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Abstract
Convolutional neural networks (CNNs) have be-
come an established part of numerous safety-
critical computer vision applications, including
human robot interactions and automated driving.
Real-world implementations will need to guarantee
their robustness against hardware soft errors cor-
rupting the underlying platform memory. Based on
the previously observed efficacy of activation clip-
ping techniques, we build a prototypical safety case
for classifier CNNs by demonstrating that range su-
pervision represents a highly reliable fault detec-
tor and mitigator with respect to relevant bit flips,
adopting an eight-exponent floating point data rep-
resentation. We further explore novel, non-uniform
range restriction methods that effectively suppress
the probability of silent data corruptions and un-
correctable errors. As a safety-relevant end-to-end
use case, we showcase the benefit of our approach
in a vehicle classification scenario, using ResNet-
50 and the traffic camera data set MIOVision. The
quantitative evidence provided in this work can be
leveraged to inspire further and possibly more com-
plex CNN safety arguments.

1 Motivation
With the widespread use of convolutional neural networks
(CNN) across many safety-critical domains such as auto-
mated robots and cars, one of the most prevailing challenges
is the establishment of a safety certification for such artifi-
cial intelligence (AI) components, e.g., with respect to the
ISO 26262 [1] or ISO/PAS 21448 (SOTIF) [2]. This certifi-
cation requires not only a high fault-tolerance of the trained
network against unknown or adversarial input, but also ef-
ficient protection against hardware faults of the underlying
platform [3, 4]. Importantly this includes transient soft er-
rors, meaning disturbances originating from events such as
cosmic neutron radiation, isotopes emitting alpha particles,
or electromagnetic leakage on the computer circuitry itself.
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G1: System is 
sufficiently safe in 

the presence of 
soft errors.

G2: System detects critical 
soft errors. 

G3: System mitigates soft 
errors.

E2c: DUE events can further be 
detected by Nan/Inf monitoring.

E2a: SDC/DUE events appear in 
conjunction with oob events with a 

high conditional probability.

E3a: The probability of SDC/DUE 
events is significantly reduced by 

restricting oob activations in 
protection layers.

G4: System does not increase 
the error severity.

E4b: The severity of residual SDC
depends on the application. As an 
example, we study the scenario of 
MioVision and ResNet50 and find 
that the average severity of errors 

is comparable or lower.

E2b: Oob events are detected by 
threshold-based protection layers.

C1: Operational design domain: 
Inference of pretrained classifier 
networks with protection layers, 
input represented by given dataset.
C2: An appropriate independent 
dataset for bound extraction exists.
C3: “Sufficiently safe” is well defined 
by the end user and is proportional 
to the overall risk.

C4: The chance of a soft error 
event to occur can be given.
C5: The simulated weight/neuron 
fault model appropriately represents 
realistic soft errors.
C6: The data representation has 
eight exponent bits (FP32, BF16).
C7: A fallback system/re-execution 
can be used for uncorrectable errors.

E4a: DUE events can be handled 
with negligible risk for any error 

severity.

E3b: DUE events can further be 
mitigated by referring to a fallback 

system or via re-execution.

Figure 1: Structured safety argument for the fault tolerance of a
CNN in the presence of soft errors, using range restrictions. The
notation follows [10] including goals (G), context (C), and evidence
(E). ”Oob” denotes ”out-of-bounds”.

Soft errors typically manifest as single or multiple bit up-
sets in the platform’s memory elements [5]. As a conse-
quence, network parameters (weight faults) or local compu-
tational states (neuron faults) can be altered during inference
time, and invalidate the network prediction in a safety-critical
way, for example, by misclassifying a person as a background
image in an automated driving context [6–8]. This has led to
a search for strategies to verify CNN-based systems against
hardware faults at the inference stage [9]. With chip technol-
ogy nodes scaling to smaller sizes and larger memory density
per area, future platforms are expected to be even more sus-
ceptible to soft errors [5].

In this paper, we evaluate range restriction techniques in
CNNs exposed to platform soft errors with respect to the key
elements of a prototypical safety case. This means that we
formulate arguments (in the form of ”goals”) that constitute
essential parts of a complete safety case, and provide quanti-
tative evidence to support these goals in the studied context
(see Fig. 1). Individual safety arguments can be reused as
building blocks of more complex safety cases. The structure
of our goals is based on the probabilistic, high-level safety
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Figure 2: Visualization example of the impact of a weight fault
using LeNet-5 and the MNIST data set. Range restriction layers
(”Ranger”) are inserted following [8] (top left). The rows represent
the feature maps of the individual network layers after range restric-
tion was applied, where linear layers (FC1-FC3) were reshaped to
a 2D feature map as well for visualization purposes. In (b) - (g), a
large weight fault value is injected in the second filter of the first con-
volutional layer. For the unprotected model (b), this leads to a SDC
event (”0” gets changed to ”7”). The columns (c) - (g) then illustrate
the effect of the different investigated range restriction methods.

objective of minimizing the overall risk [10], expressed as:

Ploss(i) = Pfailure(i)
[
(1−Pdetection(i))+(1−Pmitigation(i))

]
,

Risk = ∑
i

Ploss(i) ·Severity(i).

(1)
Explicitly, for a fault type i, this includes the sub-goals of
efficient error detection and mitigation, as well as a consid-
eration of the fault severity in a given use case. On the other
hand, the probability of occurrence of a soft error (i.e., Pfailure
in Eq. 1) is assumed to be a constant system property that
cannot be controlled by run-time monitoring methods such as
activation range supervision.

In a nutshell, range restriction builds on the observation
that silent data corruption (SDC) and detected uncorrectable
errors (DUE), e.g., NaN and Inf occurrences), stem primarily
from those bit flips that cause very large values, for example
in high exponential bits [6]. Those events result in large ac-
tivation peaks that typically grow even more during forward

propagation due to the monotonicity of most neural network
operations [11]. To suppress the propagation of such cor-
rupted values, additional range restriction layers are inserted
in the network at strategic positions following the approach
of Chen et. al. [8] (see Fig. 2 for an example). At inference
time, the protection layers then compare the intermediate ac-
tivations against previously extracted interval thresholds in
order to detect and reset anomalously large values. Deriva-
tive approaches have been shown to be efficient in recovering
network performance [6–8, 12] and, advantageously, do not
require the retraining of CNN parameters nor computation-
ally expensive functional duplications.

The focus of this paper is to examine alternative restriction
schemes for optimized soft error mitigation. In a CNN, the
output of every kernel is represented as a two-dimensional
(2D) feature map, where the activation magnitudes encode
specific features, on which the network bases its prediction.
Soft errors will manifest as distortions of feature maps in all
subsequent layers that make use of the corrupted value, as
shown in Fig. 2(a)-(b). The problem of mitigating soft errors
in a CNN can therefore be rephrased as restoring the fault-
free topology of feature maps.

Previous analyses have adopted uniform range restriction
schemes that truncate out-of-bound values to a finite thresh-
old [7, 8], e.g., Fig. 2(c)-(d). We instead follow the intuition
that optimized, non-uniform range restriction methods that
attempt to reconstruct feature maps (see Fig. 2(e)-(g), and de-
tails in Sec. 5) can not only reduce SDC to a comparable or
even lower level, but may also lead to less critical misclassi-
fications in the case of an SDC. This is because classes with
more similar attributes will display more similar high-level
features (e.g., pedestrian and biker will both exhibit upright
silhouette, in contrast to car and truck classes).

Finally, a safety analysis has to consider that not all SDC
events pose an equal risk to the user. We study a safety-
critical use case evaluating cluster-wise class confusions in
a vehicle classification scenario (Sec. 6). The example shows
that range supervision reduces the severe confusions propor-
tionally with the overall number of confusions, meaning that
the total risk is indeed mitigated.

In summary, this paper make the following contributions:

• Fault detection: We quantify the correlation between
SDC events and the occurrence of out-of-bound activa-
tions to demonstrate the high efficiency of fault detection
by monitoring intermediate activations,

• Fault mitigation: We explore three novel range restric-
tion methods that build on the preservation of the feature
map topologies instead of mere value truncation,

• Fault severity: We demonstrate the benefit of range su-
pervision in an end-to-end use case of vehicle classifica-
tion where high and low severities are estimated by the
generic safety-criticality of class confusions.

The article is structured as follows: Section 2 reviews rele-
vant previous work while section 3 describes the setup used
in this paper. Subsequently, the sections 4, 5, and 6 discuss
error detection, mitigation, and an exemplary risk analysis,
respectively, before section 7 concludes the paper.



2 Related work
Parity or error-correcting code (ECC) can protect memory el-
ements against single soft errors [5, 13]. However, due to the
high compute and area overhead, this is typically done only
for selected critical memory blocks. Component replication
techniques such as triple modular redundancy can be used for
the full CNN execution at the cost of a large overhead. Se-
lective hardening of hardware elements with the most salient
parameters can improve the robustness of program execution
in the presence of underlying faults [6, 14]. On a software
level, the estimation of the CNN’s vulnerable feature maps
(fmaps) and the selective protection by duplicated computa-
tions [15], or the assertive re-execution with stored, healthy
reference values [16] has been investigated. Approaches us-
ing algorithm-based fault tolerance (ABFT) [17] seek to pro-
tect networks against soft errors by checking invariants that
are characteristic for a specific operation (e.g., matrix mul-
tiplication). Symptom-based error detection may for exam-
ple include the interpretation of feature map traces by a sec-
ondary companion network [18]. The restriction of inter-
mediate ranges was explored [6, 12] in the form of modi-
fied (layer-insensitive) activation functions such as tanh or
ReLU6. This concept was extended to find specific uniform
protection thresholds for neuron faults [8] or clipping bounds
for weight faults [7]. An alternative line of research is cen-
tered around fault-aware retraining [19].

3 Experimental setup
3.1 Models, data sets, and system
CNNs are the most commonly used network variant for com-
puter vision tasks such as object classification and detection.
We compare the three standard classifier CNNs ResNet-50
[20], VGG-16 [21], and AlexNet [22] together with the test
data set ImageNet [23] and MIOVision [24] for the investiga-
tion of a safety-critical example use case. Since fault injec-
tion is compute-intensive, we rescale our test data set for Im-
ageNet to a subset of 1000 images representing 20 randomly
selected classes. For MIOVision, a subset of 1100 images
(100 per class) that were correctly classified in the absence of
faults was chosen. All experiments adopt a single-precision
floating point format (FP32) according to the IEEE754 stan-
dard [25]. Our conclusions apply as well to other floating
point formats with the same number of exponent bits, such as
BF16 [26], since no relevant effect was observed from fault
injections in mantissa bits (Sec. 4).

Experiments were performed in PyTorch (version 1.8.0)
deploying torchvision models (version 0.9.0). For MIOVi-
sion, the ResNet-50 model was retrained [27]. We used Intel®
Core™ i9 CPUs, with inferences running on GeForce RTX
2080, Titan RTX, and RTX 3090 GPUs.

3.2 Protection layers and bound extraction
We insert protection layers at strategic positions in the net-
work such as after activation, pooling, reshape or concatenate
layers, according to the model of Chen et al. [8]. Each pro-
tection layer requires specific bound values for the expected
activation ranges as a parameter. We extract those by mon-
itoring the minimal and maximal activations from a sepa-

Inject 
faults

No faults

Faults
DUE

SDC

Figure 3: Illustration of SDC and DUE events. Errors are detected
or missed in the case of out-of-bound (oob) or in-bound (ib) events,
respectively. (Green) Samples of the data set that form the subset
of a given filtering stage, (Yellow) samples of the data set that are
discarded at the given stage, (White) samples that were filtered out
at a previous stage.

rate test input, which is taken from the training data sets of
ImageNet (143K images used) and MIOVision (83K images
used), respectively. This step has to be performed only once.
Bound extraction depends on the data set and will in general
impact the safety argument (see Fig. 1). To check the suit-
ability of the bounds, we verify that no out-of-bound events
were detected during the test phase in the absence of faults,
so the baseline accuracy is the same with and without pro-
tection. While all minimum bounds are zero in the studied
setup, the maximum activation values for ImageNet vary by
layer in a range of (see also Sec. 5) 1 < Tup < 45 for ResNet-
50, 20 < Tup < 360 for VGG-16, and 65 < Tup < 170 for
AlexNet. For MIOVision and ResNet-50, we find maximum
bounds between 1 < Tup < 19.

3.3 Fault model and injection
In line with previous investigations, we distinguish two dif-
ferent manifestations of memory bit flips referred to here as
weight faults and neuron faults. The former represent soft er-
rors affecting memory elements that store the learned network
parameters, while the latter refer to errors in memory that
holds temporary states such as intermediate network layer
outputs. While neuron faults may also impact states used
for logical instructions, it was demonstrated that bit flip in-
jections in the output of the affected layer are generally a
good model approximation [28]. Memory elements can be
protected against single bit flips by mechanisms such as par-
ity and ECC [5, 13]. However, this kind of protection is not
always available due to the associated compute and area over-
head. Further, ECC typically cannot correct multi-bit flips.

We inject faults either directly in the weights of CNN lay-
ers (weight faults) or in the output of the latter (neuron faults),
using a customized fault injection framework based on Py-
torchFI [29]. To speed up the experiments we focus on bit
flips in the most relevant bit positions 0−8 (sign bit and ex-



ponential bits, neglecting mantissa) unless stated otherwise.
Fault locations (i.e., layer index, kernel index, channel etc.)
in the network are randomly chosen with an equal weight, so
without further constraints on the selection process to reflect
the arbitrary occurrence of soft errors. As weights are typ-
ically stored in the main memory and loaded only once for
a given application, we keep the same weight faults for one
entire epoch, running all tested input images. In total, we run
500 epochs, i.e., fault configurations, each one applied to 1K
images. Neuron faults, on the other hand, apply to memory
representing temporary states that are overwritten for each
new input. Therefore, we inject new neuron faults for each
new input and run 100 epochs resulting in 100K fault config-
urations, each one applied to a single image.

3.4 Evaluation
To quantify the impact of faults on the system safety, we
measure the rate of SDC events. Throughout, we consider
the Top-1 prediction to determine SDC. In line with previous
work [6, 8], SDC is defined as the ratio of images that are
misclassified in the presence of faults (without exceptions)
but correctly classified in the absence of faults and the overall
number of images, p(sdc) = Nincorrect/Ntest , correct (Fig. 3).

During the forward pass, non-numerical exceptions in the
form of Inf and NaN values can be encountered, due to
the following reasons: i) Inf values occur if large activa-
tion values accumulate (for example during conv2d, linear,
avgpool2d operations) until they exceed the maximum of the
data representation. This effect becomes particularly appar-
ent when flips of the most significant bit (MSB, position index
1) are injected. ii) NaN values are found when denominators
are undetermined or multiple Inf values get added, e.g., in
BatchNorm2d layers, iii) NaN values can be generated di-
rectly via bit flips in conv2d layers due to the fact that FP32
encodes NaN as all eight exponent bits being in state ”1”. In
the studied classifier networks, the latter effect is very rare for
single bit flips in weights (see Sec. 4) but not necessarily for
single neuron bit flips or multiple flips of either type.

The creation of the above exceptions is found to differ
slightly between CPU and GPU executions, as well as be-
tween experiments with different batch sizes on the acceler-
ator. We attribute this observation to algorithmic optimiza-
tions on the GPU that are not necessarily IEEE754-compliant
and thus affect the floating point precision [30]. To miti-
gate the effect of exception handling we monitor the occur-
rences of Inf and NaN in the output of any network layer.
All forward passes with an exception are separated and de-
fine the detected uncorrectable error (DUE) rate, p(due) =
Nexceptions/Ntest, correct, see Fig. 3.

In a real system, DUE events can be readily monitored and
the execution is typically halted on detection. However, due
to the non-numerical nature of these errors we cannot apply
the same mitigation strategy that is adopted for SDC events.
We therefore make the assumption that either a fallback sys-
tem (e.g., alternative classifier, emergency stop of vehicle,
etc.) can be leveraged or a timely re-execution is possible to
recover from transient DUE events. This in turn assumes that
DUEs do not impact the system safety but may compromise
the system availability when occurring frequently.

Figure 4: Bit-distribution across all weight parameters in conv2d
layers. Values are represented in FP32, where only the sign bit (0)
and the exponent bits (1−8) are shown.

4 Error detection coverage
To effectively protect the network against faults, we first ver-
ify the error detection coverage for silent errors. Those er-
rors are detected by a given protection layer if the activation
values exceed (fall short of) the upper (lower) bound. If at
least one protection layer is triggered per inference run, we
register an out-of-bound (oob) event. Otherwise, we have an
in-bound (ib) event. In addition, we quantify the probabilities
of SDC and regular correct classification (cl) events, as well
as the respective conditional probabilities that correct and in-
correct classifications occur given that oob or ib events were
detected. This allows us to define true positive (Tp), false
positive (Fp), and false negative (Fn) SDC detection rates as

Tp = p(sdc|oob) · p(oob),
Fp = p(cl|oob) · p(oob),
Fn = p(sdc|ib) · p(ib).

(2)

The fault detector then is characterized by precision, P =
Tp/(Tp+Fp), and recall, R = Tp/(Tp+Fn).

The Tab. 1 displays the chances of oob and sdc events re-
sulting from a single fault per image in the absence of range
protection. For weight faults, we find that all three CNNs
showcase a high correlation between oob situations and ei-
ther SDC or DUE events (p(sdc|oob)+ p(due|oob) > 0.99),
which can be associated with the chance of a successful error
detection, Pdetection (see Eq. 1). The chance of finding SDC
after ib events is very small (� 1e−3), leading to a very high
precision and recall performance (> 0.99). For neuron faults,
while the recall remains very high, the precision is reduced (in
particular VGG-16 and AlexNet) due to additional Fp events
where non-MSB oob events still get classified correctly.

We further verify that SDC events from single weight faults
are attributed almost exclusively to flips of the MSB. This can
be explained with the distribution of parameters in the studied
networks (Fig. 4). The weight values are closely centered
around zero, and thus exhibit characteristic properties when



represented in an eight-exponent data format. In the fault-free
case, the MSB always has state “0”, while the exponent bits 2
to 4 are almost always in state “1”. This means that among the
relevant exponential bits all single bit flips of the MSB will
produce large values, while those of the other exponential bits
will either be from “1”→ “0” or will be too small to have a
significant effect.

For neuron faults, on the other hand, the distribution of
fault-free values is input-dependent and broader, leading in
general to a smaller quota of MSB flips to SDC, in favor of
flips of other exponential bits and the sign bit. No SDC due
to mantissa bit flips were observed in either weight or neuron
faults. DUE events are unlikely (< 0.01) for a single bit flip as
there are not multiple large values to add up. Further, network
weights are usually < 1, meaning that at least two exponent
bits are in state ”0”, and hence at least two bit flips are needed
to directly generate a NaN value.

5 Range restriction methods for error
mitigation

5.1 Model
We refer to a subset of the tensor given by a specific index in
the batch and channel dimensions as a 2D feature map, de-
noted by f . Let x be an activation value from a given feature
map tensor f ∈ { f1, f2, . . . , fCout}. Further, Tup and Tlow de-
note the upper and lower activation bounds assigned to the
protection layer, respectively.

Ranger: For a given set of ( f ,Tup,Tlow), Ranger [8] maps
out-of-bound values to the expected interval (see Fig. 2c),

rranger(x) =


Tup if x > Tup,

Tlow if x < Tlow,

x otherwise.
(3)

Clipper: In a similar way, clipping truncates activations
that are out of bound to zero [7],

rclipping(x) =
{

0 if x > Tup or x < Tlow,

x otherwise.
(4)

The intuition is that it can be favorable to eliminate corrupted
elements rather than to re-establish finite activations.

FmapRescale: While uniform restriction methods help in
eliminating large out-of-bound values, the information en-
coded in relative differences of activation magnitudes is lost
when all out-of-bound values are flattened to the same value.
The idea of rescaling is to linearly map all large out-of-bound
values back onto the interval [Tlow,Tup], implying that smaller
out-of-bound values are reduced more. This follows the in-
tuition that the out-of-bound values can originate from the
entire spectrum of in-bound values.

rrescale(x) =


(x−min( f ))(Tup−Tlow)

max( f )−min( f ) +Tlow if x > Tup,

Tlow if x < Tlow,

x otherwise.

(5)

Backflip: We analyze the underlying bit flips that may
have caused out-of-bound values. This reasoning holds for

Weight faults Neuron faults

ResNet-50:
p(sdc) 0.018±0.001 0.013±6e−4

p(oob) 0.019±0.001 0.013±6e−4

p(sdc|oob) 0.981±0.008 0.974±0.008
p(sdc|ib) 5e−5±4e−5 0.0±0.0
p(MSB|sdc) 0.998±0.002 0.961±0.012
P 0.997±0.002 0.980±0.006
R 0.997±0.002 1.0±0.0
p(due) 3e−4±1e−4 5e−4±1e−4

p(due|oob) 0.016±0.008 0.006±0.005
p(MSB|due) 1.0±0.0 1.0±0.0
VGG-16:
p(sdc) 0.024±0.001 0.016±9e−4

p(oob) 0.027±0.001 0.020±0.001
p(sdc|oob) 0.893±0.010 0.778±0.016
p(sdc|ib) 7e−5±7e−5 0.0±0.0
p(MSB|sdc) 0.997±0.003 0.397±0.017
P 0.999±0.001 0.820±0.014
R 0.997±0.003 1.0±0.0
p(due) 0.003±4e−4 0.006±4e−4

p(due|oob) 0.106±0.011 0.051±0.012
p(MSB|due) 1.0±0.0 1.0±0.0
AlexNet:
p(sdc) 0.022±0.001 0.013±0.001
p(oob) 0.024±0.001 0.015±0.001
p(sdc|oob) 0.907±0.012 0.877±0.023
p(sdc|ib) 2e−4±1e−4 9e−5±5e−5

p(MSB|sdc) 0.995±0.003 0.245±0.031
P 1.0±0.0 0.913±0.025
R 0.989±0.005 0.994±0.004
p(due) 0.003±3e−4 0.005±3e−4

p(due|oob) 0.093±0.012 0.040±0.011
p(MSB|due) 1.0±0.0 1.0±0.0

Table 1: Statistical absolute and conditional probabilities of SDC,
DUE events and the related precision and recall of the fault detector.
Experiments of 10K fault injections were repeated 10 times, where
a single fault per image was injected in any of the 32 bits for each
image (from ImageNet, using a batch size of one). We further list
what proportion of SDC or DUE events were caused by MSB flips.

neuronal faults, where we may assume that a specific acti-
vation value is bit-flipped directly. For weight faults, on the
other hand, the observed out-of-bound output activation is the
result of a multiply-and-accumulate operation of an input ten-
sor with a bit-flipped weight value. However, we argue that
the presented back-flip operation will recover a representa-
tive product, given that the input component is of the order of
magnitude of one. To restore a flipped value, we distinguish
the following cases:

rbackflip(x) =



0 if x > Tup ·264,

2 if Tup ·264 > x > Tup ·2,
Tup if Tup ·2 > x > Tup,

Tlow if x < Tlow,

x otherwise.

(6)
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Figure 5: SDC rates for weight (a) and neuron (b) faults using dif-
ferent range supervision techniques. Note that compared to Tab. 1
rates are around 4× higher since we inject only in the bits 0−8 here.

The above thresholds are motivated by the following logic:
Given appropriate bounds, an activation is < Tup before a bit
flip. Any flip of an exponential bit i ∈ {1 . . .8} effectively
multiplies a factor of pow(2,28−i). Hence, any value beyond
Tup · 264 must have originated from a flip ”0”→ ”1” of the
MSB, meaning that the original value was between 0 and 2.
We then set back all out-of-bound values in this regime to
zero, assuming that lower reset values represent a more con-
servative choice in eliminating faults. Next, flipped values
that are between Tup ·264 > x > Tup ·2 can possibly originate
from a flip of any exponential bit. Given that Tup is typically
> 1, a bit flip has to produce a corrupted absolute value > 2 in
this regime. This is possible only if either the MSB is flipped
from ”0”→ ”1”, or the MSB is already at ”1” and another
exponential bit is flipped ”0”→ ”1”. In all variants of the lat-
ter case, the original value had to be already > 2 itself, and
hence we conservatively reset out-of-bound values to 2. Fi-
nally, corrupted values of Tup ·2 > x > Tup may originate from
any non-sign bit flip. Lower exponential or even fraction bit
flips result from already large values close to Tup in this case,
which is why we set back those values to the upper bound.
As in Ranger, values that are too small are reset to Tlow.

FmapAvg: The last proposed range restriction technique
uses the remaining, healthy fmaps of a convolutional layer to

reconstruct a corrupted fmap. The intuition behind this ap-
proach is as follows: Every filter in a given conv2d layer tries
to establish characteristic features of the input image. Typi-
cally, there is a certain redundancy in the topology of fmaps,
since not all features the network was trained to recognize
may be strongly pronounced for a given image (instead mix-
tures of potential features may form), or because multiple
features resemble each other at the given processing stage.
Therefore, replacing a corrupted fmap with a non-corrupted
fmap from a different kernel can help to obtain an estimate of
the original topology. We average all healthy (i.e., not con-
taining out-of-bound activations) fmaps by

ind = {i = 1 . . .Cout|max( fi)≤ Tup,min( fi)≥ Tlow},

favg =
1
|ind| ∑

j∈ind
fi. (7)

If there are no healthy feature maps, favg will be the zero-
tensor. Subsequently, we replace oob values in a corrupted
fmap with their counterparts from the estimate of Eq. (7),

rfavg(x) =
{

favg(x) if x > Tup or x < Tlow,

x otherwise.
(8)

5.2 Results
In Fig. 5 we present results for the SDC mitigation exper-
iments with different range supervision methods. Compar-
ing 1 and 10 fault injections per input image, we note that
the unprotected models are dramatically corrupted with an
increasing fault rate (SDC rate becomes ≥ 0.50 for weights,
≥ 0.32 for neurons in the presence of 10 faults). We can asso-
ciate the SDC rate with the chance of unsuccessful mitigation,
1−Pmitigation, in Eq. 1. Weight faults have a higher impact
than neuron faults since they directly corrupt a multitude of
activations in a layer’s fmap output (in contrast to individual
activations for neuron faults) and thus propagate faster than
neuron faults.

All the studied range restriction methods reduce the SDC
rate by a significant margin, but perform differently for
weight and neuron fault types: For weight faults, we observe
that Clipper, Backflip, and FmapAvg are highly efficient in
all three networks, with SDC rates suppressed to values of
. 0.01 (SDC reduction of > 50×). Ranger provides a much
weaker protection, in particular in the more shallow networks
VGG-16 and AlexNet. FmapRescale performs better than
Ranger but worse than the aforementioned methods. The
deepest studied network, ResNet-50, benefits the most from
any type of range restriction in the presence of weight faults.

When it comes to neuron faults (Fig. 5b), we see that Clip-
per and Backflip provide the best protection (SDC rate is sup-
pressed to < 0.005, reduction of > 38×), followed by the
also very effective Ranger (except for AlexNet). FmapAvg
appears to be less efficient for higher fault rates in this sce-
nario, while FmapRescale again falls behind all the above.

Overall, we conclude that the pruning-inspired mitigation
techniques Clipper and Backflip represent the best choices
among the investigated ranger supervision methods, as they
succeed in mitigating both weight and neuron faults to very
small residual SDC rates.
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Figure 6: Formation of class clusters in MIOVision (VRU denotes
vulnerable road user). We make the assumption here that confusions
towards less vulnerable clusters are the most safety-critical ones.

In the experiments of Fig. 5, the encountered DUE rates for
1 weight or neuron fault (0.003 for ResNet, 0.03 for VGG-16
or AlexNet) are only slightly reduced by range restrictions.
However, for a fault rate of 10 we find the following trends:
i) For weights, the DUE is significantly reduced in ResNet
(from 0.15 to 0.002), while rates in VGG (0.22) and AlexNet
(0.26) remain. ii) For neurons, Ranger, Clipper and Backflip
suppress the DUE rate by a factor of up to 2× in all networks.

The studied range restriction techniques require different
compute costs due to the different number of additional graph
operations. In PyTorch, not all needed functions can be im-
plemented with the same efficiency though. For example,
Ranger is executed with a single clamp operation, while no
equivalent formulation is available for Clipper and instead
three operations are necessary (two masks to select oob val-
ues greater and smaller than the threshold, and a masked-fill
operation to clip to zero). As a consequence, measured laten-
cies are framework-dependent and a fair comparison cannot
be made at this point. Given the complexity of the protection
operations, we may instead give a qualitative performance
ranking of the described methods: FmapRescale appears to
be the most expensive restriction method due to the needed
number of operations, followed by FmapAvg and Backflip.
Clipper and Ranger are the least complex, with the latter out-
performing the former in the used framework, due to its more
efficient use of optimized built-in operations.

6 Analysis of traffic camera use case
As a selected safety-critical use case, we study object classifi-
cation in the presence of soft errors with a retrained ResNet-
50 and the MIOVision data set [24]. The data contains im-
ages of 11 classes including for example pedestrian, bike, car,
or background, that were taken by traffic cameras. The cor-
rect identification of an object type or category can be safety-
critical for example to an automated vehicle that uses the sup-
port of infrastructure sensors for augmented perception [31].

However, not every class confusion is equally harmful.
To estimate the severity of an error-induced misclassifica-
tion we establish three clusters of vulnerable, as well as non-
vulnerable road users (VRU or non-VRU), and background,
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Figure 7: SDC rates for ResNet-50 and MIOvision. We inject 1 and
10 faults targeting bits 0−8 in the network weights (a) and neurons
(b). The portion of safety-critical SDC events according to Fig. 6 is
displayed as a dark-color overlay.

see Fig. 6. Misclassifications that lead to the prediction of
a class in a less vulnerable cluster are assumed to be safety-
critical (Severity≈ 1 in Eq. 1, e.g., a pedestrian is misclassi-
fied as background), while confusions within the same clus-
ter or towards a more vulnerable cluster are considered non-
critical (Severity≈ 0) as they typically lead only to similar or
a more cautious behavior. This binary estimation allows us
quantify the overall risk as the portion of SDC events associ-
ated with the respective critical class confusions.

From our results in Fig. 7 we make the following obser-
vations: i) The relative proportion of critical confusions is
lower for weight than for neuron faults in the unprotected and
most protected models. For weight faults, the most frequent
confusions are from other classes to the class ”car” (the most
robust class of MIOVision, with the most images in the train-
ing set), which are statistically mostly non-critical. Neuron
faults, on the other hand, distort feature maps in a way that
induces with the highest frequency misclassifications towards



the class ”background”. Those events are all safety-critical
(see Fig. 6), leading to a high critical-to-total SDC ratio. ii)
Range supervision is not only effective in reducing the over-
all SDC count, but also suppresses the critical SDC count
proportionally. For example, we observe that the most fre-
quent critical class confusion caused by 1 or 10 weight faults
is from the class ”pedestrian” to ”car” (≈ 0.2 of all critical
SDC cases), where > 0.99 of those cases can be mitigated
by Clipper or Backflip. For neuron faults, the largest criti-
cal SDC contribution is from ”pedestrian” to ”background”
(1 fault) or ”car” to ”background” (10 faults), both in about
0.1 of all critical SDC cases. Clipper or Backflip are able to
suppress > 0.91 of those events.

As a consequence, all studied range-restricted models ex-
hibit a critical-to-total SDC ratio that is similar to or lower
than one of the unprotected network (< 0.41 for weight,
< 0.78 for neuron faults), meaning that faults in the presence
of range supervision have on average a similar or lower sever-
ity than faults that do not face range restrictions. A lower ratio
can be interpreted as a better preservation of the feature map
topology: If the reconstructed features are more similar to the
original features there is a higher chance of the incorrect class
being similar to the original class and thus to stay within the
same cluster. The total probability of critical SDC events –
and therefore the relative risk according to Eq. 1 – is negligi-
ble in the studied setup in the presence of Clipper or Backflip
range protection.

The mean DUE rates in the unprotected model are 0.0
(0.02) for 1 weight (neuron) fault and 0.11 (0.17) for 10
faults. Using any of the protection methods, the system’s
availability increases as DUE rates are negligible for 1 fault,
and reduce to < 0.03 (< 0.05) for 10 weight (neuron) faults.

7 Conclusion

In this paper, we investigated the efficacy of range supervi-
sion techniques for constructing a safety case for computer
vision AI applications that use Convolutional Neural Net-
works (CNNs) in the presence of platform soft errors. In the
given experimental setup, we demonstrated that the imple-
mentation of activation bounds allows for a highly efficient
detection of SDC-inducing faults, most importantly featur-
ing a recall of > 0.99. Furthermore, we found that the range
restriction layers can mitigate the once-detected faults effec-
tively by mapping out-of-bound values back to the expected
intervals. Exploring distinct restriction methods, we observed
that Clipper and Backflip perform best for both weight and
neuron faults and can reduce the residual SDC rate to . 0.01
(reduction by a factor of > 38×). Finally, we studied the
selected use case of vehicle classification to quantify the im-
pact of range restriction on the severity of SDC events (repre-
sented by cluster-wise class confusions). All discussed tech-
niques reduce critical and non-critical events proportionally,
meaning that the average severity of SDC is not increased.
Therefore, we conclude that the presented approach reduces
the overall risk and thus enhances the safety of the user in the
presence of platform soft errors.
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