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Abstract. Similar to the current Web, the key to realizing the Seman-
tic Web is scale. Arguably, to achieve this, we need a good balance be-
tween participation cost and perceived benefit. The major obstacles lie
in coping with large numbers of ontologies, authors and physical hosts,
inconsistent or inaccurate statements and the large volume of instance
data. Our focus is on scalability through distribution. Most current ap-
proaches split ontologies into triples and distribute them among peers
participating in a structured peer-to-peer overlay. Identifying a series of
drawbacks with this, we propose an alternative model where each peer
maintains control of its ontologies.

1 Introduction

The success of the Web is attributed to its scalability and its low entry cost.
One would expect at least the same requirements for the Semantic Web. Un-
fortunately, state-of-the-art technology permits for neither, as current methods
and systems make assumptions that limit its usability, especially with regard to
scale.

In [9], a series of assumptions in logical reasoning are identified, which are
also largely present in infrastructures developed for the Semantic Web, namely
Small set of axioms, e.g. limited number of concepts/relationships, Small num-
ber of facts, e.g. limited number of instance data, Trustworthiness, correctness,
completeness and consistency of facts and axioms, implying some sort of cen-
tral control or management and Static domains, e.g. infrequent updates or fixed
semantics.

With aspirations toward a truly usable and global Semantic Web, research
has turned into a number of directions such as approximation, trust infrastruc-
tures, database technologies and distribution. The focus of this paper will be on
distribution.

In this domain, peer-to-peer (p2p) systems are often seen as a vehicle for the
democratization of distributed computing. Rather than relying on a possibly
large set of professionally run commercial servers, they consist of community-
volunteered hosts that collaborate on equal terms to achieve a common goal.
Some of their perceived advantages are low cost, through the distribution of
computation and self-organization, no single point of failure, due to their sym-
metric functionality and redundancy, no single point of administration or control,



making censorship or preferential disclosure of information impossible and, un-
der some conditions, scalability, due to the fact that the network can grow on
demand.

We can tap into the vast resources offered by p2p systems to develop scalable
infrastructures for the Semantic Web. A plethora of approaches has already
been suggested [5, 2, 20, 16, 14, 4, 19, 10, 17, 12], mainly focusing how to efficiently
distribute large numbers of triples among peers in the network. We argue against
this approach, claiming that although it solves scalability issues concerning the
number of facts in the system, it fails to address the rest of the issues mentioned
above and, in some cases, it actually makes additional non-realistic assumptions.

We propose an alternative approach, using ontologies instead of triples as
the standard level of data granularity, thus moving complexity from the p2p
overlay to peer interactions. This allows for efficient and secure maintenance of
information provenance and control of the publishers over access and availabil-
ity of information. We also hope that this model will eventually facilitate the
development of methods to attest results calculated in a distributed manner and
improve performance over current systems, since it can exploit concept locality
in ontologies.

We are aspiring to combine the scalability of structured p2p overlays with the
perceived advantages of our model. To this end, we are sketching an architecture
that uses a global index maintained by a Distributed Hash Table(DHT) to find
the correct peers that interact to resolve queries. Furthermore, some technologies
that would be useful in this architecture are suggested.

The rest of the paper is structured as follows: In section 2.2 we are presenting
the most important systems for RDF storage and reasoning. We argue that there
is a need for a shift of paradigm in section 3. Section 4 is a description of our
approach, for which we are giving some performance indicators in section 5. We
are concluding and outlining future work in section 6.

2 Relevant literature

2.1 Distributed hash tables

DHTs are a well researched flavour of structured p2p systems [15] . Nodes func-
tion autonomously and collectively form a complete and efficient system without
any central coordination. In DHT overlays, each object is associated with a key,
chosen from a large space. This space is partitioned in zones, and each peer
is responsible for the keys and corresponding objects in a zone. Peers need to
maintain connections only to a limited number of other peers and the overlay
has the ability to self-organize, with respect to peer connections and object dis-
tribution, to handle network churn. In principle, all DHT-based systems provide
the following functionality: store(key, object) storing an object identified by its
key, and search(key) which returns the object (when it exists) from the peer re-
sponsible for the key. Current systems need approximately O(log(N)) messages
to search or store and each peer needs to keep from O(1) to O(log(N)) pointers
to other peers, where N is the number of peers in the network.



2.2 Scalable RDF storage

DHT-based Research into scalable RDF storage lies closest to the focus of
this paper. Considerable research has been conducted in the area with most
approaches sharing the following fundamental design choices:

– RDF queries are broken down into subqueries, namely triples with one or
more variable values, for instance <?,ns:lives_in,cities:amsterdam>.

– Query results are sets of bindings for variables.
– No single node can be assumed to have the answers to all subqueries, so

the problem then consists of decomposing the original query and routing the
‘right’ subqueries to the ‘right’ node, and then composing partial results to
obtain the answer to the original query.

The first to propose the use of DHTs to implement a distributed RDF store
was RDFPeers [5]. The basic functionality for storing RDF triples involves hash-
ing the triple’s subject, predicate and object and storing it in the three peers that
are responsible for each of the resulting keys. Queries are answered by hashing
the (at least one) constant part of the query triple pattern and routing the query
to the node responsible for storing that constant. RDFPeers has the ability to
resolve atomic, disjunctive and conjunctive multi-predicate RDF queries at a
minimum cost of log(N) (for atomic queries), however it has poor load balanc-
ing capabilities, completely lacks reasoning support and assumes a shared RDF
schema.

GridVine [2] constitutes a logical layer of services offered on top of the P-
Grid [1] DHT. It exposes higher level functionalities built on top of P-Grid: In-
sert(RDF schema), Insert(RDF triple), Insert(Schema translation) and Search-
For(query). RDF triples are inserted into GridVine by using the same method
introduced by RDFPeers and it can also answer the same set of queries, but has
the additional advantage of supporting translations between RDF schemata.

PAGE [20] is a proposal for a distributed RDF repository implementation
that combines the index structure of YARS [11] with a DHT. YARS uses 6 differ-
ent indexes and stores RDF quads (triples augmented with context information).
PAGE works by using the same indexes (hence replicating triples 6 times) and
achieves more efficient query processing, but also lacks reasoning support and
load balancing.

RDFCube [16] builds on RDFPeers by adding a second overlay that indexes
triples based on an ’existence bit’ and then performs a logical AND operation
on this existence bit before actually retrieving the triples when evaluating a
query. This results in more lookups and higher maintenance cost for the extra
overlay, but reduces the required amount of data that has to be transferred on
the network.

[14] proposes two different algorithms for evaluating conjunctive multi-predicate
queries. The first one, QC, uses the indexing scheme of RDFPeers to index
triples, with a small modification: if there are more than one constant parts for a
subquery, then preference is given to indexing on the subject, then the object and
then the predicate, as it is expected that this will also be their ranking according



to discrete values. Subqueries are also sorted according to expected selectivity
before execution. Then, a ’query chain’ is formed that consists of the nodes re-
sponsible for each subquery. The second algorithm, SBV, uses additional triple
indexing and dynamic query chain formation exploiting local variable bindings
for subqueries.

In BabelPeers [4], nodes are also organized in a DHT overlay, and inserted
triples are hashed on their subject, predicate and object, and stored by the
node responsible for the resulting key. BabelPeers nodes however host different
RDF repositories, making a distinction between local and incoming knowledge
and applying RDFS reasoning rules. Nodes are additionally organized in a tree
overlay structure in order to deal with overly popular values.

Non-DHT based [19] is based on the notion of path queries to build an index
only on paths and subpaths, but not on individual elements for a datasource.
Every RDF model is seen as a graph, where nodes correspond to resources and
arcs to properties linking these resources. The result of a query to such a model
is a set of subgraphs corresponding to a path expression. Since the information
that makes up a path might be distributed across different datasources, the index
structure to use should also contain information about subpaths without losing
the advantage of indexing complete paths, and the most suitable way to represent
this index structure is a hierarchy, where the source index of the indexed path
is the root element. In terms of space, the complexity of the index is O(s ∗ n2),
where s is the number of sources and n is the length of the schema path. The
trade-off is that query answering without index support at the instance level is
much more computationally intensive, so different techniques (partly similar to
the ones used in [14], in terms of query chain formation and subquery ordering)
are applied on the basis of an initial naive query-processing algorithm in order
to perform join ordering and overall optimization, under the assumption that
nodes do not have local join capabilities.

Bibster [10] follows an unstructured semantic-based p2p architecture: each
peer knows about its expertise and finds out about the expertise of neighboring
peers through active advertising. Thus peers form expertise clusters. When a
peer receives a query, it tries to answer it, or forwards it to other peers whom
it judges likely to be able to answer the query, based on similarity functions
between the subject of the query and the previously-advertised expertise topics,
using the schema hierarchy and text-similarity methods.

Edutella [17] is a p2p architecture designed for distributed search of educa-
tional content based on meta-data. The meta-data is stored in RDF format in
distributed repositories that form a super-peer-based p2p network, arranged in
a hypercube topology. While it allows the use of multiple schemas, neither map-
pings nor RDF semantics are supported. Additionally it uses a broadcast-based
approach which would not scale gracefully.

In SomeWhere[3] and DRAGO[18], peers are organized in a topology deter-
mined by sets of mappings between the local ontologies of peers. These mappings
have to be manually created by users (i.e. peers enter the system by mapping
their local ontologies to ontologies of participants in the network). In turn, they



are used to rewrite queries as they are forwarded among peers. Although their
work on distributed reasoning is relevant and applicable to our approach, these
systems assume manually created peer topologies and do not address the prob-
lem of finding the correct peers.

Federated RDF repositories [12] aim at offering unified access among different
RDF repositories by integrating them according to the federated repositories ap-
proach. Semantic Federations are collections of heterogeneous distributed RDF
repositories that can be accessed as a unique local Semantic Repository. This ap-
proach however is based on static definition of participating repositories and uses
flooding to distribute queries among repositories; it therefore lacks the ability to
scale and to dynamically update federation membership.

3 Motivation

For the remainder of this paper, we will focus on systems using a DHT infras-
tructure, since, so far, they are the only scalable solutions that do not rely on
fixed schemata. Efficient as they may be in storing instance data and ontolo-
gies, these approaches do not address scalability in reasoning, are not dealing
with provenance of information and do not support user/peer control over their
own data. Hence, we argue that they are not appropriate infrastructures for the
Semantic Web and are more similar to distributed databases, useful and impor-
tant in their own regard. In the following paragraphs, we highlight some of their
shortcomings, also in respect to the set of criteria mentioned in the introduction.

3.1 Reasoning

Partly due to their computational complexity, current reasoning techniques do
not scale beyond a relatively small set of axioms. Focusing on approaches that
distribute the reasoning process and, in particular, some of the systems pre-
sented in section 2.2, we can identify performance problems in both storing and
retrieving triples:

Storing All approaches that support reasoning store the transitive closure of
triples. Assume a music hierarchy where a class “Music” has hundreds of sub-
classes like “Rock”, “Pop” etc. Storing the statement <Joe,likes, 70’s Rock>
implies storing a triple for each superclass of rock (e.g. <Joe,likes, Classic Rock>,
<Joe,likes, Rock>, <Joe,likes, Music> etc), which may count in the dozens.
Similarly, assuming that we use an approach like [2], to store these tuples in a
DHT, we will need at least twice the number of messages as the number of tu-
ples to be stored. To make matters worse, updating the ontology can be very
expensive. Adding the statement <Music,subclass_of,Art> means that for all
statements with Music, we need to insert an additional triple. The number of
these triples increases by O(N) with the number of axioms in the system, i.e.
we have overall storage and message complexity of O(M × N) where M is the
number of facts and N is the number of axioms in the system.



Querying Let us assume a query to find all subclasses of Music which are not a
subclass of Rock. Resolving this implies retrieving all triples <?,subclass_of,Rock>
and proceeding recursively down the hierarchy. Then all subclasses of Music have
to be retrieved and the intersection of the two sets has to be calculated. To re-
solve this query, the entire hierarchy has to be retrieved. Although in terms of
data traffic, this may sometimes be acceptable, the number of messages required
is prohibitively high: resolving this query means sending at minimum a number
of DHT messages roughly equal to the number of concepts in the hierarchy.

The aforementioned examples clearly indicate the shortcomings in the current
approaches for triple generation in large-scale systems.

3.2 Control over ontologies

All DHT-based stores presented in section 2.2 share the following design assump-
tion: All ontologies and instance data are made public and are maintained in a
distributed manner. This is done by using the triple notation and distributing
these triples among the hosts in the network, according to some indexing scheme.
This means that hosts effectively have no control over the location and admin-
istration of their ontologies and instance data. We can identify the following
weaknesses in this design:

Provenance of information The issue of information reliability that pertains
the Web is also valid and even more exacerbated for the Semantic Web,
since in this case information is meant to be processed and acted upon via
automated reasoning techniques. Existing techniques[6] dealing with this
issue are limiting in that they do not enforce identity verification, but assume
a trusted environment. On the other hand, the only way to guarantee data
integrity in such a distributed and dynamic environment would be the use of
electronic signatures; i.e. each peer signs the triples it inserts in the system
using its electronic key, which is certified by some certification authority.
This however would impose a disproportionate overhead, since storing an
electronic signature for each triple would require more space than the triple
itself.

Publishers are not in control of their ontologies Ontologies and instance
data are becoming important assets for businesses and organizations as they
are expensive to develop, may contain business intelligence etc. Thus, it is
very unlikely that publishers would want to relinquish their control to a
set of community-volunteered computers. This would be as preposterous as
suggesting to large companies to use one of the existing p2p file sharing
systems to distribute their software.

Ontologies and instance data are made public Even in the case where
relinquishing control would be acceptable, there would be many cases where
access control would be required. Again important issues arise on how should
this access control be implemented by a number of untrusted and unreliable
peers.



Having identified a set of limitations that could inhibit the development of
the Semantic Web on current infrastructures, we will propose an alternative
paradigm that could provide solutions to some of these problems and lay the
foundation for future research.

4 Our approach

The main innovation of our approach is shifting the level of granularity for
peer data from triples to entire ontologies. We propose a model where peers
retain control of their ontologies and reasoning is done in a p2p manner. Query
resolution is done in an incremental and distributed manner.
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Fig. 1. Querying in our proposed model.

All peers have reasoning capabilities and are able to decide when they have
had enough answers and query processing should be finished. Furthermore,
queries can be decomposed into triple patterns(e.g. <?, type_of, mtv:MUSIC>).
Figure 1 summarizes our proposed model. We will illustrate the explanation of
each step using a simple example, the resolution of the query

SELECT X WHERE X type_of mtv:music

using RDFS reasoning rules (i.e. this query should return all X that are the
predicate of a “type of” relationship with object being mtv:music or any of its
subclasses.

1. Partition query and select sub-query Initially, the part of the query to be resolved
first needs to be determined. Our example query can be written in a triple pattern
format as <?, type_of, mtv:music>. Obviously, there is no point in splitting this
query further.



2. Determine concepts and relationships required for reasoning Out of the triple
pattern <?, type_of, mtv:music>, we need to select a starting point for routing our
query. There are the following two choices: type_of and mtv:music. Intuitively, the
best choice would be mtv:music, since it is more selective and we can use semantic
routing techniques to determine that in a distributed manner. Furthermore, note that
instead of mtv:music, we may have a literal and not a concept. In this case, we will
need to anchor it to a concept. This is where ontology anchoring and ontology mapping
techniques come in handy.

3. Localize concepts and relationships required for reasoning For this step, either the
triples that match the pattern have to be retrieved or the query should be forwarded to
the peer(s) that store the ontology(-ies) with these triples. In our example, as in most
cases, it is wiser to forward the query, since it is much smaller in size (just a single
pattern with no results so far, in this case).

4. Perform reasoning locally Now reasoning can be performed locally and the first results
can be returned.

5. Determine if answers are adequate The next choice is whether the retrieved results
were enough for the user or application. If enough results were found, query resolution
stops, otherwise, the query is reformulated to be further processed.

6. Reformulate query To retrieve additional results and according to RDFS semantics,
instances that have a type which is a subclass of mtv:music should be returned1.
Therefore, we can reformulate the query as follows:

SELECT X WHERE X type_of Y and Y subclass_of mtv:music

Alternatively, the local peer may start a new search for

SELECT Y WHERE Y subclass_of mtv:music

and continue processing once it gets back the results. Assuming that the peer followed
the first option, query resolution would resume to step 1.

1’. Now, the query will be SELECT X WHERE X type_of Y and Y subclass_of mtv:music.
The choice now lies between pattern <?, type_of, ?’> and <?, subclass_of, mtv:music>.
The latter is preferred, since it has more bounded variables.

2’. mtv:music will be preferred over subclass_of, since it is more selective.
3’. The local peer is already knowledgeable about mtv:music (see 3.), so chances are, no

forwarding is needed.
4’. The Y that are subclasses of music are found.
5’. Answers are still not adequate.
6’. Query is reformulated as SELECT X WHERE X type_of Z and Z subclass_of Y.

1”. <?, subclass_of, Y> will be selected, since Y is bound.
2”. Y will be selected, since it is more selective than subclass_of.
3”. Query will be forwarded to peers with some of the possible Y, if they are not located

on the local peer.
4”. Additional results will be returned.
5”. Assuming that there are now enough answers, querying is finished. Otherwise, we can

continue with step 6.

.

1 Note that this is not the only RDFS rule that applies in this case; for instance, we
could look for subclasses of the relationship



4.1 Architecture

We propose an architecture abiding to the above model (fig. 2). Ontology de-
scriptions or part of ontologies (i.e. concepts or relationships) are stored in a
distributed public index and querying takes place in a p2p manner. The public
index is maintained by a DHT consisting of a set of volunteer peers with ade-
quate computational resources and fast, stable Internet connections. This index
is used to resolve URIs to locations, i.e. locating the peers containing the ontolo-
gies and instance data for each relationship, concept or instance and to Anchor
terms to concepts in ontologies, in case we want to anchor literals to ontology
concepts or relationships (e.g. anchor “lives” to namespace1:lives).

Each peer stores a number of ontologies. Although ontologies may be moved
across peers and replicated, this is not necessary. i.e. peers may choose to retain
complete control over their ontologies or replicate them for performance. For
instance, the RDFS ontology is used in the inference process and is public. So,
it should be replicated to practically all peers for performance reasons. On the
other hand, some peers may decide that they do not want their ontologies fully
disclosed, and therefore store them only locally and answer queries on them. For
such cases, the approach described in [13] comes to direct use.

In the simplest form of the system, all URI lookups are done through the
DHT. Indexing is equally straightforward: Peers store on the DHT mappings
from the URIs of the resources they want to answer to their address.

4.2 Optimizations

A series of simple optimizations are suggested to improve the efficiency of the
system.

Triple caches To avoid redundant network messages, peers may cache received
triples. This would drastically improve performance but it would also imply
some sort of soft-state mechanism to manage updates or deletions.

Ontology caches/replicas Sometimes, a peer may need data from an ontol-
ogy so often, that it would make sense to keep a copy of the entire ontology,
and perhaps share it with other peers. Note however, that this would only
be possible for public ontologies.

A semantic topology Apart from maintaining the global index, peers can
be organized in a semantic topology, determined by the overlap of their
resource descriptions. To this end, they would maintain a set of point-
ers to “interesting” peers, along with the resource descriptions they con-
tain. This would substitute expensive DHT messages with direct network
messages and would improve performance on the expense of some addi-
tional storage space per peer, which is generally considered of minor im-
portance. Updating these pointers is straightforward. When a new ontol-
ogy is inserted with a triple <X,r,Y>. For each triple, a pointer will be
stored to the peer with the relevant concepts/relationships. For example, for
<wwf:seal, rdfs:subclass_of, mom:monk_seal>, we will make a lookup
for wwf:seal and mom:monk_seal and retrieve the peers which have triples



with these concepts. We will store a pointer to the publishing peer to each
one of those peers. Thus, future queries that involve these concepts will be
forwarded without having to consult the DHT.

5 Performance indicators

In this section we try to evaluate how our system would work by analyzing
some properties of ontologies currently available on the web. For example, by
analyzing the re-use of concepts (i.e. inter-linkage) between ontologies we can
predict the consequences on how scalable our approach is since our approach
performs better where there is not much re-use.

Swoogle [8] is a search and meta-data engine for the Semantic Web. Besides
the core search functionality, it also provides detailed statistics about the more
than 10.000 ontologies it stores, where Swoogle considers a Semantic Web docu-
ment (SWD) to be a document represented as an RDF graph and a term refers
to a rdfs:Resource node in a SWD.

5.1 Namespace usage

Namespaces used in an ontology are pointers to other ontologies and therefore
an indication of re-use. Their statistics2 show that there are 4576 namespaces
used by 329987 SWDs. The purple line in figure 3a3shows the distribution of
namespaces. As can be seen, the popularity follows some power-law disribution,
meaning that only a few namespaces are very popular (like the rdf namespace)
and most are rarely used. This confirms our hypothesis that ontologies are not
strongly connected which means that in most cases the possible answers can be
found locally on a single peer hosting the ontology/-ies of interest.

5.2 Local reasoning.

Swoogle provides statistics on the distribution of SWDs per website. There are
132206 websites indexed that are hosting 337182 SWDs, meaning an average of
three SWDs per website. However figure 3a shows that the distribution follows
Zipf’s law except in the tail, meaning that most hosts4 will only have one or two
ontologies. If we combine this with the statistics on the number of terms per
SWD (distribution shown in figure 3b) we see that in most cases local reasoning
only needs to be done over a relatively small number ontologies. Namely, the
figure shows that the number of class and property definitions in most cases is
smaller than 10, one order of magnitude smaller than the number of populations.
Most SWDs do not define classes or properties at all, but just populate instances,

2 http://swoogle.umbc.edu/2005/modules.php?name=Swoogle Statisticsfile=usage namespace
3 http://swoogle.umbc.edu/2005/modules/Swoogle Statistics/images/figure5-2004-

09.png
4 note that we consider the number of hosts to be equal to the number of websites
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Fig. 2. The proposed architecture. 1’ Peers index (parts of) their ontologies by
sending a flat list to the distributed index. 1-6 Querying consists of (1) Lookup
on the index for a peer containing concepts or relationships that are part of the
query, (2) Index returns the address(es) of the matching peer(s), (3) Query is
forwarded to the selected peer(s), (4) Peer 1 creates a new sub-query according
to RDFS reasoning rules and forwards it to Peer 2 using the semantic topology,
(5) Peer 2 returns the results of the subquery to Peer 1, (6) Peer 1 aggregates
the results and returns them to the querying peer.



Fig. 3. a) Cumulative Term/Namespace Usages Distribution and b)Cumulative
SWD

meaning that, in most cases, only local reasoning on instance checking needs to
be done.

The number of SWDs per suffix5 , not shown in this paper, shows that most
ontologies are written only in RDF and only a few also in OWL, DAML or RDFS,
meaning that not much extra reasoning is currently needed apart from simple
RDF triple matching. For now, this is a counter argument to our approach in
favor to distributed triple storage mechanisms, in terms of lack of need of complex
local reasoning in the latter approach. However the arguments of desired local
control and provenance still favor our approach. Besides this, [7] states that the
increased use of two OWL equality assertions: owl:sameAs (279,648 assertions in
17,425 SWDs) and owl:equivalentClass (69,681 assertions in 4,341 SWDs) may
be an indication of increased ontology alignment, and therefore increased use of
richer languages.

6 Conclusions and future work

In this paper, we have presented a new method for distributed ontology storage
and querying which has ontologies as the normal level of granularity for data
distribution. Examining the ontologies currently on the Internet indicates that
local reasoning is, most of the times, sufficient for query resolution. In this case,
our approach outperforms ones that rely on triple distribution on top of DHT,
since only local reasoning is required.

Future work lies in more diligent evaluation of our approach, doing simulation
and emulation experiments. Furthermore, we have not examined the scenario
where peers do not have the capacity to store their own ontologies/instance
data. In this case, the latter would have to be split and distributed among several
peers. It would be very interesting to investigate methods to accomplish that, for
example using past queries to determine which concepts/instances/relationships
are used together, or splitting the ontology graph so as to keep overlap between
the resulting graphs to a minimum.

5 http://swoogle.umbc.edu/2005/modules.php?name=Swoogle Statisticsfile=swd suffix
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