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Abstract 
Filtration and interpolation problems play an important role in the theory of complex 

technical object control. To improve the operating efficiency control of these objects, it is 

necessary to improve the mathematical models of the control objects. A large number of 

objects can be attributed to stochastic discrete objects with limited delay and, under a priori 

uncertainty, to stochastic discrete objects with unlimited delay as well. It is important to 

substantiate the application of stochastic analysis methods to solve problems of filtration and 

interpolation of systems with delay. The problem of conditionally optimal filter design is 

substantiated. 
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1. Introduction 

In the last quarter of the last century, due to the increase of the level of requirements for reliability 

and preciseness of the complex technical systems functioning, they became more complicated in their 

structure and more sophisticated in their control systems. That was the time of significant advances in 
aviation and cosmonautics. It is natural that exactly such complex systems headed the development of 

scientific theory. Exactly in aviation and cosmonautic systems, advanced scientific inventions were 

implemented. That was the time of arising new control theories mainly dedicated to spacecraft. That 
time refers to a range of crucial changes: the first instrument landing systems, the latest approaches to 

information exchange arrangement in the onboard hardware of aircraft, the new orbital space stations, 

the attempts of docking of spacecraft and orbital stations in space (the first attempts were not 

successful), reusable space systems, etc. All of them had a rather complicated structure and tight 
connections between their elements and had a significant impact on the environment. New specific 

approaches to the mathematical description of a scenario for such systems appeared as well as a 

theory of optimal control and then adjustment control, etc. 
Problems of the mathematical description of complex technical system operating and their 

control are described in various sources, which offer the use of various approaches and theories [1–4]. 

As we can see, the range of the systems is quite diverse: the first steps were directed to the linear 
continuous dynamic systems, and today we move ahead with new fuzzy controllers for steel-smelting 
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furnaces, unmanned aircraft control, and the up-to-date network technology. At present time, the 

theory of functional stability has become widespread [5–9]. The theory arose at the cross-section of 
many approaches to ensuring the stable functioning of complex technical systems: improvement of 

reliability of the system operation, improvement of repairability conditions, the possibility of recovery 

of some features, and self-adjustment. Such systems are supposed to be self-controlled and self-

adjusted, redistribute tasks within a system to achieve the set tasks. The peculiarity of this theory 
application is a number of requirements to be met by the system for its application. It is important to 

take into account the costs both of hardware and software. In fact, on boards of aircraft and cosmic 

systems, the hardware redundancy was used, i.e. there were 3-4 sets of the onboard control unit 
blocks. 

Concerning software of computing complexes, booting of processors and memory of onboard 

computers did not exceed a third of all capacities. Such an approach to arrangement allowed us to do 
maneuvers and to add the new features to the complexes. For the years of its existence, this theory has 

spread from space systems literally to all shears of industry. Especially, it has found application in 

intellectual control systems of network technology, including the control of individual or group 

unmanned aircraft. In [10–15], it was shown its usage possibility for complex technical systems with 
hardware or software operating at a loss. An important feature proved to be the ability of a system to 

self-check and find out failures in its operation. In this way, the theory of recovery control appeared. 

The essence of this theory consists in an ability of a system to change the program of its operation, 
and when necessary, to change the interconnections between the elements to attain the set goal [16]. 

For instance, when an airplane's elevator fails, it is possible, using the engine thrust and the wing 

mechanization, to cope with a change in flight altitude. With this, it is necessary to take into account 
that in such a case, the airplane response for the change of commands of control will be definitely 

different than in its ordinary operation. The main indicators of the transition processes will be 

significantly exceeded; therefore there is the expediency of additional investigations of the limits of 

application of such theories. Also, in [16–18], the study of the application of recovery control theory 
to functionally stable systems was carried out and positive outcomes of preliminary studies were 

revealed. An important element of any theory is the modeling apparatus and model parameter 

estimates. 
First, the simple linearized differential equations were used as mathematical models, and then a 

stochastic component was added, which made it possible to partially take into account the 

peculiarities of real systems functioning. Here, it should be noted that the complication of 

mathematical models being used in the control systems necessitates the search for compromises [17]. 
That is, it is necessary to find a compromise between the accuracy of the system operation 

description, the time devoted to the operations, and the onboard capacities for the realization of the set 

tasks. 

In the general case, stochastic differential systems with a state vector Z, characteristic functions 

a(Z, t), b(Z, t) during a stochastic process W can be described by the equation: 

 ( , ) ( , )dZ a Z t dt b Z t dW . (1) 

In previous studies [17], there was obtained the equation for the conditionally optimal extrapolator 
based on expansion in terms of Hermite polynomials: 
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It has been also concluded that it is possible to evaluate the accuracy of filtering extrapolation 

processes and comparing different filters based on the proposed mathematical apparatus. 

With the widespread use of computerized control systems, stochastic discrete systems have 

developed significantly. On the sampling interval T at the instant of time t(k) = kT, the state vector 

values Zk and the random vector values Vk with the function k (Z, V), it is advisable to describe using 
the difference equation: 



1 ( , )k k k kZ Z V      ( 0,1, )k . (3) 

The state vector Zk has an initial value Z0 and does not depend on the sequence that describes the 

domain of  states of the system {Vk}. 



In the research [18], there were considered the peculiarities of these processes for simple discrete 

and discrete-continuous systems. Using the method of quasi-moments and orthogonal expansions, it is 
also possible to solve the problems of filtering and extrapolation for such systems. By their notation, 

the following solutions correlate with previous studies 
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Barbashin E. A. and Galiullin A. S. [19–21] have worked out the solution for such systems. 
Modern complex dynamic systems, such as aircraft systems, electromechanical systems, etc., have 

a more complex structure. They include setters, calculators, and actuators, thus it is expedient to 

describe them using stochastic discrete systems with delay (limited or unlimited under uncertain 
operating conditions). 

The application of such models to determine the control effects was shown in [22–24]. 

2. Description of the mathematical model 
2.1. Models of stochastic systems with delay 

The randomness of the complex system functioning processes complicates significantly the choice 

of the mathematical body for processes and interconnections description within the system as well as 
between the system and the environment. Let us first consider models of stochastic systems with 

unlimited delay. All the above models are defined by the Markov random processes. In the case of 

the Markov process being unable to serve as a corresponding mathematical model of the system with 
a consequence, often a more general stochastic differential equation is an adequate mathematical 

model of the system. 

 
0 0

( , ) ( , ) .t t
t tdZ a Z t dt b Z t dW  (4) 

In contrast to (1), a and b are functionals of Z(τ),  0t t , i.e, functions of an elementary event 

ω, measurable for each  0t t  with respect to -algebra induced by the values of a random process 

Z(τ) (or, what is the same, by the values of a random process W(τ)) corresponding to all  0[ , ]t t . By 

0

t
tZ , in equation (4) the value set Zτ of the Z(τ) process for   0[ , ]t t  is denoted,    

0 0{ : }t
tZ Z t t . 

These models are called stochastic systems with unlimited delay. 
As an example of the simplest such model, equation (4) can serve with 
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were ( )t  is determined by the following integral equation: 
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t A t Z dt B t Z dW . (6) 

In (5) and (6), a(Z, U, t), b(Z, U, t) are functions mapping  p rR R R  to 
pR  and

pqR , 

respectively; A(t, τ, z, u) is a function mapping  p rR R R  to
pR , B(t, τ, z, u) is a function mapping 

 p rR R R  to
pqR ; the second integral in (6) is stochastic integral. 

Equations (4) and (6) are a stochastic integro-differential system of equations that determines the 

extended state vector of the system [ ]T TZ . In the special case, when the functions A(t, τ, z, u) and 

B(t, τ, z, u) do not depend on u, equation (4) is a stochastic integro-differential equation. 
In a number of cases, we have a necessity not a possibility to limit the processes in time. For 

example, during the taking off, landing, docking, etc., the time for these processes is strictly limited. 

Therefore, it is possible to differentiate the stochastic systems with limited delay. 



In modeling stochastic systems with limited delay, there are a number of peculiarities. A 

stochastic system with limited delay is a special case of the stochastic systems with unlimited delay 
and is described by stochastic differential equations of the following form: 

      
 

1 1
( , , , , ) ( , , , , )

m mt t t t t tdZ a Z Z Z t dt b Z Z Z t dW , (7) 

where Zt = Z(t) for t > t0, Zt = 0 and t < t0; τ1, …, τn are deterministic or random variables. 

This class of stochastic systems requires special methods of study. 
It is assumed that stochastic equations (4)-(7) with corresponding initial conditions have solutions 

that correspond to stable dynamical systems. 

2.2. The solution of the analysis problem of stochastic systems with delay 

Let us begin the consideration with stochastic systems with unlimited delay. 
It is not possible to derive in general the equation for finite-dimensional distributions of the state 

vector of the system (4). However, for a wide class of systems, equations (4)-(6) can be reduced to 

stochastic differential equations. 

Let us first consider the stochastic systems (4)-(6) for the case when the functions A(t, τ, z, u) and 

B(t, τ, z, u) have the following form: 
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where G(t, τ) and Г(t, τ) – are matrix functions called the memory kernels; φ(z, u, t), r – is a 

measuring function, ψ(z, u, t) r × q is a matrix function. 

In practice, the kernels G(t, τ) and Г(t, τ) usually satisfy the following conditions (physical 

feasibility): 

G(t, τ) = 0;    Г(t, τ) = 0;    t < τ, (9) 
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where Gij(t, τ) and Гij(t, τ) are matrix elements of G(t, τ) and Г(t, τ). 

For stationary kernels  ( , ) ( )G t G ,   ( , ) ( )t ,   t . The Laplace transforms in this case 

represent rational functions of a complex variable S, i.e the following representation holds: 
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The initial stochastic system (4)-(6), and (8) can be reduced to the following stochastic differential 
system: 
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Here F, H, Q, P are the r × r matrix differential operators of the n-th orders, m (n > m) and K, l 
(K > l), respectively. Applying the known methods of the theory of linear systems, the last two 
equations of equation (12) can be reduced to the Cauchy form by expansion of the state vector with 

their subsequent presenting in the form of stochastic differential equations. 

Let the nonstationary kernels G(t, τ) and Г(t, τ) with fixed τ be solutions of the linear differential 
equations: 
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and at a fixed t are determined as follows: 

  *( , ) ( , )G t H G t ;            *( , ) ( , )t P t , (14) 

where the functions G’(t, τ) and Г’(t, τ) at a fixed t are the solutions of linear differential equations: 
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Here Ft = Ft(t, D), Ht = Ht(t, D), Qt = Qt(t, D), Pt = Pt(t, D), are the r × r matrix linear differential 

operators of the n-th orders, m (n > m) and K, l (K > l), respectively, the index of the operator 

denotes that the operator acts on a function considered as the function t at a fixed ε, with an asterisked 

bound operator, and Ir is a unity matrix of the r-th order. In this case, equation (6) can be substituted 

by the following equations: 
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As a result, the stochastic system (4)-(6) will be reduced to a stochastic differential system (12) 

with nonstationary operators Ft, Ht, Qt, Pt,. 
For a wide class of more complex functions A(t, τ, z, u) and B(t, τ, z, u), in (6), the approximation 

of the form is often useful 
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where Gh(t, τ) and Гh(t, τ) are kernels falling into the types considered. 

In practice, due to insufficient a priori information, the functions A(t, τ, z, u) and B(t, τ, z, u) are 
usually known approximately. Therefore, they can almost always be approximated by the formula (8) 

or (16) with functions G(t, τ) and Г(t, τ) of one of the two above types. After that, by means of the 

suggested above method, equations (4)-(6) are reduced to stochastic differential equations of the form 
(12). 

Another special case, when the stochastic system (4)-(6) can be reduced to a stochastic differential 

system of the form (1) by expansion of the state vector, is the case when the functions A(t, τ, z, u) and 

B(t, τ, z, u) allow the following representation 
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Assuming that 
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It is possible to reduce the initial stochastic system to the following stochastic differential one: 
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It should be noted that usually the functions A(t, τ, z, u) and B(t, τ, z, u) in (6) can always be 

approximated by expressions of the form (17) or by more general expressions: 
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Therefore, equations (4)-(6) can almost always be reduced to the stochastic differential equation 

(1) by expanding the state vector of the system. 
Thus, the stochastic system of the form (4)-(6) can almost always be approximated by a further 

stochastic differential system of the form (1), after which any of the described methods of stochastic 

analysis can be applied. 

Let us consider stochastic systems with limited delay. 



Any stochastic system with delay of the form (7) is a case of the system (4)-(6), where the function 

A(t, τ, z, u) of (6) is a linear function z, and its coefficients are delta functions of the form δ(t – τk –
 τ) and B(t, τ, z, u). It is clear that none of the above considered approximations is appropriate to 

these systems. Special methods should be developed here. 

In practical problems, for the analysis of systems with delay, the transfer function of the link with 

pure delay is often approximated. 

     exp( ) 1 / !n ns s s n  (21) 

Using this approximation, introduce new variables Y1, …, Ym that satisfy the following differential 

equation 
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Then, equation (7) is replaced by equation (22) 
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Equations (22), (23) with initial conditions 

0kY  for    0 0 kt t t  (24) 

describe stochastic differential systems that approximate the system with delay (7). 

Substituting (7) by equations (22), (23), any of the above methods for the approximate 

determination of finite-dimensional distributions of the system state vector can be used. 

3. Results and Discussions 
3.1. The peculiarities of solving filtration and extrapolation problems in the 
construction of functionally stable discrete systems with delay 

The issues of filtering have not been enough theoretically substantiated for our class of systems 
and could be applied with significant limitations for prompt estimation. Requirements for the 

simplicity of computational estimates lead to the idea of conditionally optimal estimation. 

To operate in real time with limited computing power, there is recommended to use conditionally 
optimal filtering [16–18, 22–24]. We will use simple filters (for example, to evaluate the solutions of 

difference equations), which can serve as an example of filters that meet the requirements of 

simplicity of calculations. 

For our case, we use the following approach: 

 AU , (25) 


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where A is a constant p × N matrix, ξk(y,u) are functions mapping m NR R  to rR ; δk, γk are arbitrary 

matrices of N × r, N × 1 sizes, respectively.  

The choice of sequences {δk}, {γk} determines the allowed filter. The selection (selection of 

parameters) of the matrix A in equation (25), the function ξk(y,u) (26), the numbers N, r is decisive 

for the selection of filters. For optimal filtering, the determination of the coefficients δ, γ, ξ, η, ζ, in 
(26) can be performed according to the methods described in the papers [18, 22–26]. 

An important issue for filtering is the issue of optimality criteria. Minimizing the mean square of 

the error 
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 may have no solutions. The use of the theory of suboptimal filtration for discrete systems is 

shown in the papers [18, 22–26]. 

3.2. Conditionally optimal filters for discrete stochastic systems 

The complex system functioning (Fig. 1) implies the programmed trajectory, which can be 

designed under strict conditions or be adaptive. One more important is the prompt assessment of self-

position in space. All above requires powerful computing capacities. As it has been shown above, 



there exists a mathematical body allowing significant simplification of the working models and 

reduce the requirements for computing capacities. 
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Figure 1: Model of functionally stable complex dynamic object 

 

For optimization of δk, γk in equation (26) the linear root mean square regression of the value 

equation or 1k jZ
   on a random vector ξk(Xk, Uk) is found. The standard methods lead to the following 

equations: 

k k kA P L  ; 
k k k kA m A L    , (27) 

where 

1k k jm MZ
 

 ; ( , )k k k kl M X U  ; 

1

[ ( , ) ] ( , ) ;

( ) ( , ) .

T
k k k k k k k

T
k k j k k k k

P M X U l X U

L M Z m X U
 

   

  
 

(28) 

To calculate the mathematical expectations in these formulae in the case of the filtering problem 

(j = 0), let us apply equation (3) and use the equation: 
1

1 1 1
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with the known function g1() and initial conditions [25–27]: 
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for a one-dimensional characteristic function of a random sequence {[ ] }T T T T
k k kX Z U  determined by the 

difference equations (3) and (26). The joint solution of equations (27), (28), (29) completely solves 

the problem of designing conditionally optimal filters. To find the mathematical expectations in (28) 

in the case of the extrapolation problem, equations (29), (30) are added to the previous equations of 

the two-dimensional characteristic function of the sequence {[ ] }T T T T
k k kX Z U . 

3.3. Algorithms of identification and adjustment for complex discrete 
dynamic functionally stable systems 

In the works [16, 22–24], the theorem on the existence of optimal control of a complex dynamic 

object Figure 1 by means of a special device Figure 2 using a specialized filter Figure 3 has been 
proved. Consider the features of such systems in conditions of limited computing resources and in real 

time, which is inherent in the operation of a large number of mobile systems. 
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Figure 2: Block diagram 
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Figure 3: Block diagram of the optimal recovering filter 

 
The algorithms of identification include the residuals of the form: 

ˆ( / 1) ( ) ( / 1)n n y n y n n     , (31) 

1( / 1) ( ) ( 1) ( , )Tn n y n Z n n       . (32) 

The recurrent identification algorithms can be written as: 

1( ) ( 1) ( ) ( ) ( , ( 1))n n n n n n        . (33) 

Specific identification algorithms 

),()1()()1/( 1  nnZnynn T  , 

))1(,()()()1()( 1  nnnnnn  , 
differ from each other by the gain matrix Г1(n), the direction vector ( )n , and by the observation 

vector Z1(n – 1). References to the literature in which the specific algorithms are given and 

investigated are indicated there. 
In the adjustment algorithms, there are residuals of one of the form 

ˆ( / 1) ( ) ( / 1)n n k y n y n n k       , (34) 

2( / 1) ( ) ( 1) ( , )Tn n k y n Z n k n          . (35) 

The recurrent algorithms of adjustment can be written as: 

2( ) ( ) ( ) ( ) ( , ( 1))n n n u n n n      . (36) 

The specific adjustment algorithms (35), (36) differ from each other in the gain matrix Г2(n) and 

the direction vector U(n), possibly, by the observation vector Z2(n – k– 1). Examples of adjustment 

algorithms are given in Table 1. 

Along with the most common algorithms of the form (33) or (36), sometimes algorithms with 

filtered residual occur: 

( )
( , ) ( , )

( )

f

f

P q
n n

Q q
     ; 

( )
( , ) ( , )

( )

f

f

P q
n n

Q q
     , 

(37) 



where Pƒ(q) and θ(q) specially similar stable polynomials. 

 
Table 1 
Examples of identification algorithms 

Methods Inverse gain matrix Direction vector  Estimate vector  

Stochastic 
approximatio

n method 

( ) ( 1)

( 1) ( 1)T

n n

Z n Z n

    

  
 

1
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( 1 )]T
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y n N u n k

u n k N
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  

 
1

0 1
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Least squares 
method 

1( 1)

( 1) ( 1)T

n

Z n Z n
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  
 

–“– –“– 

Stochastic 
approximatio

n method 
1 1

( ) ( 1)

( 1) ( 1)T

n n

Z n Z n
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  
 1
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Advanced 
least squares 

method 

1

1 1

( )

( 1) ( 1)T

n

Z n Z n

 

  
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Maximum 
plausibility 

method 

1

1 1
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( ) ( )T

n

n n
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 
 

1
1 1

ˆ( ) ( 1)n P Z n
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approximatio

n method 

( ) 1P q
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T
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 1

7
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( 1)
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zz n k
v n

P q

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Until a certain time, the choice of one or another identification algorithm or setting was not 

sufficiently argued. In the works 18, 24, 26, 27, the necessity to use not arbitrarily taken algorithms, 
but optimal algorithms, which have the maximum possible rate of convergence, has been proved. The 

formation of such algorithms is based on taking into account a priori information about the structure 
of dynamic objects and the characteristics of the noise that affect the object. For this purpose, we use 

a generalization of the optimality condition that follows from the criterion of quadratic residual and 

depends on the nonlinear transformation of residual. This condition generates the algorithm which is 

optimal with respect to the gain matrix. The choice of the nonlinear transformation of residual allows 
obtaining the optimal and nonlinear transformation algorithms that reach the maximum and limit rate 

of the convergence. 



4. Conclusions 

Let us summarize. 
The joint solving of the obtained equations (27), (28), (29), and (30) determines the conditionally 

optimal extrapolator. Systems of equations can be solved using approximate methods described in 

[18, 23, 24, 26, 27]. Any of the above can be used for these purposes. 
The identification algorithms are generated by minimizing the corresponding quadratic and 

weighted quadratic criteria of residual, and, finally, the optimal identification and adjustment 

algorithms correspond to the minimum of the asymptotic error covariance matrix, which is the 
criterion of convergence rate. 

Thus, in functionally stable systems, optimization should be carried out according to several 

optimality criteria. The basic structure of the system has to meet the minimum of the quadratic error 

criterion. The predictor structures have to meet a minimum of residual criteria. 
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