
Generating Gameplay-Relevant Art Assets with Transfer Learning

Adrian Gonzalez,1 Matthew Guzdial,2 Felix Ramos1

1Department of Computer Science, Cinvestav IPN, Unidad Guadalajara, México
2Computing Science Department, University of Alberta

adrian.glez@cinvestav.mx, guzdial@ualberta.ca, felix.ramos@cinvestav.mx

Abstract

In game development, designing compelling visual assets that
convey gameplay-relevant features requires time and expe-
rience. Recent image generation methods that create high-
quality content could reduce development costs, but these
approaches do not consider game mechanics. We propose
a Convolutional Variational Autoencoder (CVAE) system to
modify and generate new game visuals based on their game-
play relevance. We test this approach with Pokémon sprites
and Pokémon type information, since types are one of the
game’s core mechanics and they directly impact the game’s
visuals. Our experimental results indicate that adopting a
transfer learning approach can help to improve visual qual-
ity and stability over unseen data.

Introduction
Game development is a demanding task. Gameplay systems
generally include numerous elements to make them stand
out from similar titles, as well as to provide variety and bal-
ance. On the other hand, designing compelling visual as-
sets that quickly and consistently convey those gameplay-
relevant features (play-style, difficulty, weaknesses, etc.) is
not trivial, especially while striving to preserve project-wide
artistic cohesion. This is also an important consideration
when creating variations on existing content, such as char-
acters’ alternative appearances or skins, enemy sub-classes
(e.g., Mario’s Dry Bones are visual and mechanical varia-
tions of the Koopas), or player customization systems. Most
of these processes are iterative and time demanding, further
increasing development costs (Rebouças Serpa and Formico
Rodrigues 2019).

Automating the visual design process could help to im-
prove asset quality and reduce development time. Recent
general-purpose deep-learning models for image creation
provide high-quality results; however, these approaches are
limited to particular tasks with large training sets, such as
face, character, or landscape generation (Isola et al. 2016;
Karras, Laine, and Aila 2018; Simon 2020). Outside of

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

fully autonomous generation, some approaches identify la-
tent vectors to grant users the ability to explore the possibil-
ities of a model’s learned latent space (Burgess et al. 2018;
Voynov and Babenko 2020). We identify two main issues
with both of these approaches: they require large amounts of
data and their controllability is not influenced by gameplay-
relevant aspects like mechanics.

To study how we can generate images that relay
gameplay-relevant information, we decided to work with
images from the Pokémon series (Nintendo 2019). Pokémon
games have clearly defined gameplay elements that are
present in their art style (the type information), which help
to communicate each Pokémon’s strengths and weaknesses
to players (Liapis 2018). The main Pokémon titles are turn-
based role-playing videogames in which players make their
companions –Pokémon– battle. Understanding each type’s
weaknesses and resistances is crucial for victory.

In this article, we present a Variational Autoencoder
(VAE) for Pokémon type swapping, which modifies the in-
puts’ visual designs to transmit user-defined types in a con-
trollable manner. To combat the problem of low training
data, we adopted a transfer learning approach. Our system’s
intended behavior would change a specified Pokémon’s ap-
pearance to convey a given target type (such as fire or wa-
ter), according to the visual attributes commonly exhibited
by Pokémon of that target type. For instance, if the yellow-
colored electric-type Pokémon Pikachu were changed to
fire-type, its colors would shift towards red.

Related Work
In this section, we briefly discuss computational approaches
to automated or assisted visual design generation. We also
present an overview of mainstream generative models and
their applications to the production of visual game assets,
and how those works relate to our proposed approach.

Procedural Content Generation
Procedural content generation or PCG refers to the cre-
ation of game content using algorithms with limited or in-
direct user input (Shaker, Togelius, and Nelson 2016). More
closely related to our proposal’s objective, there is Visual
PCG (Guzdial et al. 2017), which involves the generation



of visual components for games, and PCG via machine
learning (PCGML) (Summerville et al. 2018). We present
some PCG-based works that create visual game elements
and how a particular game’s mechanics affect their creation
processes.

Pollite (Guzdial et al. 2017) is an artificial abstract artist
based on a convolutional neural network (CNN) that learns
to associate features, like shapes and colors, to emotions,
from tagged real-world pictures. It can create and mod-
ify images to express feelings such as anger or joy. Both
their work and our proposal involve concepts to alter vi-
suals (emotions and type information, respectively). How-
ever, adopting an approach similar to Pollite’s would require
tagging real-world scenes with gameplay elements that, in
many cases, would demand manually annotating them or
creating a system to do it instead, thus reducing the expected
development benefits.

The evolutionary algorithm developed by (Liapis 2018)
modifies Pokémon sprites’ colors based on type informa-
tion. It uses the associations given between color palettes
and the different Pokémon types, e.g., fire type is related
to red tones. Although their approach and ours aim to as-
sist artists in their tasks, their system evolves a sprite’s color
palette and then assigns them a type, in contrast, we propose
to define a type (or types) and then change the Pokémon’s
colors and shape (and even textures) to fit the new type in-
formation. This increases our model’s expressiveness, since
it is not limited to palette swaps, and allows its users to make
specific requests, such as a fire-type Pikachu.

Deep Generative Models
In this subsection, we mention works based on two deep-
learning architectures applied to image generation: Varia-
tional Autoencoders (VAEs) (Kingma and Welling 2013)
and Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014). A VAE consists of two networks: first, an
encoder that generates a mean and a variance of a Gaus-
sian distribution per latent space dimension, then the in-
puts’ latent representations are obtained by sampling from
such distributions, and second, a decoder that reconstructs
those representations back to the input data space (Kingma
and Welling 2013; Larsen, Sønderby, and Winther 2015;
Pihlgren, Sandin, and Liwicki 2020).

Works that use VAEs for visual design in games are un-
common. Nonetheless, VAEs have been employed for im-
age and texture synthesis (Chandra et al. 2017; Kingma and
Welling 2019), and level generation (Guzdial et al. 2018;
Snodgrass and Sarkar 2020). We decided to use a VAE since
points sampled from the latent space near a known input tend
to resemble it, which is useful to create variations of existing
content. However, as stated in (Kingma and Welling 2019),
generative VAEs are known to produce blurry results. There-
fore, we consider exploring GANs as future work.

In (Rebouças Serpa and Formico Rodrigues 2019), the
authors proposed a deep-learning asset generation system
for pixel art sprites for a 2D fighting game using line art
sketches. Their tool, which is built upon the pix2pix archi-
tecture (Isola et al. 2016), produces semi-final sprites that
must be fine-tuned by a human artist, therefore reducing the

production time for each image. Unlike our proposal, they
do not include gameplay-related information in their model.

Artbreeder (Simon 2020), a tool based on a deep convo-
lutional GAN (DCGAN), allows its users to manipulate nu-
merous parameters to adjust the creation of images such as
human faces, landscapes, and characters. Another relevant
DCGAN model is presented in (Horsley and Liebana 2017),
which generates sprites of faces, characters, and creatures
using small amounts of training data. The system developed
by (Jin et al. 2017) permits its users to create anime faces
using a GAN architecture, by providing parameters, such as
hair and eye color and style, to control the image generation
process. However, none of these models explicitly consider
gameplay-specific features to control the generation process.

A notable related work is pokemon2pokemon (Wong
2019), which uses CycleGAN (Zhu et al. 2017) to mod-
ify the color of Pokémon images given a type and shows
positive results. However, it does not modify the Pokémon’s
shape, which might be due to CycleGAN’s difficulties when
handling geometric changes.

Pokémon
The main Pokémon titles are turn-based role-playing games
in which humans command creatures named Pokémon dur-
ing one-on-one or two-on-two battles. Types are a core me-
chanic and there exist 18 types: Bug, Dark, Dragon, Elec-
tric, Fairy, Fighting, Fire, Flying, Ghost, Grass, Ground,
Ice, Normal, Poison, Psychic, Rock, Steel, and Water. Each
type possesses weaknesses and resistances to attacks from
other types. Every Pokémon has one or two types and four
attacks (each with its own type). An attack’s damage de-
pends on the attacked Pokémon’s types weaknesses and re-
sistances. Pokémon who use an attack that matches their
type gain increased effect. This makes understanding types
crucial to win. For instance, fire-type Pokémon are weak
against water-type attacks, but resistant to grass-type ones.
Therefore, conveying the types of a Pokémon through its de-
sign is crucial, especially in the earlier games of the series
in which players were not shown the types of a Pokémon
unless they owned it.

System Overview
Our objective is a system that allows its users to create vari-
ations on existing Pokémon. The users select a Pokémon de-
sign and one or two types, then the image is modified to
make it show distinctive features of the given types.

To achieve this, we employ a convolutional VAE. Our
process to train our VAE is as follows. First, we collect a
set of Pokémon images and their type information for train-
ing. Second, given the lack of data, we use the Anime Face
Dataset (AFD for short) (Churchill 2019) as a source dataset
for a transfer learning approach. Given our final goal of
controllability through Pokémon type information, we as-
sign type labels to the AFD’s images based on how simi-
lar they are to each type’s Pokémon designs. Then, we train
the VAE on the now-labeled dataset. Finally, we transfer the
learned weights from the anime samples and fine-tune them
via training on the Pokémon images.



Type info 1*18

Input
reshape:
32*32*3

Conv_2D:
512 filters

Conv_2D:
1024 filters

Fully connected
8*8*1024+18

Latent
space
128
units

Conv_2D
transpose:
1024 filters

Conv_2D
transpose:
512 filters

Conv_2D
transpose:

3 filters

Type info 1*18Concatenate Split

Figure 1: Architecture of the proposed convolutional variational autoencoder (CVAE). Type information is represented as a
one-hot-encoded vector of size 18. The type information and the last convolution’s result are passed to the latent space’s fully
connected layers.

Dataset Collection

The Pokémon images and type information were retrieved
from (Churchill 2017) and (Subbiah 2018), respectively, and
updated with resources from (Serebii.net 2020). Some el-
ements, such as the Pikachu variations, were omitted to
avoid over-representing features in the set. Our final set con-
tained 974 Pokémon and is available online1. Additionally,
we used the Pokémon regional variants, which are varia-
tions of Pokémon but with different types and slightly dis-
tinct designs (to convey their modified types), to build a spe-
cial test dataset. This set provides us with useful comparison
data for our model. Since a Pokémon can have one or two
types, and there exist 18 Pokémon types, we handled type
information as one-hot-encoded vectors of size 18, and used
0.5 in two positions for Pokémon with two types. We exper-
imented with a one-hot encoding for types, but found it less
effective for our needs.

All images were resized to 32*32 pixels using bicubic
filtering, the same size as in (Krizhevsky 2009), and con-
verted to the Hue, Saturation, Value (HSV) format, like in
(Liapis 2018; Lim, Liapis, and Harrell 2016). Since dark-
colored Pokémon were showing poor results, we opted to
use four different background colors for each sample: black,
white, and two random noise backgrounds (for training sam-
ples only). As in (Rebouças Serpa and Formico Rodrigues
2019), we only used horizontal flips for data augmentation;
thus, we had eight images per Pokémon, for a total of 7204
instances in our dataset.

Given that the results obtained with the Pokémon im-
ages were not sharp nor detailed enough in initial tests, we
adopted a transfer learning approach using a dataset that
shared some visual traits with our target domain. Pokémon
designs resemble some Japanese manga and anime styles;
hence, we decided to work with the Anime Face Dataset
(AFD) (Churchill 2019), which contains about 63,000 illus-
trations of anime-style character faces. We augmented these
by flipping horizontally as well.

1https://github.com/EtreSerBe/PokeAE

Transfer Learning Process
The AFD does not possess type information, which is crucial
for our intended system. To provide the AFD with the types
required for the transfer learning process, and to ensure that
the distribution of the types in both datasets was equal, we
did the following: first, we obtained the mean HSV value
for each of the 18 Pokémon types, considering only non-
background pixels in each image. Second, for every element
in the anime set, we calculated the mean HSV value of its
pixels and computed its mean squared distance with respect
to each of the types’ average HSV values. Third, we used
these distances as preferences (the lowest one being the most
preferred), and then employed the Gale-Shapley algorithm
(Gale and Shapley 1962) to assign the types. In the current
implementation, each image was given only one type.

We decided to use a VAE architecture because they can
reproduce given inputs with slight modifications. This be-
havior is beneficial to our goal since we want the modified
designs to be recognizable as variations of the original one;
thus, some of the source’s characteristics must be preserved,
and the changes made should be enough to convey the new
type information.

The proposed convolutional VAE (CVAE) model is shown
in Figure 1. It is similar to the CVAE shown in (Tensorflow
2020) but adapted for HSV format, and the type informa-
tion is handled like the level design pattern labels used in
(Guzdial et al. 2018). Our model receives the images in HSV
format plus the vector of type information. The model’s en-
coder consists of two convolution operations (512 and 1024
filters respectively) with 2x2 filters and 2x2 strides (instead
of max-pooling (Horsley and Liebana 2017)). The filter sizes
are small because the resulting images lacked detailed fea-
tures (cloudiness). The second convolution’s output and the
given type information are fed to the two fully connected
layers with 128 units each for the latent space (mean and
standard deviation). The decoder takes a vector of size 128
as input, which is passed to a fully connected layer of size
8*8*1024+18; after that, we split the last 18 values to recon-
struct the type information. The remainder is passed through
two deconvolutions (Zeiler et al. 2010) with 1024 and 512
filters, respectively. Finally, it passes to another deconvolu-



tion with only three filters for the output image’s HSV val-
ues. We used the Adam optimizer, and our loss function was
the reduced mean of the sum of the cross-entropy and the
Kullback-Leibler divergence, as proposed in (Kingma and
Welling 2013). All layers’ activation functions were leaky
relu, except for the latent space, which was linear, and the
output’s activation, which used relu.

The model was trained first on the AFD with the added
type information. The initial training stage consisted of 10
epochs with a learning rate of 0.0001 and a batch size of
128. In later stages, we fine-tuned the model by decreasing
the learning rate to 0.00001 and training for 50 more epochs.
Then, we fine-tuned the model on the Pokémon dataset, with
a learning rate of 0.0001. We trained with a batch size of 256
for three rounds of 100 epochs each, with learning rates of
0.00005, 0.00002, and 0.00001, respectively. The low learn-
ing rates were used so the convolutional filters learned from
the anime samples did not change abruptly, as they would
lose the benefits of transfer learning.

We randomly split the Pokémon dataset into 6616 training
instances and 588 test instances, with 827 and 147 differ-
ent Pokémon, respectively. Our type-labeled AFD contains
125,130 training images and only 2,000 for testing. To be
used as a baseline for comparison, we trained another in-
stance of our model using only the Pokémon data. It was
trained for 50 epochs with a learning rate of 0.0001 and a
batch size of 128. Later, we fine-tuned it by training for ten
rounds of 50 epochs each, with a batch size of 256.

Evaluation
The evaluation is focused on measuring our system’s out-
puts’ visual quality (since the Pokémon must be detailed
enough to be recognized as the one given as input), and con-
trollability based on the type information set by the user. We
performed three evaluation tasks. To determine the gener-
ated images’ quality, we compared them to the input images
provided, over both test and train sets. We used two compari-
son metrics: Mean Squared Error (MSE) in the RGB images
and Structural Similarity Index (SSIM) (Zhou Wang et al.
2004), in YUV format, with filter size=11, filter sigma=1.5,
k1=0.01, and k2=0.03.

On the other hand, the procedure to evaluate the control-
lability or type-swap task consisted of setting the type for
every sample to a single target type and passing them to
the system, instead of their original types. This process is
shown in Figure 2. Note that only one type was used since
the anime dataset samples were only assigned one type each.
We tested this with four types: fire, grass, water, and fairy.
We used the first three since most of the Pokémon of those
types are red, green, and blue respectively. We used the fairy
type because it was the second most preferred type during
the anime faces type assignation before applying the Gale-
Shapley algorithm.

Additionally, we performed a third evaluation that in-
volves the previous two and a special regional variants test
dataset. This dataset was composed of in-game variations
of existing Pokémon where they possess different types and
designs (to convey their modified types). The original-to-
regional task consisted of comparing the visual similarity

Figure 2: Type swap task example. The electric-type
Pokémon on the left is modified to show grass (above) and
fire (below) types. The one above shows greener tones that
are common in grass-type Pokémon, while the one below
has bright red colors like many fire-type Pokémon.

Figure 3: Reconstruction accuracy comparison. Results over
training data are of similar quality, but, as the SSIM com-
parison indicates, the images are structurally more accurate
when using the transfer approach.

between the regional variants’ images and our system’s out-
put after type-swapping their non-regional versions to the
variants’ types.

Results
The Pokémon reconstruction visual quality scores are shown
in Tables 1 and 2. For the MSE results in Table 1 lower is
better, and the transfer learning model consistently outper-
forms the non-transfer one. For the SSIM results in Table 2
higher is better, which indicates at least a 1% increase in vi-
sual similarity to the inputs when using the transfer learning
approach, even though the two datasets are vastly different.
Note that for all of this article’s figures all images shown, in-
cluding the Pokémon inputs, were resized from 32x32 pixels
to 128x128 using the nearest neighbor method. An example
of both systems’ outputs is presented in Figure 3. Both mod-
els present blurry outcomes, a known drawback of autoen-
coders, which will be improved in future work.

Initial type-swap task outcomes were barely distinct from



Model version Test Train Test and train
Transfer learning 0.03216 0.01409 0.01692

Non-transfer 0.03349 0.01438 0.01733

Table 1: Image comparison between actual Pokémon and re-
constructed Pokémon images using Mean Squared Error.

Model version Test Train Test and train
Transfer learning 0.3940 0.6496 0.6109

Non-transfer 0.38361 0.6268 0.5895

Table 2: Image comparison values using the Structural Sim-
ilarity Index (SSIM).

the inputs. To make them more evident, we increased the
type vector’s magnitude from 1 to 20. Representative re-
sults of the type-swap task are shown in Figures 4, 5, and 6,
but the ones for fairy-type were omitted because no consis-
tent changes were noticeable. The lack of changes may have
been caused by the large number of AFD’s images that pre-
ferred the fairy type but were reassigned to another one by
the Gale-Shapley algorithm (13717, which is 10.88% versus
the final 4.05% or 5109). This reassignment likely caused
several images’ fairy-like features to be ignored.

In Figure 4, the non-transfer model generates more evi-
dent visual changes. However, its effects can be uncontrol-
lable and make it difficult to recognize from the original,
which might be caused by the amount of variety of samples.
Both models’ results showed the expected red colors that
most fire Pokémon possess, but the transfer learning one also
presented some unexpected vivid green tones, likely due to
how the types were assigned to the AFD’s images.

In Figure 5, both models presented noise on the white
background during type swap experiments, especially with
type vectors of large magnitude. The transfer learning
model’s results present the expected green coloring. On the
other hand, the baseline model generated very noisy im-
ages. Several AFD’s samples have white background, which
might explain why the transfer approach had less isolated
pixels in this experiment.

Finally, in Figure 6, the non-transfer model’s results
present considerable changes, but also noticeable artifacts.
The transfer model’s outputs over testing data were slightly
more blue, but did not show the expected blue tones when
using red or yellow Pokémon. This problem could be caused
by the small number of AFD’s images labeled as water-type
before the Gale-Shapley algorithm was used (about 2000).

Model version MSE SSIM
Transfer learning 0.1000 0.1704

Non-transfer 0.0952 0.1633

Table 3: Original-to-regional visual quality task results. The
transfer learning version presents slightly less pixel-wise er-
rors but higher structural similarity with the regional vari-
ants.

Figure 4: Fire type swap task results. The non-transfer model
generates more evident visual changes but its effects are un-
controllable. Their original types were: dragon-flying, fire,
and grass-fairy.

Figure 5: Grass type swap task results using white back-
ground samples. Both models had troubles with that back-
ground during type swap tasks. Their original types were:
fire-flying, ground, and water-flying.

That is less than 2% of the samples, compared to the 11.5%
water Pokémon, therefore, that difference was compensated
with anime faces that might not have been suitable as water-
type. While the non-transfer version of the model shows
more evident changes in this task, it also presents consid-
erably more noise, both inside and outside of the Pokémon,
which is not desirable in the final content. Therefore, with
our current results, we argue that pursuing a transfer learning
approach is more suitable if the generated content is aimed
towards the general public, especially when the training data
is scarce. However, we acknowledge that both models’ re-
sults over testing data have plenty of room for improvement.

For the original-to-regional task, the visual quality com-
parison results are shown in Table 3. The scores are consid-
erably lower than for the reconstruction task, in part because
the regional variants not only change colors but also size,
shape and pose. We also present some positive visual re-
sults in Figure 7. We note that changing the fourth Pokémon
(Slowbro) from water-psychic to poison-psychic introduced
the same purple splotches seen in the real regional variant.



Figure 6: Water type swap task results. Their original types
were: fire-flying, fire, and grass-fairy.

Figure 7: Original-to-regional task representative results.
The bottom row elements are existing type-swapped ver-
sions of the Pokémon in the first row. The middle row ones
are our system’s proposed type-swapped designs. The tar-
get types are above each column. The first column shows
darker tones common in dark-type Pokémon, and the third
one seems more white (similar to most ice-types). Their
original types are, from left to right, normal, electric, fire,
psychic-water, and ground.

We illustrate how our VAE interpolates between two differ-
ent Pokémon in Figure 8.

Limitations and Future Work
We identify three crucial aspects to improve our proposed
system. First, we consider that using a different method
to assign the type information to the Anime Face Dataset
could lead to improvements for the type-based controllabil-
ity of the transfer model. This is because one HSV tuple
for each type cannot hold information about spatial or struc-
tural features (for instance, most Flying-type Pokémon have
wings). Moreover, the Saturation and Value channels in the
type were confined to small ranges [0.22, 0.37] and [0.51,
0.69] (in contrast, the Hue values ranged between [0.19,
0.51]), which resulted in undesired type overlaps. Addition-
ally, several images from the AFD have white background,
which causes the type assignment process to favor types with

Figure 8: Interpolation between two different Pokémon’s
latent representations. The fire-type Pokémon on the left
changes towards the electric-type one on the right. This is
useful as we could explore which dimensions affect features
related to each type, to improve the type swap results.

brighter palettes such as fairy and fire.
Second, the current network architecture used is simple.

We argue that exploring other alternatives, such as using
image patches, discriminator modules, or moving to differ-
ent architectures (such as GANs), could lead to better image
quality and controllability results. Third, we require evaluat-
ing how human artists respond to this kind of system, which
will provide us with crucial feedback about future work di-
rections.

On a more distant horizon, we also consider the excit-
ing possibility that this kind of approach could be applied in
games. For instance, it could be used to automatically gener-
ate visual indicators for Pokémon that are affected with spe-
cial status effects, such as burned, frozen, or poisoned, which
are currently only shown as a written text. Visual indicators
like these could help to enhance a player’s understanding of
the game’s mechanics.

Conclusions
We propose a Convolutional Variational Autoencoder
(CVAE) system to modify Pokémon sprites according to a
target Pokémon type. Our experimental results indicate that
adopting a transfer learning approach, using a type-labeled
version of the Anime Face Dataset, can help to improve vi-
sual quality and stability over unseen data, despite the con-
siderable differences between both domains. While the pre-
sented models’ outcomes might be usable during very early
stages of the design process, their quality and controllability
are not yet suitable for game development beyond that point.
However, we expect that this problem will diminish in future
versions of the system.

Acknowledgements
This work was supported by CONACYT through the doc-
toral scholarship number CVU-777880. We acknowledge
the support of the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Alberta Ma-
chine Intelligence Institute (Amii).

References
Burgess, C. P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.;
Desjardins, G.; and Lerchner, A. 2018. Understanding dis-
entangling in -vae.
Chandra, R.; Grover, S.; Lee, K.; Meshry, M.; and Taha,
A. 2017. Texture synthesis with recurrent variational auto-
encoder.



Churchill, S. 2017. Pokemon images dataset. https://www.
kaggle.com/kvpratama/pokemon-images-dataset.
Churchill, S. 2019. Anime face dataset. https://www.kaggle.
com/splcher/animefacedataset.
Gale, D., and Shapley, L. S. 1962. College admissions
and the stability of marriage. The American Mathematical
Monthly 69(1):9–15.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Proceedings of the
27th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’14, 2672–2680. Cam-
bridge, MA, USA: MIT Press.
Guzdial, M.; Long, D.; Cassion, C.; and Das, A. 2017. Vi-
sual procedural content generation with an artificial abstract
artist. In Proceedings of ICCC Computational Creativity
and Games Workshop.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. CoRR
abs/1809.09419.
Horsley, L., and Liebana, D. P. 2017. Building an automatic
sprite generator with deep convolutional generative adver-
sarial networks. 2017 IEEE Conference on Computational
Intelligence and Games (CIG) 134–141.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2016. Image-
to-image translation with conditional adversarial networks.
Jin, Y.; Zhang, J.; Li, M.; Tian, Y.; Zhu, H.; and Fang, Z.
2017. Towards the automatic anime characters creation with
generative adversarial networks.
Karras, T.; Laine, S.; and Aila, T. 2018. A style-based gener-
ator architecture for generative adversarial networks. CoRR
abs/1812.04948.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes.
Kingma, D. P., and Welling, M. 2019. An introduction to
variational autoencoders. Foundations and Trends R© in Ma-
chine Learning 12(4):307–392.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.
Larsen, A. B. L.; Sønderby, S. K.; and Winther, O. 2015.
Autoencoding beyond pixels using a learned similarity met-
ric. CoRR abs/1512.09300.
Liapis, A. 2018. Recomposing the pokémon color palette.
In EvoApplications.
Lim, C.-U.; Liapis, A.; and Harrell, F. D. 2016. Discover-
ing social and aesthetic categories of avatars: A bottom-up
artificial intelligence approach using image clustering. In
DiGRA/FDG #3916 - Proceedings of the First International
Joint Conference of DiGRA and FDG. Dundee, Scotland:
Digital Games Research Association and Society for the Ad-
vancement of the Science of Digital Games.
Nintendo. 2019. Pokemon series. https://www.pokemon.
com/.
Pihlgren, G. G.; Sandin, F.; and Liwicki, M. 2020. Improv-
ing image autoencoder embeddings with perceptual loss.

Rebouças Serpa, Y., and Formico Rodrigues, M. A. 2019.
Towards machine-learning assisted asset generation for
games: A study on pixel art sprite sheets. In 2019 18th
Brazilian Symposium on Computer Games and Digital En-
tertainment (SBGames), 182–191.
Serebii.net. 2020. Serebii.net. https://serebii.net/.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Proce-
dural Content Generation in Games. Springer Publishing
Company, Incorporated, 1st edition.
Simon, J. 2020. Artbreeder. https://artbreeder.com/.
Snodgrass, S., and Sarkar, A. 2020. Multi-domain level
generation and blending with sketches via example-driven
bsp and variational autoencoders. International Conference
on the Foundations of Digital Games.
Subbiah, V. 2018. Pokemon image dataset.
https://www.kaggle.com/vishalsubbiah/pokemon-images-
and-types?select=pokemon.csv.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(pcgml). IEEE Transactions on Games 10:257–270.
Tensorflow. 2020. Convolutional variational autoencoder.
https://www.tensorflow.org/tutorials/generative/cvae.
Voynov, A., and Babenko, A. 2020. Unsupervised discovery
of interpretable directions in the gan latent space. ArXiv
abs/2002.03754.
Wong, R. N. 2019. pokemon2pokemon: Using neural
networks to generate pokemon as different elemental
types. https://www.rileynwong.com/blog/2019/5/22/
pokemon2pokemon-using-cyclegan-to-generate-pokemon-
as-different-elemental-types.
Zeiler, M. D.; Krishnan, D.; Taylor, G. W.; and Fergus, R.
2010. Deconvolutional networks. In In CVPR.
Zhou Wang; Bovik, A. C.; Sheikh, H. R.; and Simoncelli,
E. P. 2004. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image Pro-
cessing 13(4):600–612.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. 2017 IEEE International Conference on
Computer Vision (ICCV) 2242–2251.


