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Abstract
In this work we present initial research results for creating a system that tracks basketball practice shots
from a single camera. We investigate different background subtraction and ball recognition methods,
report their accuracy on a basketball video with a static position of the camera, single shooter, ball,
and board visible. This preliminary research will allow us to implement better machine-learning-based
solutions, as well as annotate data for their training.
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1. Introduction

Technological growth leads to more complex devices which help the sport industry to create
more quality and enjoyable content. Some devices are attached directly to the athletes or their
wear to track motions, progress, and analyze techniques [1]. Algorithms are also used for
real-time tracking in a sports game to capture, analyze and present data graphically [2].

Basketball is the most popular sport in Lithuania and one of the most popular in the world.
Players interact with each other and with a ball to create a spectacular event. Object tracking
is being used in sports to track players or/and balls. The collected data is used to provide
detailed player information, progress, analyze movement, tactics and strategy next steps in
other matches. Based on experts, the best way to improve individually is to learn by repeatable
practice [3] and receive proper feedback [4].

In this paper, we want to reach a solution that would help basketball players to improve
their performance by repeatable practice and instant feedback. Individual training frequently
means shooting alone. Usually, players do not have large amounts of equipment, so we will
try to create a solution with a single mobile camera. Along with complicated algorithms, the
system will recognize and track the basketball. Collected data will be analyzed and presented
with the count of missed and made shots, practice progress, and advice on how to grow. The
athlete will be able to fully focus on making shots and improving their techniques.

IVUS2021: Information Society and University Studies 2021, April 23, 2021, Kaunas, Lithuania
" juozas.sirmenis@ktu.edu (J. Širmenis); mantas.lukosevicius@ktu.edu (M. Lukoševičius)
~ https://mantas.info/ (M. Lukoševičius)
� 0000-0001-7963-285X (M. Lukoševičius)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:juozas.sirmenis@ktu.edu
mailto:mantas.lukosevicius@ktu.edu
https://mantas.info/
https://orcid.org/0000-0001-7963-285X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Related Work

Some products already do have similar functionality. In this section, we take a deeper look into
already existing relevant solutions, and their used ball and movement recognition methods.

2.1. Commercial Products

There are several similar alternatives on the market. The Shot Tracker founded by Bruce Ianni
and Davyeon Ross is using three different components: anchors, ball, and player sensors to
real-time analyzes of shots and players position [5]. Wilson X Connected Basketball designed
and created by Wilson LABS with additional help of Wilson Sporting Goods is based on a sensor
inserted in the ball and the installed app connected via Bluetooh where all the results about the
shots are shown [6]. HomeCourt launched in 2018 for iOS devices by NEX Team and co-founder
David Lee is based on artificial intelligence (AI) technology and computer vision to track and
analyze shots, ball, and player movement, and give them proper real-time feedback [7, 8].

2.2. Main Stages of Ball Recognition

There are a lot of different ways to recognize and track objects in video. Firstly, the ball has to
be separated and recognized from other objects. Secondly, the movement of the ball has to be
noticed and analyzed. In this chapter, we discuss the most popular and efficient ways.

2.2.1. Ball Recognition

To be able to track a ball, first of all, we have to recognize and separate it from the other objects
in the video. It is clear that the ball will move and will be as close as possible to a round shape.
One of the most popular solutions is to use color segmentation. Often basketball is in one color
and because of that, it is easy to recognize it in the video. It is possible to analyze few video
files and extract basketball shape histograms manually, that later are used as the main source
of possible basketball color range, which enables the recognition of the ball [9].

The color of the ball in the video can change due to external interference. The best solution
for this is to convert red-green-blue (RGB) color space to hue-saturation-value (HSV) space. In
the sequel ball’s color threshold is determined and after dilation and erosion ball is found [10].
Sometimes video is extracted to HSV color space and then used coarse strategy for not-ball
candidates elimination because of their color and shape. Finally, the most likely ball is found
based on a result from connecting ball’s color and circularity analyzes [11].

The shape recognition of the ball is based on eccentricity. It is calculated as the ratio of the
height to the width of the minimum rectangle which has to contain all the points of the shape.
After that, some non-ball objects may be determined as balls. To avoid that object has to be
analyzed based on its circularity which can be defined of the shape’s area and perimeter [12].

Sometimes a shape filter is combined with a size filter. Due to different video conditions,
one source states that the size of the ball should be approximately between 3 to 15 pixels [13],
other one 5 to 30 pixels [14], but based on the analysis of our test data, the ball’s size should be
approximately 15 to 40 pixels. To achieve more accurate results in the ball’s recognition, along
with size and shape filters, a compactness filter is added too [12, 14, 15]. Compactness is the



object characteristic that describes how close a shape is to a circle. If compactness gets a result
of 1, the shape is perfectly round and may be called a circle. Compactness is calculated as

𝐶 =
𝑃2

4𝜋𝐴
, (1)

where 𝑃 is the perimeter and 𝐴 is the area of the shape [16].
During the research, we analyzed: color segmentation, coarse strategy, size, shape and com-

pactness filters, and other ball recognition techniques. Also, we noticed that other similar sys-
tems did not use just one algorithm, usually, it takes 2 or more to recognize the ball from the
background. We also will experiment with different combinations of algorithms and methods.

2.2.2. Movement Recognition

The most popular methods for a moving ball recognition are: frame difference [9, 15] and
background subtraction [13], or the the combination of the two [17, 18].

Frame difference is the method where the absolute difference is calculated between two or
three consecutive frames. The difference between the three frames is calculated by finding the
absolute difference between the previous and current frames, and the same with the current
and the next one. Subsequently, both results are logically added to each other. If their position
of pixels is the same in both the difference frames images, these are the objects which moved
in taken frames [18].

The background subtraction method creates a reference background image and compares
each video frame with it to separate foreground from background [18]. Moving objects are
indicated by pixels that stand out drastically compared to the background model [19].

To simplify calculations, the frame difference method is used in the background subtraction
method along with a combination of the morphological operation and edge detection [12, 14].
Morphological operation fills the empty gaps between the segmented regions and removes the
noise [12]. Edge detection is used to define moving objects and generate ball candidates [14].

3. Preliminary Methods and Results

Here we describe our preliminary methods and results. To properly recognize and track a ball,
we go through many different stages. First of all, we separate the ball from the background.
Then analyze its size and circularity to make sure it is a correct ball and then validate its move-
ment. After all, we implement a couple of filters to improve the accuracy.

3.1. Video Sequences Used

We do our preliminary research on several self-recorded videos, with different angle of a static
camera, background lighting, and the color of the player’s clothing. Footage contains a single
player and ball with a well-seen basketball board. Video is MP4 format, 1920x1080 resolution,
and 30 frames per second. For this preliminary analysis, a single five second video sequence
with the ball always visible was selected.



3.2. Background Subtraction

First of all, we separate foreground and background. For that, we use a background subtrac-
tion. For simplicity, we are going to use the OpenCV library, because almost all of the needed
methods are implemented there already. We will experiment with 3 different background sub-
traction methods from the OpenCV library: Mixture of Gaussians (MOG), Mixture of Gaussians
2 (MOG2), and K-nearest neighbors (𝑘-NN) [20].

MOG uses a method to calculate a mixture of 𝑘 Gaussian distributions, where 𝑘 is between
3 and 5, for each pixel in that frame. Foreground and background colors are expressed by
different distributions. The weight of each distribution represents the duration of how long a
pixel’s color stayed in one position. So, if a color in that pixels stays for a longer amount and
is more static, the weight of distribution is high – that may be classified as background [21].

MOG2 is also a mixture of Gaussians but more efficient and has additional features. MOG
method had a limited amount of used distributions (3 to 5), MOG2 solves that problem. It adds
more adaptivity and flexibility due to the dynamic number of distributions. In addition, MOG2
implemented functionality of shadow detection [22].

The main idea of the 𝑘-NN method is that 𝑘-Nearest-Neighbors-based recursive equations
automatically recalculates values of parameters for the Gaussian mixture model and at the
same time, for each pixel, picks the appropriate amount of components. This method helps to
improve kernel density estimation [23].

Both methods MOG2 and 𝑘-NN have an opportunity to subtract a background with a shadow
detection. We will experiment with both of these methods.

3.3. Ball Recognition

After the background subtraction, we are going to use either morphological operations (open,
close, dilate) [24] or blurring method [25] to reduce noise and fill small gaps inside the moving
objects. Subsequently, we will add the Canny edge detection method [26], and finally, then all
this is done, we will try to find all the circles in the processed video frames with the Hough
Circles method [27] which also already exists in the OpenCV library.

To check which combination of methods gives the best results, we calculate the percentage
of frames in which a ball was detected. We will check if a ball candidate occurs once in one
frame. If there are none or more than one, it means that the ball recognition did not work.

Table 1
First accuracy results (in percent)

Method GaussianBlur MedianBlur Morphology

MOG 30 38 29
MOG2 (on) 1 2 39
𝑘-NN (on) 0 0 4
MOG2 (off) 0 1 38
𝑘-NN (off) 0 1 14

Table 1 contains information about accuracy results. In rows, there are different background



subtraction methods we used, and in columns, there are different methods for reducing noise
and filling holes. Near MOG2 and 𝑘-NN methods “on” and “off” means if shadow detection was
activated.

3.3.1. Centre Filter

Figure 1: Before and after Centre filter

We noticed that some circles found by Hough Circles method [27] have noise inside them
(Figure 1). Usually the real-ball candidate has an empty, black hole inside it after Canny edge
detection [26]. So, to increase the accuracy, we took the value of the center of the ball 10 pixels
wide to check if there are some white pixels in it. If so, this is not a ball. We call this a “Centre
filter”. After we applied it, we recalculated the accuracy results again, as shown in Table 2.

Table 2
Second accuracy results after Centre filter (in percent)

Method GaussianBlur MedianBlur Morphology

MOG 47 49 38
MOG2 (on) 55 56 66
𝑘-NN (on) 38 50 49
MOG2 (off) 33 33 51
𝑘-NN (off) 13 40 32

3.3.2. Motion Filter

By visually analyzing the detected circles in each frame, we can confirm that the best accuracy
was observed in MOG2 (with shadow detection) and Morphology method combination. But we
also noticed that the real-ball candidates are almost always moving. The speed of his movement
is lower than 80 pixels per frame. It means that we can add another filter and call it “Motion
filter”, where all the ball candidates will be compared to check if they moved enough to call
them a “ball”. We calculate Euclidean distance between the ball-like objects.

The Motion filter works simply and has two layers. In the first one, all possible ball candidate
positions in the current frame are compared with the ones in the previous frame, and if they
match within 80 pixels, these two positions are possible candidates of a moving ball.



The second layer updates the probability of a ball-like candidate being a real ball. After two
ball candidates from different frames passed the position comparison test, they are checked if
the previous one in the last frame was also called a possible real ball candidate. If it was, we
can call the current ball more confidently the real ball. Our model requires 12 frames at the
beginning of the video where the real ball candidate may be designated as a true ball.

Figure 2: Before and after Motion filter

If there are no ball candidates in the last frame, we are going through a few of the last true-
ball positions and count the distance averages between them and the ball-like objects in the
current frame. The lowest average is likely to indicate a real-ball candidate. We can see the
results after the motion filter is activated in Figure 2.

3.4. Grid Search

The methods and functions we used have many parameters that influence the accuracy results.
We used automatic grid search that changes the parameters and records the accuracy. We
measured the accuracy on a set of five 3-5 seconds-long self-recorded videos, in the same format
as the tested one, with different angles of the static camera, background lighting, and the color
of the player’s clothing.

The Mixture of Gaussians 2 method reaches the highest accuracy when shadow detection
is activated and the history parameter is set to 500, varThreshold to 12. For morphological
operation, the optimal matrix boundaries of the kernel function are 11, the number of iterations
for dilate function is 2. For the best performance of the Canny algorithm, threshold1 is set to
150 and threshold2 is set to 300. The best accuracy of the HoughCircles method was observed
when dp is set to 2, minDist to 450, param1: 300, param2: 21, minRadius: 10, maxRadius: 50.

3.5. Methods Summary

The block diagram in Figure 3 shows the sequence of methods used. After filters were added,
the accuracy of the MOG2 (with shadow detection) and Morphology methods combination
increased to 75 %. After the grid search, the average accuracy in the video array was 62.2 %,
and the highest individual video - 86.5 %.

During video analyzes, we can confirm that the ball was recognized almost in every well-
seen frame. A 100 percent accuracy is not possible because we use 12 frames to initialize the



Motion filter also it is possible that the ball will be hidden behind the shooter’s body or get
outside the frame of the video.

Figure 3: Block diagram for ball recognition

4. Preliminary Results

After we found the best combination of methods and their parameters for ball detection, we
implemented a trajectory calculation and prediction for a preliminary shot tracking.

4.1. Trajectory calculation

A free-flying ball has a trajectory of a parabola. We used polyfit and poly1d methods from
Python library NumPy [28] to find the three polynomial coefficients of the quadratic equation
(parabola) and visualize it.

The first 10 consecutive positions of the detected true-ball were selected to find preliminary
polynomial coefficients. After that, we draw a predicted trajectory as shown in Figure 4.

Figure 4: Trajectory calculation and prediction

The thin white line represents the trajectory and wider white dots actual true-ball positions.
The recalculate and improve the trajectory prediction after each new basketball is detected.



4.2. Preliminary statistics of shots

Our current system can only count if the ball did not change its trajectory when passing
through the hoop and net. Unfortunately, this can mean both a perfect shot or a completely
missed one. There are many different ways to make a shot, so our system has to improve here
significantly.

5. Discussion and Future Work

Our implemented methods also could be used in other sports events because we used universal
solutions. We have to keep in mind that our hard written variables, such as 80 pixels or 12
frames, in the Motion filter can be an obstacle because of the different sizes and speed of the
ball, the distance between the camera, and video resolution. If criteria are met as it is in our
test file, when the ball may be detected in other sports events.

To confirm this idea, we tested our model with other sport’s videos found on Youtube. In
volleyball, the ball was recognized despite the camera and people in the background moving a
little, and in soccer, a ball was recognized even through the net Figure 5.

Figure 5: Results in volleyball and soccer videos. Top left frame is from a video by Meneo “Tarptautinis
moteru papludimio tinklinio turnyras amber cup by kredito garantas 2019” – youtube, https://youtu.
be/Lwj4geVLNwk, 2020. Bottom left from a video by RDM Football “Raw #3 | knuckleballs, curves, fails
and more” – youtube, https://youtu.be/Vn6epoV7yDk, 2018.

We want to develop this project to properly track the trajectory of the ball and count shot
statistics in a basketball practice using only a mobile phone. For this, the current system has to
improve in accuracy and efficiency, include methods that analyze shots, and has to be adapted
for mobile devices. Based on the recorded data, the progress of the shooter will be shown along
with feedback on the speed, trajectory, and consistency of the shots.

https://youtu.be/Lwj4geVLNwk
https://youtu.be/Lwj4geVLNwk
https://youtu.be/Vn6epoV7yDk


The collected data, tested methods and algorithms will help us employ machine learning in
our project. Frames with correct ball recognition will be very helpful as annotated data for
training machine learning algorithms. State-of-the-art results in this field are achieved using
convolutional neural networks [29, 30, 31]. Our future work is to research the accuracy and
computational costs of these methods and incorporate them in our system for benefit.
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