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Abstract  
This paper focuses of the development and study of the advanced approach for structural 

optimization of fuzzy control and decision making systems based on determination of linguistic 

terms (LTs) optimal number. The application of the proposed approach makes it possible to 

increase the fuzzy system (FS) performance and accuracy, to reduce the computational costs 

spent on the rule base (RB) composing and parameters optimization, as well as to simplify its 

further hardware and software implementation. The developed approach is tested in this paper 

at design and structural optimization of the fuzzy cruise control system for the electric vehicle. 

The obtained results of the conducted research confirm the high efficiency and feasibility of 

using the developed approach for synthesis and optimization of various fuzzy control and 

decision-making systems. 
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1. Introduction 

Artificial intelligence (AI) systems are currently implemented in almost all areas of human activity, 

starting from science, medicine and various industries, and ending with the spheres of management, 

logistics and security [1]. Breakthrough AI technologies allow analyzing huge arrays of complex 

information, recognizing graphic images and speech, performing various creative tasks that were 

previously possible only for humans, simulating little-studied natural phenomena, controlling complex 

robotic and space objects, etc. [2, 3]. Among the main technologies and approaches of AI, the fuzzy 

logic is one of the most widespread and promising for solving a wide range of tasks [4-6]. It gives the 

opportunity to use effectively expert information, to mimic mechanisms of human thinking and 

decision-making, as well as to create linguistic models of complex processes and plants. As practice 

shows, the application of fuzzy logic techniques is the most appropriate when building intelligent 

control and decision-making systems of different types [7-9]. In particular, fuzzy automatic control 

systems (FACS) of executive, tactical and strategic levels show impressive results in control of plants 

with randomly changing operating conditions, as well as nonlinear and non-stationary characteristics. 

Such plants are drones, underwater vehicles, spacecrafts and satellites, pyrolysis reactors and 

thermoacoustic units, marine floating docks, electric cars and others [10-13]. In the same way, fuzzy 

decision-making systems (FDMS) are successfully used as expert systems operating under conditions 

of uncertainty in medical diagnostics, transport logistics, stock market forecasting, financial 

management, etc. [14-16].  

To use the full potential and maximize the efficiency of fuzzy systems, it is expedient to perform 

their design using progressive methods and information technologies, which are far from being limited 

to the use of only experts’ assessments and recommendations. These approaches and techniques are 
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based on specific procedures of structural and parametric optimization and can use experts’ knowledge 

only as initial hypotheses [17-19]. The development, improvement and approbation of such approaches 

and software means for their implementation is currently one of the most promising areas of 

development of the advanced theory of fuzzy systems and soft computing [20-22]. 

To date, a sufficiently large number of works have already been published that are dedicated to 

development and successful application of efficient approaches and methods of FACSs and FDMSs 

design and optimization [23-25]. Among them are methods of parametric optimization of linguistic 

terms membership functions (LTMF) and consequents of rule base [26, 27], as well as technologies of 

structural optimization based on the optimal choice of defuzzification procedures, RB interpolation and 

reduction [28-30]. Moreover, in the most advanced studies, the synthesis and optimization of fuzzy 

systems is carried out not only with the help of classical optimization methods [31, 32], but also by 

means of bioinspired techniques of evolutionary and multi-agent optimization [33-35]. For instance, in 

recent works, the synthesis of RBs based on modified ant colony algorithms is performed [36], the 

optimization of rules weights based on particle swarm methods is carried out [37, 38], as well as the 

optimal choice of the membership functions types using genetic, immune and biogeography based 

algorithms is conducted [39].  

When considering the problem of FS synthesis and optimization, as well as solving it using the 

above advanced intelligent techniques, the special attention should be paid to the tasks of structural 

optimization [39, 40]. This is due to the fact that the best variant of the FS structure obtained in the 

optimization process directly affects not only the performance and accuracy of the FS, but also the 

computational costs spent on the formation (composing) of the rule base and optimization of 

parameters, as well as the complexity of its further hardware and software realization. The FS optimal 

structure is such a variant of the structure, which ensures (a) the achievement of the optimal 

performance and accuracy, (b) the admissible computational costs for formation of the RB and 

parametric optimization, as well as (c) the acceptable complexity of the hardware and software 

implementation of the FS [29, 39, 40]. Thus, research aimed at the development and improvement of 

methods and information technologies for finding the optimal structure of the FS is undoubtedly 

relevant and important for the modern theory of FACSs and FDMSs.  

Among the main challenges of FSs structural optimization, the task of determination of the linguistic 

terms optimal number is the most complicated and important. Selection of different variants of the 

linguistic terms number gives the opportunity to implement various strategies of control and decision-

making at composing FSs rule bases. Therefore, the number of LTs of input and output variables 

determines the initial sets of antecedents, the number of rules and possible consequents of the FS rule 

base, as well as the number of optimized parameters of the FS terms. Moreover, for each new solution 

found in the process of optimizing the number of LTs, it is necessary to compile a new RB for 

determination of the FS performance, which requires significant computational costs. 

Thus, the main aim of this paper is development and research of an advanced approach for structural 

optimization of fuzzy control and decision making systems based on determination of linguistic terms 

optimal number. 

2. Advanced Approach for Structural Optimization of FSs based on 
Determination of Linguistic Terms Optimal Number 

The implementation of the proposed advanced approach will give the opportunity to increase the FS 

performance and accuracy, to reduce the computational costs spent on the RB composing and 

parameters optimization, as well as to simplify its further hardware and software realization. The given 

approach is based on the concept of sequential search of the best values of the LTs number for the fuzzy 

system, starting with the first input variable and ending with the last output variable. Moreover, it uses 

bioinspired method of ant colony optimization [36] and sequential search method [31] for automatic 

RB synthesis for each new obtained variant of the vector S that determines numbers of LTs. The main 

stages of the proposed advanced approach for determination of LTs optimal number are as follows. 

Stage 1. Selection of input and output variables of the developed fuzzy system. At this stage n input 

variables and m output variables are selected for the developed fuzzy system, depending on the 



peculiarities of the task that this system will solve. In this case, the total number of the FS variables is 

equal to n + m. 

Stage 2. Setting of the operating ranges of changing of input and output variables of the developed 

FS. At this stage the operating ranges are set for each i-th (i = 1, 2, …, n) input and j-th (j = 1, 2, …, m) 

output variables of FS, within which these variables can change. For example, if the input variables are 

fed to the FS input in relative units from their maximum value, then it is advisable to set their operating 

ranges from –1 to 1. If some variables can have only positive values (for example, "water consumption", 

"gas heating power", etc.), then their ranges of variation can be represented by the interval [0, 1]. 

Stage 3. Selection of the membership functions types of linguistic terms for input and output 

variables of the FS. At this stage the type of the LTs membership functions for each i-th (i = 1, 2, …, 

n) input and j-th (j = 1, 2, …, m) output FS variables is selected. In most cases, at the initial stage of 

design, it is advisable to select one type for membership functions of all FS variables. For example, 

triangular, trapezoidal, or Gaussian type I can be selected [4, 41]. As for the initial values of the 

parameters of the membership functions for all input and output variables, it is advisable to set them 

automatically in such a way that the linguistic terms, for any specified number, would be evenly 

distributed over their operating ranges. 

Stage 4. Formation of the structure of the vector S that determines numbers of linguistic terms of FS 

inputs and outputs. At this stage the vector S is formed, depending on the selected at Stage 1 n input 

and m output variables, in the following way 

S
1 2 1 2

{ , ,..., ,..., , , ,..., ,..., }.
x x xi xn y y yj ym
S S S S S S S S  (1) 

This vector consists of variables Sxi,yj that correspond to the number of linguistic terms for the FS 

variables, arranged in order, starting with the first input variable x1 and ending with the last output 

variable ym. 

Stage 5. Selection of constraints for vector S. At this stage the constraints on the number of linguistic 

terms Smin and Smax are set for all input and output variables of the developed fuzzy system. For instance, 

for all input variables the minimum value of the number of LTs can be set equal to 2 (Smin = 2) and the 

maximum value – equal to 7 (Smax = 7). As for the output variables, the minimum value can be set equal 

to 3 (Smin = 3) and the maximum value – equal to 9 (Smax = 9). Also, additional constrains can be set at 

this stage. For example, for some variables of fuzzy control systems, which can take both positive and 

negative values in the symmetric operating ranges, it is advisable to set such additional constraints, that 

the number of LTs can be only odd. Thus, taking into account the main constraints (Smin and Smax), in 

this case, the number of terms can take the following values: 3, 5, 7 – for input variables; 3, 5, 7, 9 – 

for output variables.  

Stage 6. Formation of the complex objective function JC for evaluating the effectiveness of the 

developed fuzzy control or decision-making system. At this stage, the type, parameters and optimal 

value of the complex objective function JC, used to find the optimal number of LTs, are determined. 

Since the initial sets of antecedents, the number of rules and possible consequents of the FS rule base 

depends on the selected number of LTs, then in the process of structural optimization of the vector S it 

is advisable to use both criterion J1, which evaluates the efficiency of the problem solved by the FS 

(control, decision-making, etc.), and criterion J2, which takes into account the complexity of the 

synthesized RB and, accordingly, further hardware and software implementation of the system being 

developed. Thus, the task of finding the optimal number of LTs is reduced to the task of multi-criteria 

optimization [39, 42, 43], for the solution of which it is necessary to find the optimal vector S taking 

into account the minimization of two criteria J1 and J2. When solving this task, it is advisable to use an 

a priori approach to solving multi-criteria search tasks based on the aggregation of objective functions 

[39, 42, 43], according to which it is necessary to search for the optimum of a single complex objective 

function (global criterion) JC, formed on the basis of criteria J1 and J2 with preliminary assessment of 

their significance. In accordance with this approach, it is expedient to calculate the current value of the 

complex objective function JC in the process of searching for the optimal LTs number of the FS based 

on the expression 

 
C 1 2 2

,
J

J J k J  (2) 

where kJ2 is the scaling factor at J2, which determines the importance of taking into account this criterion 

in the process of computational search and provides scaling (normalization) of the values of J2. 



In turn, the values of the criterion J2, which estimates the complexity of the synthesized RB and 

further hardware and software implementation of the FS, can be calculated based on the dependence 

 

    
       

    
 2
1 11

,
nm m

yj xi yj
j ji

J s S S S  (3) 

where s is the total number of rules, which is determined by the number of all possible combinations of 

linguistic terms of the FS input variables. 

In addition, at this stage, the optimal (boundary) value of the criterion J1opt is preliminarily set, as 

well as the corresponding values JСopt and kJ2 are selected, based on the requirements and features of the 

FS design problem. 

Stage 7. Setting of the initial value of the vector S. At this stage the initial values of LTs numbers 

for fuzzy system input and output variables (vector S0) are set, from which the iterative search procedure 

begins. It is advisable to set vector S0 equal to its minimum possible value Smin according to constraints 

selected at Stage 5 

 S S
0 min 1min min min 1min min min

{ ,..., ,..., , ,..., ,..., }.
x xi xn y yj ym
S S S S S S  (4) 

At the further stages of the given advanced approach the sequential optimization of the LTs numbers 

for the fuzzy system is carried out, starting with the first input variable x1 and ending with the last output 

variable ym. 

Stage 8. Transition to the 1st variable of the fuzzy system. The transition to the 1st FS (input) variable 

x1 is carried out at this stage to initiate the iterative procedures of the sequential search for finding the 

optimal vector of the LTs number Sopt. In turn, the iterative search begins from the initial value of the 

vector of LTs numbers S0, which is preliminarily set at Stage 7.  

Stage 9. Checking of the Checklist. All vectors of the LTs number S, for which the FS rule base has 

been already synthesized and the corresponding value of the complex objective function JC has been 

calculated during the implementation of the given approach, are entered to the Checklist with their 

synthesized RB and values of the function JC. In turn, the Checklist and its check at this stage are used 

to avoid repeated synthesis of RB and calculations of the complex objective function JC for FS with the 

same vector of the LTs number S. It allows to get rid of extra iterations (each of which include RB 

synthesis and complex objective function calculation), the number of which is equal to (n + m – 1). If 

the current vector S is already placed in the Checklist, then the transition is carried out to Stage 13, and 

in the opposite case the transition is performed to Stage 10. 

Stage 10. Synthesis of the RB and calculation of the complex objective function for the FS with the 

current vector S. At this stage, the RB synthesis is carried out using bioinspired method based on ant 

colony optimization (ACO) or sequential search method, which are developed and successfully tested 

in works [36] and [31], respectively. After that, for the synthesized RB that corresponds to the current 

vector S, the complex objective function JC is calculated. As the previous comprehensive studies of the 

RB synthesis methods [44] show, for an effective automatic RB synthesis, it is advisable to choose 

either the sequential search method or the bioinspired ACO-based method, depending on the complexity 

of the given rule base, which is determined by the criterion J2 (3). In turn, if the criterion J2 ≤ 600, it is 

advisable to choose sequential search method, if the criterion J2 > 600, the bioinspired ACO-based 

method is more appropriate [44]. Thus, first at this stage, the criterion J2 (3) is calculated for the current 

vector S, then, based on its value, a suitable method for synthesizing the rule base is selected (sequential 

search or ACO-based method). Further, using the selected method, the synthesis of the RB is directly 

carried out with the determination of the the criterion J1, and after that, based on criteria J1 and J2, the 

value of the complex objective function JC is finally calculated. Herewith, the adjustable parameters of 

the sequential search and ACO-based methods (maximum number of iterations N*max, number of agents 

in the population Zmax, number of elite agents e, number of rounds of sequential search l, etc.) are 

previously selected based on the experiments and recommendations obtained in the previous studies 

[31, 36, 44]. The RB antecedents are generated automatically for the current vector S as all possible 

combinations of linguistic terms of FS input variables. In turn, the RB consequents are found in the 

synthesis process using the above ACO-based or sequential search methods. 

Stage 11. Checking for the achievement of the optimal value of the complex objective function. At 

this stage, the checking of the achievement of the optimal value of the complex objective function JСopt 



is carried out for the current vector S. If this checking gave a positive result, then go to Stage 16. 

Otherwise, go to Stage 12. 

Stage 12. Recording the current vector S, the corresponding RB and the value of the complex 

objective function to the Checklist. At this stage the current vector of LTs number S, the corresponding 

synthesized RB and the value of the complex objective function JC are recorded to the Checklist. 

Stage 13. Checking for completion of the optimization process of the current FS variable. 

Optimization calculations for the current FS variable are considered complete if the rule bases were 

synthesized and corresponding values of the complex objective function JC were calculated for each 

possible variant of the LTs number Sxi,yj within the constraints [Sxi,yjmin, Sxi,yjmax] for this certain variable. 

If this checking gave a positive result, then go to Stage 14. Otherwise, 1 is added to the current LTs 

number Sxi,yj for this variable (Sxi,yj + 1), and the transition to Stage 9 is carried out. 

Stage 14. Selection of the best variant of the LTs number for the current FS variable. At this stage, 

the selection of the LTs number Sxi,yjbest is carried out, for which the value of the complex objective 

function JC is the smallest (JCbest) among all obtained in the optimization calculations for the given 

variable. This value of the number of linguistic terms Sxi,yjbest is set for this variable. 

Stage 15. Checking for completion of the optimization process of all FS variables. At this stage 

structural optimization calculations are considered complete if the LTs numbers were optimized (with 

selection and setting best variants Sbest) for all n + m variables (from the first input variable x1 to the last 

output variable ym) of the developed FS. If this checking gave a positive result, then go to Stage 16. 

Otherwise, the transition to the next variable (i, j + 1) is carried out, and further transition to Stage 9 is 

performed. 

Stage 16. Completion of the LTs number optimization process. After that, additional structural-

parametric optimization of the membership functions of the fuzzy system and its software and hardware 

implementation for further use in control and decision-making processes can be carried out. In this case, 

the hardware and software implementation will be simplified due to the optimal structure of FS and 

number of rules of its RB. 

At the implementation of the given advanced approach the maximum number of iterations Nmax is 

defined on the basis of the following equation 

     
 

         max
1 1

1 1 1 ,
n m

xi yj
i j

N S S n m  (5) 

where  

   
max min

, 1,2,..., ;
xi xi xi
S S S i n  (6) 

   
max min

, 1,2,..., .
yj yj yj
S S S j m  (7) 

In turn, at each N-th iteration of the given approach, N*max iterations of the sequential search method 

or ACO-based method are performed at implementation of the Stage 10. 

The effectiveness study of the proposed advanced approach is conducted in this paper at 

optimization of the LTs number for a FACS of the electric car velocity (cruise control system) [45-47]. 

3. Optimization of LTs Number for Fuzzy Control System of the Electric Car 

The task of the cruise control system is to keep the car at a set velocity while driving on the highway 

under conditions of existing disturbances (change in wind speed, slope of the road, type of road surface, 

etc.) [48-50]. To simulate the processes of movement of an electric vehicle in this work, a simplified 

mathematical model is used, which consists of the following basic equations [49]: 

   c

c T n f w
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dv
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dt
 (8) 
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(16) 

where mc is the electric car total mass; vc is the electric car velocity (controlled variable); PT is the 

traction force of the drive motor; Pn is the lift resistance force caused by movement of the car on an 

inclined plane; Pf is the rolling resistance force of the car; Pw is the air resistance force of the car; MM is 

the motor electromagnetic torque; U0 is the main gear of transmission of the electric car; η is the electric 

drive efficiency; rw is the wheel radius of the car; g is the acceleration of gravity; γ is the angle of 

inclination of the plane at which the car is moving; f is the rolling friction coefficient that depends on 

the type of road surface on which the car is moving; kc is the car air resistance coefficient; Fc is the drag 

area of the car; IM is the current of the electric motor; CmM is the electromagnetic torque coefficient, 

which is determined by the parameters of the motor anchor and the value of its magnetic flux; JΣM is 

the total reduced moment of inertia of the electric motor, transmission and driving wheel; ωM is the 

angular speed of rotation of the motor anchor; LM and RM are the inductance and resistance of the electric 

motor winding; uM is the supply voltage of the electric motor; Cmω is the electromotive force coefficient, 

which is determined by the parameters of the motor anchor and the value of its magnetic flux; TPC and 

kPC are the time constant and gain of the power converter; uF is the control signal of the cruise control 

system.  

In this paper the development and study of the fuzzy cruise control system is carried out for the 

electric car with the following main parameters: car mass mc = 1200 kg; angle of road inclination γ = 0°; 

rolling friction coefficient f = 0.02; car drag area Fc = 1.86 m2; car air resistance coefficient kc = 0.29; 

main gear of transmission U0 = 3.875; wheel radius of the car rw = 0.263 m; nominal electric power of 

the electric motor of the car NM = 90 kW; efficiency of the electric drive η = 0.9; electromagnetic torque 

coefficient CmM = 1.93; electromotive force coefficient Cmω = 1.022; electric motor total resistance RM = 

1.72 ohm; electric motor total inductance LM = 0.03 H. 

The fuzzy cruise control system includes main velocity feedback, fuzzy controller (FC), power 

converter and other auxiliary elements. Further, the design and structural optimization with 

determination of linguistic terms optimal number of the fuzzy controller is carried out using the 

proposed advanced approach.  

At the Stage 1, three input and one output variables are selected for the developed FC: εv, 
εvd

dt
, 

ε vdt , uF. So, the total number of the FC variables is equal to 4. At the second stage, the operating 

ranges of changing of FC input and output variables are set from –1 to 1 for all variables. In turn, at the 

Stage 3, triangular types of the membership functions are selected for all the linguistic terms of the FC 

input and output variables. Also, the parameters values of the LTMF for all input and output variables 

are set automatically in such a way that at the further optimization stages the linguistic terms, for any 

specified number, would be evenly distributed over their operating ranges. At the fourth stage, the 

structure of the vector S, that determines numbers of linguistic terms for FC inputs and output, is formed 

in the following way 

 S
1 2 3 1

{ , , , }.
x x x y
S S S S  (17) 

At the fifth stage, the constraints for the vector S on the number of linguistic terms are set in the 

following way 

 
 

 


1

3,5,7 , 1,2,3;

3,5,7,9 .

xi

y

S i

S
 (18) 



Moreover, for each input and output variable of the velocity FC when using 3, 5, 7, and 9 linguistic 

terms, the following sets of LTs of the triangular type are used, respectively: 

 
 

 
 

N,Z,P ;

BN,SN,Z,SP,BP ;

BN,N,SN,Z,SP,P,BP ;

VBN,BN,N,SN,Z,SP,P,BP,VBP ,

 (19) 

where VBN is very big negative; BN is big negative; N is negative; SN is small negative; Z is zero; SP 

is small positive; P is positive; BP is big positive; VBP is very big positive. 

At the Stage 6, the complex objective function JC for evaluating the effectiveness of the developed 

fuzzy cruise control system is formed, that is calculated according to equation (2). In turn, the criterion 

J1 is presented as the mean integral quadratic error of velocity control 

 S
max

2

1

0max

1
( , ) ε ,

t

v
J t dt

t
 (20) 

where tmax is the total transient time of the FACS for the electric car.  

In turn, the criterion J2 is represented by the expression (3). As the optimal values of the functions 

JC and J1 the following values are selected: JCopt = 20; J1opt = 10. The scaling factor kJ2, in this case, is 

equal to 0.035. 

Further, the Stage 7 of the proposed approach is implemented, at which the initial value of the vector 

S for the FC is set. In this case, the initial value of the vector S is equal to its minimum possible value 

Smin according to constraints selected at Stage 5 

 S S
0 min

{3,3,3,3}.  (21) 

Then, the iterative procedure of sequential optimization is conducted from the first input variable εz 

and up to the output variable uF, in accordance with the remaining stages of the given approach (from 

8th to 16th). Herewith, the adjustable parameters of the sequential search and ACO-based methods for 

RB synthesis at the Stage 10 are previously set as follows. The number of rounds of sequential search 

l is equal to 3 for each possible vector of LTs number S at implementing the sequential search method. 

For ACO-based method the number of agents in the population Zmax = 30, the number of elite agents in 

the population e = 10, the maximum number of iterations N*max = 100, the other adjustable parameters 

are: α = 2; β = 1; Q = 0.1; ρ = 0.5. 

In turn, at the implementation of the proposed advanced approach the maximum number of iterations 

Nmax is equal to 10, that is defined on the basis of the equation (5) and accepted constraints. 

The obtained results during the optimization of the vector S for the cruise control FC by means of 

the given approach are given in Table 1. 

 

Table 1 
Optimization results obtained by means of the developed approach 

Iteration N Vector S Criterion J1 Criterion J2 Complex objective function JC 

1 {3, 3, 3, 3} 19.256 81 22.091 
2 {5, 3, 3, 3} 15.647 135 20.372 
3 {7, 3, 3, 3} 14.79 189 21.405 
4 {5, 5, 3, 3} 13.297 225 21.172 
5 {5, 7, 3, 3} 12.562 315 23.587 
6 {5, 3, 5, 3} 14.982 225 22.857 
7 {5, 3, 7, 3} 12.829 315 23.854 
8 {5, 3, 3, 5} 8.494 225 16.369 

 

As can be seen from the Table 1, the optimal value of the complex objective function has been 

achieved (JC ≤ JCopt) at the 8th iteration of the given approach and at this the optimization process was 

stopped. In turn, the obtained at the 8th iteration optimal vector of the LTs number is as follows 

 S
opt

5,3,3,5 .  (22) 



A particular feature of the optimization calculations, carried out in this case, is that at all iterations 

the FC rule base was synthesized using the sequential search method, without using the ACO-based 

method, since for all obtained variants of the vector S, the value of criterion J2 was less than 600. 

The rule base fragment synthesized in the optimization process for the obtained optimal vector Sopt 

is given in Table 2. The obtained RB consists of 45 rules. 

 

Table 2 
Fragment of RB for the vector Sopt obtained by the proposed approach 

Rule  
number 

Input and output variables of the FC 

εv εvd

dt
 εvdt  uF 

1 BN N N BN 
5 BN Z Z BN 

12 SN N P SN 
18 SN P P SN 
23 Z Z Z Z 
28 SP N N SP 
30 SP N P SP 
36 SP P P BP 
41 BP Z Z BP 
45 BP P P BP 

 

Furthermore, the full vector of consequents R for the developed RB corresponding to the optimal 

vector Sopt has the following form: 

R = (BN, BN, BN, BN, BN, BN, BN, BN, BN, BN, BN, SN, SN, SN, SN, SN, SN, SN, SN, SN, 

SN, SN, Z, Z, SP, SP, SP, SP, SP, SP, SP, SP, SP, SP, BP, BP, BP, BP, BP, BP, BP, BP, BP, BP, BP). 

To evaluate the effectiveness of the designed FACS, as well as developed advanced approach of 

structural optimization with the determination of the LTs number, the transient graphs of the electric 

car velocity control are presented in Fig. 1 for two cases: 1 – for cruise control system with designed 

and optimized FC; 2 – for cruise control system with conventional optimally tuned PID controller.  

 

 
Figure 1: Transients for the cruise control system of the electric car 

 

In turn, for both cases, the set value of the car velocity vset (line 3) changed 3 times during the 

transient process in the following way: vset1(t = 0 s) = 15 m/s; vset2(t = 10 s) = 30 m/s; vset3(t = 35 s) = 20 

m/s. 



As can be seen from Fig. 1, the fuzzy cruise control system for the electric car with optimized LTs 

number of the FC has significantly higher quality indicators in comparison with the conventional cruise 

control system, that uses conventional optimally tuned PID controller. Specifically, it has zero 

overshoot for all steps (σ = 0%), whereas the system with conventional PID controller has sufficiently 

larger values (σ = 29.5% – for the first step; σ = 8.33% – for the second step; σ = 10.12% – for the third 

step). Also, the system with FC has lower transient time tt for all steps (tt = 1.92 s – for the first step; 

tt = 4.8 s – for the second step; tt = 1.64 s – for the third step) compared to the same one with 

conventional PID controller (tt = 6.18 s – for the first step; tt = 18.64 s – for the second step; tt = 4.93 s – 

for the third step). In addition, as for the value of the criterion J1, it is significantly higher for a system 

with a conventional optimally tuned PID controller (J1 = 11.53), than for a system with a developed and 

optimized fuzzy controller (J1 = 8.494).  

Moreover, the fuzzy controller developed and optimized by means of the proposed advanced 

approach has enough simple structure and the minimum size of the rule base, which will significantly 

simplify its further software and hardware implementation. In addition, if it is necessary to carry out 

further parametric optimization of membership functions for additional improvement of the given FC, 

this procedure will also be simplified, since the developed controller has a minimum number of 

linguistic terms for its input and output variables. And, finally, fairly small computational costs were 

spent during the FC development and structural optimization (8 iterations), which in general confirms 

the high efficiency of the proposed advanced approach for determination of the LTs optimal number. 

4. Conclusions 

This paper presents the development and research of the advanced approach for structural 

optimization of fuzzy control and decision making systems based on determination of linguistic terms 

optimal number. The implementation of the proposed approach gives the opportunity to increase the FS 

performance and accuracy, to reduce the computational costs spent on the RB composing and 

parameters optimization, as well as to simplify its further hardware and software realization. The given 

approach consists of 16 main stages, is based on the concept of sequential search of the best values of 

the LTs number for the FS, as well as uses the bioinspired method of ant colony optimization and 

sequential optimization method for automatic RB synthesis for each new obtained variant of the vector 

of LTs numbers. 

The effectiveness study of the presented approach is conducted in this paper at design and structural 

optimization of the fuzzy cruise control system for the electric car. In this case, the iterative procedure 

of sequential optimization is performed for the FACS of the electric car, and at the 8th iteration of the 

approach the optimal vector of the LTs number Sopt is found, which provided the achievement of the 

optimal value of the complex objective function JCopt. In turn, the obtained fuzzy cruise control system 

for the electric car with optimized LTs number of the FC has significantly higher quality indicators 

compared to the conventional cruise control system, that uses classic optimally tuned PID controller. 

Furthermore, the developed and optimized FC by means of the proposed advanced approach has enough 

simple structure, minimum number of LTs and the minimum size of the RB, which will significantly 

simplify its further software and hardware implementation. Thus, the research results obtained in this 

paper fully confirm the high efficiency of the developed advanced approach for FS structural 

optimization by means of the determination of LTs optimal number. Moreover, minor computational 

costs make this approach quite promising and attractive for use in the development and structural 

optimization of various fuzzy control and decision-making systems. 
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