
Contextual Logic Programming for Ontology
Representation and Querying

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

Universidade de Évora

Abstract. The system presented in this paper aims at using Contex-
tual Logic Programming as a computational hub for knowledge modeled
by web ontologies and enable querying that representation. The compo-
nents required to behave as a SPARQL query engine are explained and
examples of semantic integration of different sources are shown.

1 Introduction

The Semantic Web [6] topic currently represents one of the most active and
exciting research areas in computer science. The standard web page provides
data oriented for human comprehension, which means a computer agent cannot
easily reason about that information. The Semantic Web is a natural evolution
of the Internet and, hopefully, will provide the foundations for intelligent systems
and agent layers over the World Wide Web.

One important step towards the fulfilling of this vision is the emergence of
systems that cannot only understand and reason over Semantic Web documents
but also retrieve and process knowledge of multiple information sources. This
represents the motivation and purpose of our work which is to use contextual
constraint logic programming [2] as a framework for Semantic Web agents, in
which knowledge representation and reasoning for ontology documents can be
carried out. As such, we adopted the framework Prolog/CX partly described
in [3] which makes use of persistence and program structuring through the use
of contexts [2]. Throughout this paper, we describe a prototype implementation
of a Semantic Web system with three main components:

– A core that is capable of representing web ontologies,
– A SPARQL agent which can answer SPARQL queries about ontologies,
– A back-end capable of mapping Prolog/CX to SPARQL queries, thereby able

to query external Semantic Web agents, returning the results as bindings for
logic variables present in a Prolog/CX program.

Web Ontology Languages: The Semantic Web is based on existing standard
technologies such as XML, RDF and RDF-Schema [14]. Although RDF Schema
provides additional modeling primitives, like classes and properties, that enable
the hierarchical organization of Web documents, a richer ontology modeling lan-
guage was necessary. DAML-OIL [8] was then taken as the starting point for

the W3C Web Ontology Working Group in defining OWL [15], the language
that is aimed to be the standardized and broadly accepted ontology language
for the Semantic Web [4]. OWL is defined as an extension of a sub set of the
RDF vocabulary and is divided into three species [9]: OWL Lite, OWL DL and
OWL Full.

Query Languages: An open research issue has been the specification of a stan-
dard query language that can access this kind of data. There are a variety wide of
Semantic Web query languages [11], ranging from pure selection languages with
limited expressivity to general purpose languages supporting different data rep-
resentation formats and complex queries. Among all the possibilities, we chose
to follow the W3C working groups proposed standard: SPARQL [17], an RDF
query language and protocol.

The work presented herein is an extension of what was described in [7], we
explain some of the implementation choices and introduce some real world ex-
amples. The remainder of this article is structured as follows: Contextual Logic
Programming is briefly approached in Section 2 and, in Section 3 we discuss the
knowledge representation and ontology querying using Contextual Logic Pro-
gramming. Section 4 describes a possible approach to implementing a SPARQL
agent using the CxLP framework and the issue of querying remote SPARQL
agents from within the CxLP framework is discussed in Section 5. Section 6
presents examples of use for the implemented system. Finally, Section 7 pro-
vides initial conclusions and possible directions for future research.

2 Contextual Logic Programming

Contextual Logic Programming (CxLP) is a simple yet powerful extension to the
Prolog logic programming language which provides a mechanism for modularity.
In CxLP a finite set of Horn clauses with a given name is designated by unit.
Abreu and Diaz [2] provide a revised specification for CxLP, which emphasizes
the OOP aspects by means of a stateful model, allowed by the introduction
of unit arguments. We now informally focus on some aspects of CxLP, namely
parametric units; a more complete specification can be found in [2].

A unit is a parametric module, constituting the program’s static definition
block. Unit descriptor terms can be instantiated and collected into a list to form
a context, which can be thought of as a dynamic property of computations. A
context specifies the actual program (or theory) against which the current goal
is to be resolved. In short, it specifies the set of predicates which is applicable.
These predicates have definitions which depend on the specific units which make
up the context. A more extensive description of CxLP may be found in [2, 3].

GNU Prolog/CX introduces a set of language operators called the context
operators which modulate the context part of a computation.

In a nutshell, when executing a goal G in a context C, a CxLP Engine will
traverse C looking for the first unit u that contains a definition for G’s predicate.

G is then executed as if it were regular Prolog, in a new context that is the
suffix of the C which starts with unit u. Some of the most used operations and
operators in GNU Prolog/CX are:1

Context extension: U :> G, this operation extends the current context with
unit U and then reduces goal G;

Context switch: C :< G, attempts to evaluate goal G in context C, ignoring
the current context;

Supercontext: :^ G, evaluates goal G in the context resulting of removing the
top unit from the current context;

Current context: :< C, unifies C with the current context;
Calling context: :> C, unifies C with the calling context

3 System architecture

The implemented system is divided in three parts: the core, a front-end (FE)
SPARQL agent and a back-end (BE) that maps Prolog/CX to SPARQL queries.
The core system is responsible for representing the ontology, the FE enables the
resolution of queries expressed in SPARQL and the BE allows the core (and the
FE) to query other SPARQL web services. This architecture is represented in
Figure 1. By integrating the core, FE, BE and other Logic Programming frame-
works namely ISCO [3], the system will be able to access several heterogeneous
sources of information: the ontology, other SPARQL agents or web services and
relational databases.

The main objective of the core system is to represent web ontologies with
CxLP tools. After an ontology is transformed into Prolog/CX units, the capa-
bilities of that representation are that of pure Prolog with modular program
structuring. For instance, we can build a front end that acts as a SPARQL web
agent which can receive a SPARQL query over a known ontology, process it
against the internal representation and respond with the solution. This repre-
sentation can also be used to map Prolog goals to SPARQL queries and collect
the results as logic variable bindings. These approaches are further discussed in
Sections 4 and 5.

3.1 Ontology representation

Ontologies are represented using units: there will be one unit that indicates the
elements (classes and properties) of the ontologies, another unit for individuals
and one for each OWL class and property. This is illustrated in Figure 2.

The individuals and their property values are represented in the unit individuals.
This unit stores, for each individual, the class it belongs to and, for each of the
individual properties, its value.

Each class and property is defined in a unit named after the class or property.
Further information about each of this objects, such as hierarchy and restrictions,
can be found in its unit.
1 For a more detailed and formal description, the reader is referred to [2].

Fig. 1. System architecture

The set of known ontologies are represented in a unit named ontologies
which lists the classes and properties of each loaded ontology. Each property
and class listed in this unit can then be accessed in a uniform manner using the
operator />. This operator is defined as a context extension operation, i.e., based
on the unit name it constructs a new context in which to evaluate the goal.

Fig. 2. Ontology representation schema

Ontology Unit This unit represents the ontology information: namespaces, head-
ers, classes and properties. This is done by defining predicates for each case: ns/3,
header/3, class/2 and prop/2. Each predicate contains, in the case of headers
and namespaces, an entry with the ontology name, the respective “abbreviation”
and its value and, for classes and properties, simply the ontology name and the
class or property name.

The information in this unit may be used to query which units belong to the
ontology, thereby providing access to all the individuals in the ontology.

Property Units Each property unit contains the information relative to a specific
property. The type of the property (datatype or object) and, if specified any
other information such as domain and range, property inheritance and property
relations.

These properties also define the method to access its value, given the indi-
vidual name that shall be retrieved previously from the context.

Class Units These units will represent the classes of the ontology and all in-
formation relevant to that class. The information includes restrictions on the
individual properties and class inheritance.

It also includes a predicate class name/1 that provides the name of the
current class. This predicate is used in by the query engine to determine the
class that the query refers to.

Individuals Unit This unit is the unit that contains all the individuals, its prop-
erties and the information about individual relations. The individuals properties
are stored as triples, much in the manner of RDF. These properties are defined
in the predicate property/3. The first argument of this predicate indicates the
name of the individual, the second indicates the property and the third argu-
ment contains the value of the property for that individual. All the individuals,
along with their class, are listed in the predicate individual class/2. Individ-
uals from unnamed classes are not included in this listing: they are only present
in the unit that represents the class. This is done to avoid unwanted repetitions
when querying the individuals that would be generated if the individuals of the
unnamed classes were listed as the other individuals. These individuals are only
available in the predicate individual/1 present in each unnamed class.

There may also be present predicates for defining individual relations, such
as differentFrom/2 and sameAs/2, each with individual names as their argu-
ments. These indicate, respectively, that the individuals referred are different
or the same [15]. The constructor owl:AllDifferent is represented as several
differentFrom statements, each individual present in the constructor will gen-
erate one differentFrom statement relating it to every other individual in the
list.

3.2 Querying an ontology

The most direct way of retrieving the class individuals is to use the goal item/1
as shown in Figure 3. There is also a goal item/0 that has the exact behaviour of
item/1 but has no direct arguments, this predicate, when used with the predicate
units in the query will allow to access the property values ignoring the name of
the individual.

The item/1 goal binds, by backtrack, its argument to each individual of the
class. There is also the possibility of querying all the individuals in the ontology
by omitting a class in the query.

The value of the properties can be accessed by including the unit that rep-
resents the property in the context query. This enables selecting only a subset

1 | ?- ’IceWine’ /> item(A).

2 A = ’SelaksIceWine’

Fig. 3. Accessing an individual of a class

of the properties. The argument of the property unit will be bound to the value
of the property for the corresponding individual, as shown in Figure 4.

1 | ?- ’IceWine’ /> hasFlavor(F) :> hasBody(B) :> item(I).

2 B = ’Medium’

3 F = ’Moderate’

4 I = ’SelaksIceWine’ ?

Fig. 4. Accessing individuals and properties

3.3 Units for refining ontology queries

We propose a number of units which may be used to form queries. We proceed
to briefly describe them.

individual/1 Including this unit in the context unifies its argument with the
individual name in the same manner as item/1. Using this unit provides a
more explicit query, by indicating we want the individual name and calling
the goal item/0 instead of item/1. Use of this unit is shown in Figure 5.

1 | ?- /> individual(I) :> item.

2 I = ’WhitehallLanePrimavera’ ?

Fig. 5. individual example

class/1 If this unit is included in the context it will unify its argument with the
class of the matching individual. This is useful to determine the class of the
individual when querying the entire ontology, as shown in Figure 6.

property/2 This unit allows to access the properties of the individual without
prior knowledge of its name or to query for the property name based on the
property value. The first argument is the property name and the second the
property value (Figure 7).

1 | ?- /> class(C) :> item(I).

2

3 C = ’DessertWine’

4 I = ’WhitehallLanePrimavera’ ?

Fig. 6. class example

1 | ?- ’IceWine’ /> individual(I) :> property(P,V) :> item.

2

3 I = ’SelaksIceWine’

4 P = locatedIn

5 V = ’NewZealandRegion’ ?

Fig. 7. property example

all/2 Including this unit in the execution context is analogous to using a findall
in Prolog. The first argument is the element and the second will be the list of
the elements in the specified form. This allows to retrieve the set of solutions
for the variables present in the query, as exemplified in Figure 8.

1 | ?- ’Chardonnay’ /> individual(I):> all(I, L) :> item.

2

3 L = [’BancroftChardonnay’,

4 ’FormanChardonnay’,

5 ’MountEdenVineyardEdnaValleyChardonnay’,

6 ’MountadamChardonnay’,

7 ’PeterMccoyChardonnay’]

Fig. 8. all example

optional/1 This unit receives as its argument another unit such as property/2
or a property unit and will succeed with the results if the unit specified in
its argument succeeds. Otherwise it will succeed leaving any variables in its
argument unbound. This is similar to the SPARQL optional statement [17].

3.4 Native Prolog query representation

To make simple queries easier for Prolog programmes, we created custom predi-
cates that encapsulate the contextual queries. The arguments to these predicates
must be defined explicitly after loading the ontology and are follow the conven-
tions:

– Predicate functor is the name of the class
– The first argument is the name of the individual.

The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating the
class for which to generate the predicate (that will be the functor of the predi-
cate) and a list of properties that corresponds to the sequence of arguments after
the individual. This allows the user to choose which properties will be present
in the generated predicate.

The generated Prolog representation is listed in Figure 9.

1 ’IceWine’(A, B, C) :-

2 ’IceWine’ /> optional(hasMaker(B)) :>

3 optional(hasColor(C)) :>

4 item(A).

Fig. 9. generated predicate

This approach is limited because of the fixed arity of the predicates. Some
individuals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have
properties that are not present in the predicate and thus the user is unable to
retrieve its value with these predicates, using this method.

4 A SPARQL agent in CxLP

SPARQL is a Candidate Recommendation for a RDF query language [17]. It
is under continued development towards becoming the standard query language
for the semantic web [11] and although it is mainly used to query RDF graphs,
it can also be used to query an RDF Schema or OWL ontology on the individual
and properties level [13, 16, 17].

SPARQL has no inference engine inherent to the language, it merely specifies
a syntax for the query and a means for returning the intended information.

The developed system is using SPARQL to query an ontology, allowing access
to properties and resulting in individuals and property values.

The implemented SPARQL parser follows the specifications of the language
defined in [17] and the results are returned in XML, the format of which is
specified in [5]. The parser constructs a Prolog/CX context representing the
query; this context is then activated by sending a message to calculate the output
and display the resulting XML form. This specification allows our system to be
easily made available trough a web service.

SPARQL has 4 types of queries: select, ask, construct and describe. The
select query is used to retrieve the values of the properties and individuals. Ask

simply returns a boolean answer depending on the veracity of the query. The
construct and describe are not currently implemented as they would return
data as RDF graphs.

The following sections briefly describe the SPARQL query language, the res-
olution of queries and the XML output of the system.

4.1 SPARQL and mapping examples

The mapping process (SPARQL parser) transforms a SPARQL query into a
Prolog/CX context. The execution of this context will bind the variables present
in the query with the results.

The context has a similar structure to the SPARQL query, consisting of the
following parts, each of which being a parametrized unit:

prefix indicates the default prefix;
from specifies the RDF dataset to query;
select lists the variables that should be present in the output;
where restriction conditions;
Modifiers if present, these modifiers will change the number of results (limit

and offset) and/or their order (order by).

The parser receives as input a SPARQL query, shown in Figure 10, and
returns the context to be executed (Figure 11).

1 SELECT

2 ?flavor ?body

3 WHERE {

4 ?t :hasFlavor ?flavor .

5 ?t :hasBody ?body .

6 }

Fig. 10. Query example (simple select)

4.2 Query resolution system

The query resolution is triggered by evaluating the goal item in the context
returned by the mapping process. This is akin to sending the message item to an
object. The core unit in this process is the unit triple/1 which is responsible for
instantiating the variables in the query by accessing the internal representation
of the ontology.

The Modifiers will alter the query results, their order or number. If no modi-
fiers are present in the query the unit all will be included in the context meaning
that all the possible bindings will be returned.

1 [all,

2 where([set([

3 triple(A,hasFlavor,B),

4 triple(A,hasBody,C)])

5]),

6 select([flavor=B,body=C]),

7 vars([flavor=B,body=C,t=A]),

8 defs]

Fig. 11. Results of the query example

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

triple/3 The core unit in this process is the unit triple/3 which is responsible
for instantiating the variables in the query by accessing the internal represen-
tation of the ontology. The implementation of this unit is shown in Figure 12.
It generates one query to the system core for each property that appears in the
SPARQL query. The pattern in line 3 of Figure 11 will generate the following
query:

/> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual (in this case the variable I). The arguments of the unit property are
the name of the property being queried and the value of that property for the
returned individual. Using the property unit to query the internal representa-
tion has the advantage of being able to perform the query using a variable in
the position of the property name (instead of “hasFlavor” in the example).

The results of this query will be bound to the representation of the variables
present in the SPARQL query.

1 :- unit(triple(S, P, O)).

2

3 item :-

4 /> property(P,O) :> item(S).

Fig. 12. Unit triple

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

“A pattern solution can then be defined as follows: to match a basic graph
pattern under simple entailment, it is possible to proceed by finding a map-
ping from blank nodes and variables in the basic graph pattern to terms in the
graph being matched; a pattern solution is then a mapping restricted to just the
variables, possibly with blank nodes renamed. Moreover, a uniqueness property
guarantees the interoperability between SPARQL systems: given a graph and a
basic graph pattern, the set of all the pattern solutions is unique up to blank
node renaming.” in [17].

Each basic operation is represented as a unit.
All the units that are present in the context generated by the SPARQL parser

will answer to the goal item/0 or item/1 (in case of the unit returning a bound
solution). Each unit will then perform the operation it represents based on its
arguments and on the result of the parent context.

The units that alter the query results (the Solution Modifiers), such as order
by, limit and distinct fetch all the bound variables from the parent context
collecting them in a list. They them perform its operation on over the elements
of the list thus achieving a new list with the results. This will be the final list to
be presented as XML.

5 Mapping Prolog to SPARQL Queries

The purpose of having web ontologies represented in a logic contextual form is
to create a mechanism to access and work over those ontologies. So far, an ontol-
ogy mapping engine for local reasoning was introduced. However, for increased
flexibility and functionality, one could consider of merging the reasoning of the
system internal knowledge base with external ontologies provided by external
Semantic Web services. To achieve this goal, a back end was developed that is
capable of communicating with SPARQL web agents. This enables writing Pro-
log/CX programs to reason simultaneously over local and external ontologies.

5.1 Architecture

The back end engine provides additional means to query external Semantic Web
services in SPARQL. Although it can be viewed as a single independent com-
ponent, the objective is to integrate it with the system in a manner that allows
a programmer to reason over external and internal ontologies using the same
query syntax and declarative context mechanics as the internal system reason-
ing. This will allow the system using programmer to query transparently internal
and external ontologies and merge their results in the same program.

To achieve this level of functionality, a Prolog/CX to SPARQL engine was
developed that has the following level of execution capability:

– Translates a Prolog/CX goal into SPARQL;
– Sends the SPARQL query to the indicated Semantic Web SPARQL service;
– Fetch the XML result file, parse it and return the solutions as Prolog variable

bindings using the Prolog/CX backtrack mechanism.

It is necessary to provide additional information in order to query the ex-
ternal agent if the SPARQL protocol [18] is to be used. This includes, among
others, the url of the service, the data format of the response and, possibly, an
ontology URI. The latter means that external agents may have capabilities for
querying ontologies from any given Internet location, such as the XML Armyknife
Semantic Web service [10] that is used throughout this section to illustrate the
back end functionality. The response format can vary from different types like
simple HTML for Internet browsing purposes, or the SPARQL Query Results
XML Format [5] for agents like ours.

5.2 Querying an external SPARQL agent

Accessing different Semantic Web external agents rises the problem of imple-
menting a unique interface that can communicate with all of them. The core
of this problem has been addressed by the W3C group, which is working on a
SPARQL protocol for web agents communication [18]. This W3C Candidate Rec-
ommendation describes means of conveying SPARQL queries from query clients
to a SPARQL query processing service and returning the query results to the
requesting entity. Therefore, and after finding some SPARQL agents that rely on
this protocol [10, 1], we decided that at this point, for demonstration and proof
of concept purposes, the back-end would also rely on the interface communica-
tion described on this document.

Communication and query solutions The execution of a back-end query
can be described as a three step process. The first is the process of mapping a
Prolog/CX query to a SPARQL. The query illustrated in Figure 10 originates
the following SPARQL query (Figure 13):

1 SELECT ?id ?hasMaker ?hasColor

2 WHERE { ?id :hasMaker ?hasMaker. ?id :hasColor ?hasColor.}

Fig. 13. generated SPARQL code

After the Prolog/CX translation to SPARQL constructs a query, a communi-
cation process must be carried out between the back end and the Semantic Web
sparql service that is to be used. The back end implements a simple connection
model divided into the following steps:

1. Establish connection
2. Send query

3. Receive the response
4. Close connection

After correctly encoding the SPARQL query, the back end will start the
communication process with the external agent. This represents the Establish
connection item in the above list and includes the validation of the the Web
service:

– Open the communications via C sockets;
– Verify if the external host is up and ready for communication.

After the connection is established, the query is then sent through the socket.
If everything went well, the external agent response is then received and flushed
into a XML file. Then the connection is closed. This represents the remain items
in the back end query execution list.

After receiving the response and closing the connection, the response is saved
locally in a XML file and the process returns to the Prolog side, where the file
is parsed and processed. The XML format that represents the solutions to the
query follows the specification described in the SPARQL Query Results XML
Format [5]. This file, which contains all the existing solutions for the query, is
then parsed and converted into a Prolog List. Finally, the back end will provide
each logic solution to the query present in the response file, one at a time if more
than one are available, via the backtracking mechanism.

6 Examples

6.1 Using SPARQL to query a relational database

By using ISCO framework we enable to use SPARQL to query any database. The
database used as test in the query example shown in Figure 15 is the database
of Universidade de Evora’s Information System (SIIUE) [12]. The database con-
tains data relative to the implementation of Academic services. The relation
used to query in Figure 15 is represented in Figure 14. It is necessary to define
that each field name is prefixed by the name of the relation and an forming:
RelationName FieldName in order to be able to represent fields with the same
name from different relations. This way, the :student number query in line 2 of
Figure 15 represents the field number of table student. The name of the individ-
ual, that will be mapped to each tuple in the relation, is the Postgresql internal
OID2 of the tuple.

This feature is implemented as an example and there are several improve-
ments to be made in order to make it reasonably efficient. Some are, for instance:
2 The OID is a unique number across the entire installation automatically

assigned to a row and that identifies it. PostgreSQL uses OIDs to link
its internal system tables together. Further information can be found in
http://www.postgresql.org/docs/8.2/static/datatype-oid.html

1 mutable class student.

2 id: individual.id. unique.

3 number: int. unique.

4 institution: institution.id.

Fig. 14. ISCO definition of the relation aluno

1 select * where {

2 ?a :student_number ?c .

3 ?a :student_institution ?b .

4 FILTER (?c > 300 && ?c < 500)

5 }

Fig. 15. using SPARQL to query a relational database

– allow to query more than one relation field. As the query is being translated
to the ISCO language it is performing one query to the database for each
field present in the SPARQL query. This could be improved by detecting
patterns in the query and rewriting it to minimize the number of queries to
the database;

– enable filtering the elements before they are retrieved from the relation. In
its current stage all the elements are gathered from the relation being queried
and filtered later in the filter statement.

6.2 SPARQL Web service

As another example of the developed system an example web interface was built
in order to allow answering of SPARQL queries over the web.

This has a simple user interface in which users can specify the queries and
retrieve the results.

There is also available a version in which the query is specified as part of the
URL and the results are then returned to the browser or agent. This form of
input is mostly aimed for automatic use by a SPARQL agent.

This form of query method has some shortcomings:

– the core system has to load the ontology for each query it is made (which
takes some time);

– the ontology over which the query will be performed is already integrated
with the system but, in this case, there is only the possibility of querying
the loaded ontology.

The implemented example works under the second assumption. The ontology
is integrated with the system and the SPARQL query will be performed over
that ontology.

7 Conclusion

The system we described and implemented provides a representation abstraction
layer for web ontologies that can be accessed by logic programs.

The selected web languages, SPARQL and OWL, have been shown to be
appropriate for the scope of our work: to build a working proof-of-concept system
which allows us to experiment with Contextual Logic Programming to represent
and query ontologies in a way which draws on Prolog’s expressiveness as well as
the powerful composition mechanisms of CxLP.

We illustrated how this representation can be used to develop Semantic Web
agents by describing two components: a front-end and a CxLP back-end. There
are aspects of other, existing systems that will benefit from the ability to query
SPARQL sources: for instance, we are working on integrating the SPARQL back-
end into the ISCO [3] system.

Future Work Supporting a well-defined OWL sublanguage is necessary in order
to provide reliable, trusted semantic web agents which will be usable in wider
application sceneries. We are working towards providing provably correct OWL
DL compatibility at the reasoning level, over the internal representation. This
issue is orthogonal to the rest of the work described herein but it is essential if
we expect the system to gain acceptance in the design of SW agents.

The implemented SPARQL agent currently does not cover the full language
specification. Although full SPARQL language support is not our immediate
intended purpose, we are working towards providing complete support for it.

Another important goal is to provide the core with capabilities to work with
several ontologies at a time. Although it is not relevant for the purpose of this
work, it is an essential feature for any Semantic Web application software and
we purport to use CxLP’s versatile modularity mechanisms to effectively deal
with this issue. This aspect will be the goal of upcoming work.

References

1. SPARQler. http://sparql.org/sparql.html, 10 October 2006.
2. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In Catus-

cia Palamidessi, editor, Logic Programming, 19th International Conference, ICLP
2003, Mumbai, India, December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, pages 128–147. Springer-Verlag, 2003. ISBN 3-540-
20642-6.

3. Salvador Abreu and Vı́tor Nogueira. Using a Logic Programming Language with
Persistence and Contexts. In Masanobu Umeda and Armin Wolf, editors, Declar-
ative Programming for Knowledge Management, volume 4369 of LNCS, Fukuoka,
Japan, 2006. Springer.

4. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press, 2004.

5. D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C recom-
mendation, W3C, April 2006. http://www.w3.org/TR/rdf-sparql-XMLres/.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5), 2001.

7. Nuno Lopes Cláudio Fernandes and Salvador Abreu. On querying ontologies with
contextual logic programming. OWL: Experiences and Directions Third Interna-
tional Workshop, June 2007.

8. DARPA. http://www.daml.org/. DAML+OIL, 3 February 2007.
9. M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler, I. Hor-

rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/TR/owl-ref/.

10. Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.

11. Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Got-
tlob. Rdf querying: Language constructs and evaluation methods compared. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler,
editors, Reasoning Web, volume 4126 of Lecture Notes in Computer Science, pages
1–52. Springer, 2006.

12. Joaquim Godinho, Luis Quintano, and Salvador Abreu. Universidade de Évora’s
Integrated Information System: An Application. In Hans Dijkman, Petra Smulders,
Bas Cordewener, and Kurt de Belder, editors, The 9th International Conference of
European University Information Systems, pages 469–473. Universiteit van Ams-
terdam, July 2003. ISBN 90-9017079-0.

13. Jena. A Semantic Web Framework for Java. http://jena.sourceforge.net/, 30
November 2006.

14. Frank Manola and Eric Miller. Rdf primer. W3C Recommendation, World Wide
Web Consortium, February 2004.

15. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, World Wide Web Consortium, February 2004.

16. Protégé. Free, open source ontology editor and knowledge-based framework.
http://protege.stanford.edu/, 30 November 2006.

17. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C, 2006.

18. W3C. SPARQL Protocol For RDF. http://www.w3.org/TR/rdf-sparql-protocol/,
6 October 2006.

