Inferring preferred extensions by Pstable semantics
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Abstract. Given an argumentation frameworkF', we present a normal pro-
gram ¥4, such that the preferred extensions of AF correspond exactly with
the pstable models af 4. Moreover, we motivate the notion of suitable codi-
fications for developing metainterpreters of argumentation theory based on logic
programming.

1 Introduction

We are interested in finding suitable translators that maps an argumentation framework
into a logic programming in the same line as the metainterpreter proposed by Dung
[5]. To find suitable translators for argumentation theory based on logic programming
is close related to find suitable codifications of an argumentation framework as logic
program. This is because there is a strong relationship between the codification and the
logic programming semantics which will be considered for characterizing the abstract
argumentation semantics.

Nowadays, logic programming and non-monotonic reasoning (NMR) are solid ar-
eas in Al. For instance, during the last two decades, one of the most successful logic
programming approaches has been Answer Set Programming (ASP). ASP is the realiza-
tion of much theoretical work on Non-monotonic Reasoning and Artificial Intelligence
applications. It represents a new paradigm for logic programming that allows, using the
concept ofnegation as failureto handle problems with default knowledge and produce
non-monotonic reasoning [2].

It has recently been shown th@t; logic can be used to express interesting non-
monotonic semantics [11]. More generally, two major classes of logics that can be suc-
cessfully used to model nonmonotonic reasoning are (constructive) intermediate logics
and paraconsistent logics [12, 10, 11]. The most well known semantics for NMR is the
stable semantics [6]. This semantics provides a fairly general framework for represent-
ing and reasoning with incomplete information. There are programs sugj as
a < —b.

a <+ b.
b—a:



that do not have stable models. However each atofa jh} is a classical consequence

of Py and hence this could be considered as an intended model of our program. This
is not exactly a problem of the stable semantics but sometimes we have applications
where we need a behavior closer to classical logic such as in the theory of argumenta-
tion (as we will soon see). The pstable semantics provides a solution to this situation.
This semantics is originally constructed based on paraconsistent logics but a remark-
able result is that it can expressed using only classical logic. Our paper follows this

alternative simpler presentation.

In this paper we show how to model an abstract argumentation framed6rin
terms of NMR. We show in particular the following interesting result. Given an argu-
mentation frameworkd F', we present a normal prograéy », such that the preferred
extensions of AF correspond exactly with the pstable modelg qf. Moreover, we
motivate the notion of suitable codifications for developing metainterpreters of argu-
mentation theory based on logic programming.

The rest of the paper is divided as follows: In 82, it is presented some basic defi-
nitions of logic programming and pstable semantics. §3 presents the notion of suitable
codifications that is the motivation of our work. 84 presents our results. In 85 we present
an alternative argumentation semantics to deal with some problems reported about the
preferred argumentation semantics. We only present some interesting examples. Finally
in the last section, we present our conclusions.

2 Background

In this section, we define some basic concepts of logic programming and Pstable mod-
els. We assume familiarity with basic concepts in classic logic and in semantics of logic
programse.g.,interpretation, modektc A good introductory treatment of these con-
cepts can be found in [2, 7].

2.1 Logic programs: Syntax

A signaturel is a finite set of elements that we call atoms. A literal is an atgrar the
negation of an atoma. Given a set of atoméa, ..., a,}, we write ={a,...,a,}

to denote the set of literals-ay, ..., —a,}. A normal clause is of the formi, «—
ai,...,045,7Gj41,. .., an, Whereg; is an atomf) < ¢ < n. Whenn = 0 the normal
clause is an abbreviation of the fags. A normal program is a finite set of normal
clauses. Sometimes, we denote a cladsy a «— BT, -B~, whereB* contains all
the positive body literals an~ contains all the negative body literals. We also use
body(C') to denoteB+, =B~. WhenB~ = (), the clauseC is called definite clause. A
definite program is a finite set of definite clauses. We denotébthe signature of,
i.e. the set of atoms that occurs in P. Given a signafyikee write Prog, to denote the
set of all the programs defined ovér

2.2 NMR: the Pstable and stable semantics

First to definite pstable semantics (introduced in [11]), we define some basic concepts.
Logical inference in classic logic is denotedibyGiven a set of proposition symbaots



and a theory (a set of well-formed formulag)if ' - Sifand only ifvs € S I' I s.
When we treat a logic program as a theory, each negative literd is regarded as the
standard negation operator in classic logic. Given a normal programPdf L p, we
write P I M when: P = M and M is a classical 2-valued model &f (i.e. atoms in
M are set to true, and atoms notiit to false; the set of atoms is a classical model of
P if the induced interpretation evaluat®sto true).
The Pstable semantics is defined in terms of a single reduction which is defined as
follows:

Definition 1. [11] Let P be a normal program and M a set of literals. We define
RED(P,M) :={l « Bt ,=~(B~ N M)|l — B",-B~ € P}
Let us consider the set of atomé$, := {a, b} and the following normal prograrf; :

a«— b e
a <« b.
b+ a.

We can see thaRED(P, M) is:
a «— —b.
a «—b.
b — a.

By considering the reductioRE D, it is defined the semantigsstablefor normal
programs.

Definition 2. [11] Let P be a normal program and/ a set of atoms. We say thaf
is a pstable model oP if RED(P, M) I M. We use Pstable to denote the semantics
operator of pstable models.

Let us consider agaid/; and P; in order to illustrate the definition. We want to
verify whetherM, is a pstable model aP;. First, we can see that/; is a model ofP,
i.e.V C € Py, M, evaluateg to true. Now, we have to prove each atomidf from
RED(Py, M) by using classical inferencee. RED(Py, M;) = M;. Let us consider
the proof of the atona, which belongs td\f;, from RED (P, M;).

1. (aVb) — ((b — a) — a) Tautology

2.-b—a Premise fromRED(Py, M)
3.aVb From 2 by logical equivalency
4.(b—a)—a) From 1 and 3 by Modus Ponens
5b—a Premise fromRED(Py, M;)

6.a From 4 and 5 by Modus Ponens

Remember that the formutab — a corresponds to the normal clause— —b which
belongs to the progralRE D( Py, M, ). The proof for the atond, which also belongs
to M, is similar. Then we can conclude th&F D(P;, My) |- M. Hence,M; is a
pstable modebdf P; .

The well known stable semantics (see [2]) is defined as follows. First, for any theory
T, we write Pos(T) to denote the positive formulas &t



Definition 3. Let P be a normal program and/ a set of atoms. Theh/ is a stable
model ofP if M is a minimal model oPos(RED(P, M)).

2.3 Argumentation theory

Now, we define some basic concepts of Dung'’s argumentation approach. The first one is
an argumentation framework. An argumentation framework captures the relationships
between the arguments (All the definitions of this subsection were taken from the sem-
inal paper [5]).

Definition 4. An argumentation framework is a paitF' := (AR, attacks), whereAR
is a set of arguments, arattackss a binary relation orAR, i.e. attacksC AR x AR.

a——> b —> ¢

Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For instance,
if AF := ({a,b,c},{(a,b),(b,c)}), thenAF is represented as in Fig. 1. We say that
a attacks h(or b is attacked by:) if attacks(a,b) holds. Similarly, we say that a sét
of arguments attackis(or b is attacked byS) if b is attacked by an argument i For
instance in Fig. 1{a} attacksb.

Definition 5. A set S of arguments is said to be conflict-free if there are no arguments
A, Bin S such that A attacks B.

Dung defined his semantics based on the basic conceplnoissible sets

Definition 6. (1) An argumentd € AR is acceptable with respect to a set S of argu-
ments if and only if for each argumeBt € AR: If B attacks A then B is attacked by S.

(2) A conflict-free set of arguments S is admissible if and only if each argumentin S is
acceptable w.r.t. S.

For instance, the argumentation framework of Fig. 1 has two admissible{aéts:
and{a, c}. The (credulous) semantics of an argumentation framework is defined by the
notion of preferred extensions.

Definition 7. A preferred extension of an argumentation framewdtk is a maximal
(w.r.t. inclusion) admissible set of F'.

The only preferred extension of the argumentation framework of Fig.{4,ig}.
The grounded semantics is defined in terms dfiaracteristic function



Definition 8. The characteristic function, denoted By -, of an argumentation frame-
work AF' = (AR, attacks) is defined as follows:

Fyp : 24F  2AR

Far(S) = {A| Ais acceptable w.r.t. $

Definition 9. The grounded extension of an argumentation framework AF, denoted by
GFE ar, is the least fixed point df 4

In order to illustrate the definition, let us consider the argumentation framework of
Fig. 1. Then

Fip(0) := {a},
Fip(Fhp(0)) = {a,c},
foF(F}lF(FgF 0))) == {a,c},

since Fi - (FS-(0) = F2n(Fip(FS:(0))), thenGEsr = {a,c}. Therefore the
grounded extension AF' is {a, c}.

Dung [5] defined some important conceptst. the relationship between arguments
when they are taking part of a sequence of attacks.

— An argument Bndirectly attacksA if there exists a finite sequenck, . .., A1
such that 14 = Ag andB = A1, and 2) for eachi, 0 < i < 2n, A;; attacks
A;.

— An argument Bindirectly defend\ if there exists a finite sequencé,, .. ., As,
such that 14 = Ay andB = A,,, and 2) for each i) < i < 2n, A;;1 attacksA;.

— An argument B is said to beontroversial w.r.t.A if B indirectly attacks A and
indirectly defeats A.

— An argument isontroversialif it is controversialw.r.t. some argument A.

In [5], it was suggested a general method for generating metainterpreters in terms of
logic programming for argumentation systems. This is the first approach which regards
an argumentation framework as a logic program. This method is divided in two units:
Argument Generation Unit (AGU), and Argument Processing Unit (APU). The AGU
is basically the representation of the argumentation framework’s attacks and the APU
consists of two clauses:

(Cl)ace(X) — —d(X)
(C2)d(X) « attack(Y, X),acc(Y)

The first one (C1) suggests that the argum&nis acceptable if it is not defeated
and the second one (C2) suggests that an argument is defeated if it is attacked by an
acceptable argument. Dung uses the predideteatinstead of the predicat: We will
use the predicaté(.X) for denoting that “X is a defeated argument”.

Definition 10. Given an argumentation frameworkF" = (AR, attacks), Pap de-
notes the logic program defined By = APU + AGU where APU = {C1,C2}
and

AGU = {attacks(A, B) — |(A, B) € attacks}



For each extensioR' of AF' (namely a set of arguments), m(E) is defined as follows:
m(E) = AGU U {acc(A)|A € E}
U {d(B)|B is attacked by some A € E}

Theorem 1. [5] Let AF be an argumentation framework and E be an extension 6f AF
Then

1. E is a stable extension of AF if and onlyif( E') is a stable model of aP4
2. E is a grounded extension of AF if and onlynif(E) U {—d(A)|A € E} is the
well-founded model aP4

3 Suitable codifications

We are interested in finding suitable translators that maps an argumentation framework
into a logic programming in the same line as the metainterpreter proposed by Dung. To
find suitable translators for argumentation theory based on logic programming is close
related to find suitable codifications of an argumentation framework as logic program.
This is because there is a strong relationship between the codification and the logic
programming semantics which will be considered for characterizing the abstract argu-
mentation semantics. For instance, Dung characterized the grounded semantics with
WFSand the stable semantics with answer set models (see Theorem 1).
Now, what is a suitable codification for generating translators for argumentation
theory? Based on the fattte grounded semantiendthe preferred semanticare the
main semantics for the argumentation community [13, 1], one can impose that a suitable
codification at least must be able to characterize these semantics. Moreover, since some
authors have been pointed out that these semantics have some drawbacks [13, 4, 3], itis
important that a suitable codification must allow to define extensions of these semantics.
Given an argumentation frameworkF’ := (AR, attacks) and a logic progran®,
we will say thatP is a suitable codification ofl F" if and only if:

1. there is a logic programming semant8EM such thatSEM(P)characterizes the
grounded semantics ofF' and

2. there is a logic programming semantB8EM such that SEM(P)characterizes the
preferred semantics.

It is worth mentioning that when we define a suitable codification we are defining a
common point between two kinds of reasonings (skeptical and credulous). In fact, the
only switch that it is required for developing a skeptical reasoning or a credulous redu-
lus in a metainterpreters for argumentation theory is to change the logic programming
semantics. Also, a suitable codification could be a useful tool for defining intermediate
argumentation semantics between the grounded semantics and the preferred semantics.
This means that it is possible to define an intermediate reasoning between the grounded
semantics and the preferred semantics.

3 Dung presented resuligr.t. another semantics, but we just cite the reswitg. stable exten-
sions and grounded extensions



The problem of characterizing abstract argumentation semantics does not only de-
pend of the codification but also in the logic programming semantics. In fact, to find a
suitable logic programming semantic is as important as to find a suitable codification
for characterizing a particular abstract argumentation semantics.

By Theorem 1, we have already seen that by uging, WFSis a suitable logic pro-
gramming semantics for characterizing the grounded semantics. Hovayegould
not be considered as a suitable codification because there is not a well known logic pro-
gramming semantics which could characterize the preferred semantics byfrusing

To the best of our knowledge, the only logic programming semantics that has pro-
posed for characterizing the preferred semantic is based on minimal models [8]. In fact
this approach was used for proposing an extension of the preferred semantics [9]. How-
ever, we have to accept that by using minimal models, we lose an important property of
logic programming which is the use of negation by failure. For instance, let us consider
the single argumentation frameworkF' := ({a, b}, {(a,b)}) and its codification in
terms of normal progran?, » which is (the process for getting this codification will be
described in the next section):

d(b) — =d(a). d(b) — T.

The intended meaning of the first clause is that the arguimerili be defeated if the
argument is not defeated and the last clause says that the argumedefeated. It is
clear the only minimal model of this program{ig(b) } which means that the argument

b is defeated. Therefore, by considering the complemertlt4)}, it is deduced the
only preferred extension &§F which is{a}. A natural extension of the prografu r

for inferring directly the acceptable arguments is to consider the following two clauses:

acc(a) «— —d(a). acc(b) — —d(b).
Now, if we consider the minimal models of the program:

d(b) « —d(a). d(b) — T.
acc(a) «— —d(a). acc(b) «— —d(b).

we will get: {acc(a), d(b) } and{d(a), d(d)}. It quite obvious that the modéti(a), d(d)}
is not a desire model since this is suggesting that the empty set is a preferred extension.
However that is an error.

In the following sections, we will show thastable semantids able to characterize
the preferred semantics by using the suitable codification which was presented in [8].
Moreover, this semantics is able to ussgation by failuravithout being affected in the
characterization of the preferred semantics.

4 Mapping from argumentation frameworks to normal programs

In order to see an argumentation framework as a normal program, we start by defining a
mapping from an argumentation framework to a normal logic program. In our mapping,



we use the predicaté( X ), where the intended meaning @fX) is “X is a defeated
argument”. Also we use the predicatec(X ), where the intended meaning afc(X)

is “X is an acceptable argument”. We will denote Py A) the set of arguments that
directly attacks the argument®. First, we define a transformation functienr.t. an
argument.

Definition 11. Let AF' := (AR, Attacks) be an argumentation framework antl €
AR. We define the transformation functigrjA) as follows:

w(A):=( |J dA)—-dB)u( [J dA)— A\ dC)
)

BeD(A BeD(A) CeD(B)
In the progran¥(A), we can identify two parts for each argumeht AR:

1. Thefirst par{{Jpe pa) d(A) < ~d(B)) suggests that the argumetis defeated
when one of its adversaries is not defeated.

2. The last par{Upep(a) d(4) — Acep(p) d(C)) suggests that the argumedts
defeated when all the arguments that defeAdire defeated.

The direct generalization of the transformation functibrto an argumentation
framework is defined as follows:

Definition 12. Let AF' := (AR, Attacks) be an argumentation framework. We define
its associated normal program as follows:

Wap = | J (#(A)Uacc(A) — —~d(A).
A€AR

Example 1.Let AF := (AR, attacks) be the argumentation framework of Fig. 1. We
canseethab(a) = {}, D(b) = {a} andD(c) = {b}. Hence if we consider the normal
clausesv.r.t. argument:, we obtain (in order to be syntactically clear we use uppercase
letters as variables and lowercase letters as constants):

(Upegy d(a) < =d(B)) U (Upey d(a) = Acepp d(C) =000 =10

It is quite obvious that since the argumenhas no attackers i F', thend(a) ¢
HEAD (W 4r) because: is directly an acceptable argument. Therefore any argument
which is attacked by will be directly a defeated argumesug.,argument b. The normal
clausesw.r.t. argumend are:

(UBe{a} d(b) — —d(B)) U (UBe{a} d(b) — /\CeD(B) d(C)) =
(d(b) = =d(a)) U (d(b) — Acep(a) AC)) = (d(b) < —d(a)) U (d(b) « T)

* Given AF =(AR, Attacks) andA € AR. D(A) := {B|(B, A) € Attacks}.
5 We say that defendsA if B attacksA andC' attacksB.



It is important to remember that the conjunction of an empty set is the true Value
thend(b) «— Acep(,) dC) = d(b) «— T. The clausei(b) < T suggests that the
argumenb is defeated. Now, the normal clausest. argument are

(UBe{b} d(c) < ~d(B)) U (/\Be{b} d(c) « /\ch(B) d(C)) =
(d(c) — —d(b)) U (d(c) « d(a))

Then, W, is:

d(b) < —d(a). d(b) « T. d(c) <« —d(b). d(c) « d(a).
acc(a) «— —d(a). acec(b) — —d(b). acc(c) — —d(c).

In order to present our main results, we need the following definition. For each ex-
tensionE of AF' (namely a set of arguments),(E) is defined as follows:

tr(E) = {acc(A)|A € E}
U{d(B)|B is an argument and B ¢ E}

One important result of our work is the following.

Theorem 2. Let AF' be an argumentation framework aritla set of arguments. Then
E is a stable extension of ' iff tr(E) is a stable model af 4 .

Proof (sketch)Let P be¥ 4 » minus the positive rules of this translations. By the results
by Dung, one can immediately see tiais a stable extensions dfF’ iff ¢tr(E) is a sta-

ble model ofP. Then one can verify thatos(RED(P, M)) andPos(RED (U sp, M))
have the same minimal models. The result is then immediate.

The main result of the paper is the following. Given an argumentation framework
AF, then the preferred extensions 4f correspond exactly with the pstable models
of 4. More formally:

Theorem 3. Let AF be an argumentation framework arttla set of arguments. Then
E is a preferred extension of F' iff tr(F) is a pstable model af 4.

Proof (sketch)Lettrl(E) = {d(A)|A is an argument and A & E}. Let P beW,p

minus theacc rules of this translations. By the results by [8], one can immediately see
thatF is a stable extensions dfF’ iff ¢tr1(E) is a minimal model of°. It is well known

that every pstable model is a minimal model of normal program (see [11]). Considering
the restricted syntax of this programs one can prove by contradiction that every minimal
model is also a pstable model. As a consequefide a stable extensions ofF iff
tr1(E) is a pstable model aP. Finally, by the simple negation as failure property of
pstable one can extend our final result fror, P to tr, ¥, respectively to obtain our
desired result, namely thatis a preferred extension ¢fF' iff tr(F) is a pstable model

of Uyur



5 Alternative Semantics

It is well-known that the preferred semantics has some problentsthe treatment of
cycles [13, 3]. The authors in [13] underline:

“In fact, this seems one of the main unsolved problems in argumentation-based
semantics.”

Thus, it is an open research issuefital an appropriate argumentation semantics
which could treat cycles without being affected by the length of the cycles. Based on the
fact that¥ 4 » and pstable models characterize the preferred semantics, we will present
an extension of the preferred semantics. This semantics is based on an alternative codi-
fication of an argumentation framework as a logic program. In particular, we will iden-
tify the arguments which do not belong to a cycles of attacks. These arguments will be
calledacyclic argument

Definition 13. Let AF' := (AR, Attacks) be an argumentation framework antl €
AR. Ais an acyclic argument if there is not a sequence of attalgks. . , A,, such that
1) A= ApandA = A, and 2) foreach, 0 <i <n — 1, A;;; attacksA;.

Essentially an acyclic argument is an argument which does not belong to a cycles of
attacks ofAF. By considering the concept of acyclic argument, it is defined a variation
of the normal progran¥ (A) which makes a distinction between the arguments which
are acyclic and which are not.

Definition 14. Let AF := (AR, Attacks) be an argumentation framework antl €
AR. We define the transformation functi®gA) as follows:
If |[D(A)| = 1 and Ais an acyclic argument:

o(A):=( |J dA)—-dB)
BeD(A)

otherwise
B(A):=( |J dA)—-dB)u( |J da)— A dc)
BeD(A) BeD(A) CeD(B)

Notice that when an argument is acyclic and it has just one attack, it is omitted the
positive clause. The generalization of the transformation fundtitman argumentation
framework is defined as follows:

Definition 15. Let AF' := (AR, Attacks) be an argumentation framework. We define
its associated normal program as follows:

Dap = | ] O(A)Uacc(A) — —~d(A).
A€AR

The extension of the preferred semantics will be defined as follows:



Definition 16. Let AF' be an argumentation framework aiitla set of arguments. Then
E is an acyclic preferred extension dff’ iff ¢tr(E) is a pstable model @b 4 5.

In order to illustrate the acyclic preferred semantics, let us consider the following
examples:

Example 2.Let AF := (AR, attacks) be an argumentation framework, where AR :=
{a,b,c,d,e} and attacks :H{(a, ¢), (¢, b), (b, a), (a,d), (b,d), (c,d), (d,e)} (see Fig.

2). AF is a widely discussed argumentation framework [13, 3]. The interesting point
w.r.t. AF is that, intuitively, we can expect to gefas an accepted argument. However,
none of the Dung’s semantics could infeas an accepted argument. The grounded
extension is empty and the only preferred extension is empty.

Let us consider the normal prograby  which is:

d(a) < —d(b). d(a) « d(c). acc(a) — —d(a).
d(b) «— —d(c). d(b) < d(a). acc(b) — —d(b).
d(c) — —d(a). d(c) < d(b). acc(c) — —d(c).
d(d) « —d(a). d(d) < d(b). acc(d) — —d(d).
d(d) < —d(b). d(d) « d(c). acc(e) — —d(e).
d(d) < —d(c). d(d) « d(a).

d(e) « —d(d)

We can see thab,r has a pstable models which {g(a), d(b), d(c),d(d), acc(e)}.
This means that the argumentation framewAfk has anacyclic preferred extension

which is{e}.
a’w\v
< >d > e
bj/

Fig. 2. An argumentation framework with a three-length cycle.

In following example, it is presented another interesting argumentation framework
where there is a controversial argument.

Example 3.Let AF' := (AR, attacks) be an argumentation framework, where AR :=
{a, b} and attacks :H{(a,a), (a,b)} (see Fig. 3). We can observe that the argunzent

is a controversial argument. In this argumentation framework, we can expect to infer
the argumenb as an acceptable argument, since the only argument that altésks

but this argument is self defeated. Notice that the only preferred extensibh of the
empty set.

In this case the prograt  is:



.

a——> b

Fig. 3. An argumentation framework with a self defeated argument.

d(a) < —d(a). acc(a) «— —d(a).
d(a) < d(a). acc(b) « —d(b).

The only pstable models of this prograby r is {acc(b), d(b)}. This means that the
acyclic preferred extension of the argumentation framewbfkis {b}.

6 Conclusiones

Given an argumentation frameworkF’, we present a normal progra#ry -, such that

the preferred extensions ofF' correspond exactly with the pstable modelsiofy.

Our result is relevant for al least two reasons. First, it shows a very close relation be-
tween two well known NMR approaches. Second, it gives as a mechanism to compute
preferred extensions since it exists already an implementation of the pstable semantics.
We also presented an alternative argumentation semantics to deal with some problems
reported about the preferred argumentation semantics. We only present some interest-
ing examples and this is an open problem, namely how does behave our alternative
semantics?
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