I of a theory T is a minimal model if it does not exist
a model I ′ of T di�erent of I such that I ′ ⊂ I. Maximal models are de�ned in
the analogous way.

By using answer set programming, it is possible to describe a computational
problem as a logic program whose answer sets correspond to the solutions of the
given problem. The stable model semantics was �rst de�ned in terms of the so
called Gelfond-Lifschitz reduction [3] and it is usually studied in the context of
syntax dependent transformations on programs. The following de�nition of an
answer set for general programs generalizes the de�nition presented in [3] and it
was presented in [4].

Let P be any general program. For any set S ⊆ LP , let PS be the general
program obtained from P by deleting
(i) each rule that has a formula ¬l in its body with l ∈ S, and then
(ii) all formulæ of the form ¬l in the bodies of the remaining rules.
Clearly PS is positive, then S is a stable model of P if and only if S is a minimal
model of PS . However, note that PS may contain constraints.

3 Maximal models via Stable models
In this section, we provide a method for obtaining maximal models of a propo-
sitional theory in terms of stable models of a general program.
De�nition 2. Let L be a signature. Let L′ be a new signature (namely L∩L′ =
∅) of the same cardinality as L that of course admits a bijective function f from
L to L′. We say in this case that L′ is a copy-signature of L. In addition, we
write f(a) (or also a•) to denote the image of a under f . For a given set of
atoms N , we write f(N) to denote the set {f(a) : a ∈ N}.

Note that if L′ is a copy-signature of L then also L is a copy-signature of L′.
To explain the methodology of this section, we use a simple formula as a

running example. Let our theory be T1 := {a ∨ b,¬b}. Note that {a} is the
unique maximal model of our theory.

One can establish an important relationship between maximal and minimal
models. The proof is straightforward.

Lemma 1. Let T be a theory with signature L and L′ be a copy-signature of L.
By g(T) we denote the theory obtained from T by replacing every occurrence of
an atom x in T by ¬f(x). Then M is a maximal model of T i� f(L \M) is a
minimal model of g(T).

Let us come back to our example. Note that g(T1) := {¬a•∨¬b•,¬¬b•}. The
complement of {a} (maximal model of T1) w.r.t. to {a, b} is {b}. Now, f({b}) is
{b•}, that is precisely the minimal model of g(T1).

The second step is conceptually very simple. Transform the new theory
R := g(T) into a logically equivalent positive general program, denoted by
general(R) or just P . This is of course always possible using well known basic log-
ical transformations. In our case g(T1) is transformed to P1 := {⊥ ← a•, b•; b•}.
Clearly, g(T) and P have the same set of minimal models. Moreover, the set of
stable models of P are the same as the set of minimal models of g(T).

For the third and �nal step we need to state the following lemma.
Lemma 2. Let S be a general program of the form S1∪S2, where S1 is a positive
general program with signature L and S2 := {x• ← ¬x : x ∈ L} such that L′ is
a copy-signature of L. Then M is a stable model of S i� there exists a minimal
model N of S1 such that M = N ∪ f(L \N).

Let us come back again to our example. Recall that P1 := {⊥ ← a•, b•; b•}.
The signature of P1 is {a•, b•} and the copy-signature is {a, b} Now consider the
general program P2 := P1 ∪ {a ← ¬a•; b ← ¬b•}. The unique stable model of
P2 is {b•, a}. We could obtain this model as follows: obtain a minimal model
of P1, getting {b•}. Now, the complement of this model is {a•}, and f({a•}) is
{a}. Finally we obtain {b•} ∪ {a} as desired. Hence if this model is intersected
with the original signature, we obtain our desired maximal model of the original
theory.

Let us summarize our approach. We are given T1 := {a ∨ b,¬b}. We want
to obtain a maximal model of T1. We �rst construct the program g(T1) :=
{¬a• ∨ ¬b•,¬¬b•}. Then we compute the associate positive general program
P1 := {⊥ ← a•, b•; b•}. Now we add P2 := P1 ∪{a ← ¬a•; b ← ¬b•}. Compute a
stable model of P2 using DLV. We obtain {b•, a}. Intersect it with the original
signature and we get {a}. This is a maximal model of T1, as desired.

Acknowledgements
We are grateful to anonymous referees for their useful comments. Juan Carlos
Nieves wants to thank CONACyT for his PhD Grant.

4 Conclusions
We have presented a methodology to transform a problem of generating maxi-
mal models into the problem of obtaining stable models of a general program.
As a consequence we can generate the maximal models of a formula by using
disjunctive answer set solvers e.g., DLV.

References
1. P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In

Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004),, pages
59�64, June 2004.

2. S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/,
1996.

3. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages
1070�1080. MIT Press, 1988.

4. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365�385, 1991.

5. B. Selman and H. A. Kautz. Model-preference default theories. Arti�cial Intelli-
gence, 45(3):287�322, 1990.

6. S. SMODELS. Helsinki University of Technology.
http://www.tcs.hut.�/Software/smodels/, 1995.

