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Abstract  
The paper deals with the circle packing problem which arises in topology optimization for 
additive manufacturing. The problem consists in packing a number of circles of radii within a 
particular range imposed by technical limitations, the packing factor being maximized. A bi-
objective formulation for the problem compromising the packing factor and the maximum 
mechanical stress of parts is suggested. The -constraint method is applied to search for a 
trade-off solution of the problem. A new packing approach based on a modified Apollonian 
circle packing and nonlinear optimization is developed. Numerical examples and graphical 
illustration of results are given. 
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1. Introduction 

One of the most important topics of modern mechanical engineering is reducing weight while 
maintaining specific characteristics of structures designed. Such problems with conflicting criteria are 
related to decision making in a formidable manufacturing process. A key objective of the problems is 
finding optimal geometric shape and topology of the designed product ensuring minimum weight at 
specified strength. To this end, topology optimization methods [1] are used to find the best design 
parameters satisfying the technological and strength constraints and thus providing the objective 
function extremum. When optimizing topology of a structure, the stress level in a particular part of the 
structure can be used as an indicator of ineffective material usage. Ideally, the stress level in the 
structure should be uniform, close to the limiting, but safe value [2]. 

Applying topology optimization methods in mechanical engineering is a newish development in 
the design procedure. The methods received the greatest impetus in their development when it became 
possible to use additive technologies in the manufacturing process [3] instead of classical subtractive 
methods. Additive technologies enable to expand the range of designs for the same product. 

In the last two decades, topology optimization became an active field for scientific research. This 
led to the use of a multidisciplinary approach in the search for solutions to the problems, which use 
the methods of solid mechanics, thermodynamics, biology simultaneously [4]. 

Paper [2] reviews modern topology optimization methods. 
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Currently, the following main methods of topology optimization can be distinguished: SIMP (solid 
isotropic material with penalization), ESO (evolutionary structural optimization), Level-Set (level 
setting method) and their various combinations. One of the most effective applications of these 
methods is in optimizing the topology of continuous structures, i.e. finding the best placement 
location and geometry for holes (cavities) within the modeling area. 

Circle packing problems (CPP) have a wide range of industrial and engineering applications, for 
example, facility layout design, cutting stock problems in the glass, metal, paper, textile and wood 
industries etc.  

As a rule, practical optimization problems have several conflicting objectives. Such problems are 
called multi-objective. Optimization methods for multi-objective optimization problems and its 
applications are reviewed in [5, 6].  

In this paper we first propose a bi-objective formulation for circular-hole based topology 
optimization which takes into account both the packing factor and the maximum mechanical stress of 
parts. A new approach for packing circles based on a modified finite Apollonian circle packing (ACP) 
and optimized homothetic transformations of circles is suggested. Both techniques allow to 
advantageously arrange circles within polygonal parts minimizing material expenses. The -constraint 
method [7] is applied to find out a trade-off circular arrangement. 

In accordance with ACP (see, for example [8]), starting from three mutually tangent circles, next 
circles are added to be tangent to the three circles forming four mutually tangent circles (or tangent to 
the frontier of the container). We modify ACP for taking into account the upper bound of circle radii 
and the minimal allowed distance between the circles. Some circles are allowed to be moved within 
the container and located to positions which give a possibility to enlarge radii of next circles being 
packed.  

The main contributions of the paper are as follows: 
 A bi-objective model of non-standard circular packing problem considering both the 
maximum packing factor and mechanical stress of parts for a topology optimization  
 A new approach for constructing starting points based on ACP 
 New benchmark instances for packing circles with variable radii. 

2. Related papers 

The number of papers concerning CPP goes up and up each year. Paper [9] reviews selected works 
dealing with packing methods and applications for CPP. We make mention of some recent papers [10, 
11, 12]. A powerful tool of solving CPP with unequal circles is treating additional variable metric 
characteristics of circles and/or containers (see, for example, [11, 12, 13, 14]). The best results for a 
set of benchmark CPP instances are continuously updated in the well known website [15]. 

Paper [16] proposes a circular packing model and a fast heuristic algorithm to optimize part 
geometries subject to the DMLS constraints. A feature of the model is that radii of circles are 
preassigned.  

In [9] a model and a numerical solution approach to packing egg-shaped objects with arbitrary size 
and orientation into optimized convex containers is presented. The area of the container is minimized 
The solution strategy is based on the analysis of embedded Lagrange multipliers and nonlinear 
optimization. Within the universal model, circles and ellipses are considered to be special cases of 
egg. 

The ε-constraint method introduced in [7] is often used for solving multi-objective optimization 
problems. The method optimizes only one objective while the other objectives are imposed by limits. 
In [5] the Pareto optimality of solutions obtained by the ε-constraint method is investigated.  

A bi-objective function for packing in a spacecraft module is proposed in [17]. The dimensions of 
the module are minimized and other criteria such as desired adjacency between items and packing 
costs are also taken into account. Paper [18] uses a genetic algorithm for bi-objective topology 
optimization: minimization mass and maximization effective flexural and torsional rigidities. Methods 
for analysis of stress state in parts with different geometries are discussed in [16, 19]. Effective 
methods of nonsmooth optimization for allocation problems are considered in [20]. 



3. Problem statement 

Let  0P  be a polygon given by its vertices 0 0 0( , ),i i iv x y 0 0{1,2,..., }i I s  . We define a 
disconnected polygonal domain of the form 

p

l
l I

P P


 U ,    0lP P ,  pl I ,   l jP P I , {1,2,..., }p Pl j I n   , 
 

where  
2

 ={( , ) : ( , ) 0,  1,2,..., }l ml lP x y x y m M   R    

are convex polygons given by vertices ( , ),li li liv x y  {1,2,..., }l li I s  ; 

( , ) + + 0ml ml ml mlx y a x b y c   , pl I , are normal equations of the edges of lP , pl I . Let us also 

define a collection of circles 
2 2 2 2( , ) {( , ) : ( ) ( ) }q q q q q q qC C v r x y x x y y r      R    

of variable radii qr  and translation vectors ( , )q q qv x y  for {1,2,..., }Nq I N  , 

0 ,qr r r r       ,r  r  are given lower and upper allowed values for qr , r  is the maximal 

possible radius of the circle which can be inscribed into lP , pl I . 

Conditions of packing the circles ( , )q q qС v r , Nq I , into the domain P  are determined as 

follows. 
 Containment the circle ( , )q q qС v r  into the domain P  

*( , ) int ( , )q q q q q qС v r P C v r P  I ,  Nq I ,  (1) 

where * 2 \ intP P Ў  
 Minimal allowed distance between the circles ( , )q q qС v r  and ( , )g g gС v r  

dist( ( , ), ( , )) ,q q q g g gС v r С v r     ( , ) lq g  ,  pl I , 0    (2) 

where 

( , ), ( , )
dist( ( , ), ( , )) min ( , )

q q q g g g
q q q g g g

a C v r b C v r
C v r C v r a b

 
  ,   

( , )a b  is Euclidean distance between points 2,a bR , 

{( , ) : ( , ) ,  ( , ) ,  }l q q q l g g g lq g С v r P С v r P q g     .   

A problem of bi-objective circle topology optimization into the polygonal domain is formulated as 
follows. 

Pack circles ( , )q q qС v r , Nq I , into the domain P  providing containment l  circles into the 

polygon  lP , ,pl I  
p

ll I
n N


    and the distance constraints (2) and maximizing the packing 

factor while minimizing the maximum mechanical stress. 
The packing conditions (1), (2) are analytically described using the phi-function technique [21], 

which makes it possible presenting a mathematical model as the following bi-objective problem: 
max{ ( ), ( )}      (3) 

subject to  W ,   

where ( , )v r  is a vector of variables; 1 2( , ,..., )nv v v v
 is a vector of variable packing parameters; 

1 2( , ,..., )nr r r r
 is a vector of variable radii of circles; function  

2( )
n

q
q I

r


     
(4) 



is the total sum of the circle areas; ( )   is an implicit function which defines the maximum 
mechanical stress depending on the vector v  of center coordinates of circles and the vector r  of radii 
of circles; 

3= { : ( , , , ) 0, ( , ) ,  , ( , ) 0, ,n
qg q g q g l p q q q nW v v r r q g l I v r q I         R

)
 

 0,  , 0,  }q q n q q nr r q I r r q I         

is a feasible region; 
2 2 2( , , , ) ( ) ( ) ( )qg q g q g q g q g q gv v r r x x y y r r        

)
,    

 

(5) 

is
 
an adjusted phi-function of the circles qC  and gC , ( , ) lq g  ;  

1,2,...,
( , ) max{ min { ( ) }}

lp
q q q ml q q

m Ml I
v r v r


        

is a phi-function of the circle qC , nq I , and the set * 2 \ intP P R .  

The inequality ( , , , ) 0qg q g q gv v r r 
)

 
ensures the condition (2) for packing the circles qC  and gC , 

( , ) lq g  , on the minimal allowed distance   and the inequality ( , ) 0 q q qv r   provides the 

condition (1) for packing the circle qC  into the polygon P . 

We note that ( )   and ( )   are compromising objectives. Therefore, our aim is to find a trade-
off solution of the bi-objective problem (3)-(5). 

4. Solution approach 

We use the multistart strategy [22] for solving the circular problem (3)-(5). 

4.1. Solution strategy 

On the assumption that an accepted value of the maximum mechanical stress is tolerable we solve 
the problem by means of the  -constraint method [7] which reduces the problem (3)-(5) to a single-
objective one 

max ( )     (6) 

subject to  W      

 = { ( ) 0}W W        .   

The main objective is maximizing sum of squares of circles to be packed. Continual review of 
mechanical stress is a formidable problem. Of importance is the threshold value   of mechanical 
stress.  

Let us temporarily relax the inequality  

 ( ) 0      (7) 

Then we can evaluate a posteriori the maximum mechanical stress for the obtained topology of the 

domain *
0 1

\ int ( )
n

ii
P C


U  and verify the condition (7) with respect to the local maximum point * . 

If the condition (7) holds true, i.e. *( ) 0     , then a feasible point of the problem (6)-(7) is 

found, otherwise we calculate another local maximum point **  and repeat the procedure until (7) 
will be met. 

We decompose the problem (6)-(7) into l
 
subproblems separately for each polygon  lP , pl I . 

Our multistart strategy involves the following main stages.  

Stage 1. Define a lower bound l
  of the number l  of circles which can be packed into the 

appropriate polygon lP , pl I
 
with the maximum packing factor, using Algorithm 1 based on 

packing equal circles [14]. Form a point *
lu . 



Stage 2. Generate feasible points for the problem (6) starting from the point *
lu  by use of 

Algorithm 2 based on ACP (Apollonian Circle Packing) [8]. Form a point *
lw .  

Stage 3. Search for a local maximum point of the problem (6)-(7) starting from the point 
* * *
1 2

0
, , ..., )( np

w w w   using IPOPT [23].  

Stage 4. Choose the best local maximum point satisfying the inequality (7) found at Stage 3.  

4.2. Solution algorithm 

Let us consider our solution strategy in details. 

4.2.1. Algorithm 1. Searching for a lower bound of the number of circles 

Packing results depend heavily on the number of circles packed and starting points. We make use 
the idea of ACP. According to ACP circles are packed repeatedly touching three other circles [8]. To 
start ACP we first construct an initial configuration of tangent circles. To this end we realize a 

preliminary packing of equal circles with radius r  (if possible). The problem is known as IIPP 
(Identical Item Packing Problem) [24] The circle layout algorithm is based on the models described in 
[14]. 

We consider packing circles into the polygon lP , pl I . Let 
1

1 1

l
l jj

n


    be packed into the 

polygons jP , 1,2,..., 1.j l   Now we pack the circle qC , 1 1q n  . By condition, qr  is bounded 

above by r , that can be, in general, less than the maximal possible radius lr
 , pl I , the circle 

 ( , )q q lC v r  being inscribed into  lP . In this case the center qv  of the circle  ( , )q qC v r  is free to 

move within a polygonal set   
ˆ

l lP P  (Figure 1) ensuring feasible locations of  ( , )q qC v r  in lP . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Packing the first circle into   lP  

 
A random position of the circle center is chosen and then a step-by-step procedure of sequential 

addition of next circles according to the algorithm [14, 25] is carried out. If a circle with radius r  

cannot be packed into lP , we go to Stage 2 (ACP) starting from the circle with the maximal possible 

radius *
lr , pl I . If there are several possible locations for the circle, we choose a location for which 

the circle is tangent to the maximal number of the polygon edges.  
To this end we solve consequently the problems. 

  r  

   lr
  

 lP  

 ̂lP
 



max q kr  ,  *0,1,2,..., lk k    (8) 

subject to 
( ) ( )k k
l lu W  

 

where ( ) ( ) 3( , , )k k
l lq q qu x y r W   R  if 0k   and

 
( ) ( ) 2 3( , ,..., , , )k k
l l

k
q q q k q k q ku x y x y r W 

     R  for 

*1,2,..., lk k ; 
( ) ( ) 2 3{ : ( , ) 0,  1,2,...,k k

l l
k

ml q q q lW u x y r m M     R ,  pl I ,  (9) 

     22 2
1 1 1 1 2 0,  q j q t q j q tx x y y r               

, 1,2,..., ,  ,   j t k j t    *{2,..., }k k , 

     22 2
1 1 0,q j q k q j q k q q kx x y y r r d

              

*1,2,..., ,  {1,.2,.., } }.lj k k k   

 

 

 

A local maximum of the problem (8)-(9) is calculated. If *
q kr r  , then we continue to solve 

problem (8)-(9) for the next k , considering ( )* * * * *
1 1( , ,..., , , , ,0)k

l q q q k q k q k q ku x y x y x y       where 

,q k q kx y   are randomly chosen ( ( )* ( )k k
l lu W ) as a starting point. If *

q kr r  , we stop the iterative 

process. The point  
* * *

*

*

* * * * * * *
, ) 1 1

1

( ( , ,..., , , , , ,..., , )l l l
l

l

q q q k q k q k q k q k
k

u v r x y x y x y r r r 
       



 14442 4443    

is the algorithm output. Then *
lk k , the circle *

lq k
C


 touches at least three circles (or edges of lP ) 

and can be considered as a first circle packed according to ACP (Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Construction of a starting circle configuration for ACP 

4.2.2. Algorithm 2. Generating starting feasible points  

If *
q kr 

 

 is a strict local maximum of the problem (6)-(7), then the circles ,qC *1,...,
l

q q k
C C 

 are 

rigidly fixed forming a “jammed” packing [26]. We pack next circles * 1
,

lq k
C

  * 12
,...,

ll
qq k

C C     

according to ACP until the current radius *
*

1l ASPq k k
r
    where ASPk  is the number of additional circles 

following ACP becomes less than r  (Figure 3). A point  

r  

qr


 

*
*

lq k
r


 

lP  

r

 

qr


 

r  

qr


 

2qС   

*
lq k

С


 

1qС   

qС  



*
*

*

* * * * * *
1 1 1

1

( , ,..., , , ,..., , ,..., )l l l ll

l

q q q q qq k
k

w x y x y r r r r 
     



 14442 4443    

is obtained. The total number of circles packed into lP  is *
ASPk kl l   , the radii values being within 

[ , ]r r  . 

4.2.3. Local optimization 

After having constructed the starting packing for each polygon lP , pl I , we have the total 

number 
p

ll I
n


   of circles to be packed into P . 

We turn to problem (6)-(7), calculate a local maximum point and then construct a starting point 
* * *
1 2

0
, , ..., )( np

w w w  . To solve the nonlinear programming problem we make use of IPOPT solver [23] 

together with the decomposition strategy [15].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Circle arrangement according to ACP 
 

Several local maximum points are computed and ordered in decreasing order of ( )   (see 
problem (6)-(7)) and then one can choose a point meeting (7). The first point in the ordering for which 
the inequality (7) holds true is a trade-off solution of the problem (3)-(5). If there is no a point 
satisfying the threshold value a  (see (7)), new local maximum points are computed or a compromise 

value a   is selected. Calculation of mechanical stress values is not considered in this paper. We 
refer to paper [10].  

As computations show, local maximum points are close to or coincide with the starting points 
constructed according to ACP. 

5. Computational results 

We consider the benchmark geometry presented in [10] and provide new benchmark examples for 
packing circles with variable radii. The dependence of the number of circles packed and the packing 
density on the minimal allowed distance between circles is studied. All experiments were running on 
an Intel Core I5 750 computer. We use the Delphi programming language and the Windows 10 
operation system. Software library IPOPT [23, 27] for nonlinear optimization problems exploiting 
first and second derivative (Hessians) information is utilized.  

Example 1.  0P  is given by 11 vertices 01 (0,0),v   02 (0,9),v   03 (18,9),v   04 (5,28),v   
05 (0,33),v   05 (0,40),v   06 (0,40),v   07 (60,40),v   08 (76,34),v   09 (98,11),v   0,10 (100,6),v   

lP  

qr


 

 

*
*

lq k
r


 

2qС   

1qС   

qС  
* 1lq k

С
 

 

* 2lq k
С

 
 

*+ +3lq k
С  

*
l ACPq k k

С    

+ -1lqС   



0,11 (100,0)v  .  
p

ll I
P P


U , where {1,2,...,5}PI  , vertices of  ,  l pP l I , are 11 (22,31),v   

12 (35,27),v   13 (6,8);v   21 (40,25),v  22 (54,9),v  23 (12,7);v   31 (44,30),v   
32 (68,12),v  33 (59,8),v   34 (42,28);v   41 (42,36),v   42 (63,36),v   43 (89,30),v   34 (73,13);v   
51 (74,37),v   52 (95,37),v   53 (91,31),v   54 (74,35).v   The minimal allowed distance between 

circles is 0;   0.5;  5;r r    

The total number of circles packed into P

 

is 91n   ( 1 2 3 4 515, 23, 14, 31, 8          ). 

Value of the objective in the starting point (ACP) is 0 361.3287( )    and one in the local maximum 

point is * 362.0946  . Illustration of the circles packed is shown in Figure 4. This example is 
relevant to maximizing the packing factor and meaningless in relation to mechanical stress being 
infinite at 0  . 

Example 2. See Example 1. 0.5.   The starting objective value is 0 317.9666( )    and the 

local maximum point is * 319.3224  . Illustration is shown in Figure 5. 66n   

1 2( 11,  19,    3 4 510,  21,  5)      . 
 
 

 
0P  

  
Figure 4: Circle arrangement according to Example 1 

 
 

 
 
Figure 5: Circle arrangement according to Example 2 
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Example 3. See Example 1. 0.75.   The starting objective value is 0 301.0078( )    and the 

local maximum point is * 301.7119  . Illustration is shown in Figure 6. 50n  1 2( 8,  12,     
3 4 58,  17,  5)      . 

Example 4. See Example 1. 1.   The starting objective value is 0 288.9095( )    and the local 

maximum point is * 289.7335  . Illustration is shown in Figure 7. 47n  1 2( 8,  12,     

3 4 58,  14,  5)      . 
The runtime is within 30 seconds for all examples. 
As computational results show, with an increase in the minimal allowed distance between circles, 

the contribution of large circles to the total circle area increases, since it is proportional to the squares 
of the circle radii. Obviously, this leads to a decrease in the number of circles with small radii and an 
increase in the radii of other circles. 

In this regard, the choice of   is of importance. A compromise value is chosen: a too low value 
can lead to poor quality printing due to the technical features of the process, while a too large one 
causes additional material consumption. Furthermore, the secondary objective ( )   can be 

influenced by varying the values of  , r  and r .  
 
 

 
 
Figure 6: Circle arrangement according to Example 3 
 

 
 
Figure 7: Circle arrangement according to Example 4 
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6. Conclusions 

Topology optimization is a key point in additive manufacturing. Circular-hole based layout models 
help to cut down material expenses while meeting strength requirements.  

We formulate non-standard packing problem of circles with variable metric characteristics. The 
proposed bi-objective model takes into account both the maximum packing factor and mechanical 
stress of parts. An efficient packing algorithm based on Apollonian circle packing, nonlinear 
programming and the -constraint method has been developed. The approach allows estimating the 
number of circular perforations needed and search for an approximate solution of the problem 
maximizing the packing factor and following a threshold value of mechanical stress.  

Further research is directed to layout of circular perforations inside a 3D part considering 
balancing conditions [22, 28]. Therewith a more nuanced approach to multi-objective optimization 
should be constructed.  
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