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Abstract  
We consider the modeling of uncertainty, presented in the form of  type-1 fuzzy sets and type-

2 fuzzy sets, 2D and 3D tensors, which allows the use of matrix-tensor algebra (in particular, 

Kronecker algebra) to solve decision-making problems under uncertainty along with standard 

fuzzy mathematics; it is shown that the tensor decompositions of the formed models allow 

obtaining the closest (in the sense of Frobenius norm) subsets of ordered pairs and sequences, 

which can be used with limited possibilities of assignment of membership functions or as an 

alternative to fuzzy sets in solving fuzzy equations and fuzzy systems. An important type of 

hidden knowledge is the ability to obtain the values of matrix (tensor) invariants, presented in 

trace form, which significantly affects the quality of decision making. 

 Tensor models of fuzzy sets make it possible to expand the range of problems to be solved 

under conditions of uncertainty, in particular, the use of special matrices (tensors) - Toeplitz, 

Hankel, etc. allows to obtain for a given universal set an objective analog of a fuzzy set and to 

obtain a comparative assessment of the decision.  
 

Keywords  1 
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1. Introduction 

Fuzzy set theory (FST) is now a practically universal apparatus that is used in almost all cases where 

there may be uncertainty. The circumstances that, in our opinion, contributed to this phenomenon are 

as follows: 

 the subset of ordered pairs (SOP), which is the main element of the mathematical apparatus of 

FST, assumes its flexible modification: depending on the level of uncertainty type-1 FS can extend 

to type-2 FS, n-type in general and be a subset of ordered sequences (SOS); 

  the presence of a component - membership function (MF), which requires virtually no 

mathematical constraints (except for convexity) and almost entirely depends on the opinion of the 

expert, allows you to adapt the mathematical apparatus to almost any type of real uncertainty 

problems. 

In [1] it was shown that theoretically SOP can be most rationally used in the analysis of uncertain-

ty in the form of fuzziness (vagueness) and inaccuracy, but real life does not support this thesis.  Type-

2 FS was introduced by Zadeh as a continuation of the concept of type-1 FS. Type-2 FS is rational to 
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use to describe certain types of uncertainty formulated in [2] because the membership function of the 

type-2 FS itself is fuzzy and corresponds to the nature and characteristics of particular uncertainty.  

Although FST is currently the most common mathematical apparatus for solving uncertainty 

problems (this applies to both type-1 FS and type-2 FS), there are virtually no convincing examples of 

the effectiveness of type-2 FS compared to type-1 FS, recent studies have shown that in some cases the 

standard FST does not allow to solve a number of problems under uncertainty. This is due to the 

arithmetic and logical nature of FS, which does not allow the use of FS tensor-matrix analysis directly 

and in full. This means, in particular, solutions of large fuzzy equations and systems of fuzzy equations, 

where the parameters can be both type-1 FS and type-2 FS. 

In [3] shows that fuzzy sets over the last fifty years have laid the foundation for a successful method 

of modeling uncertainty and inaccuracy in a way that no other technique has. The use of fuzzy sets in 

real computer systems is extremely wide and constantly increasing, which emphasizes the relevance of 

research related to the discovery of hidden knowledge, which contains uncertainty and its fuzzy set 

models, presented in tensor form. Note that tensors and tensor decompositions are very powerful and 

versatile tools that can model a wide variety of inhomogeneous, multi-aspect data. As a result of tensor 

decompositions, it is possible to extract useful hidden information from multi-aspect data tensors [4], 

including from data under uncertainty. 

The object of research is the generalized processing of multidimensional (multi-aspects) and large-

volume data under conditions of uncertainty, which is modeled by fuzzy sets. 

The subject of research – tensor models of type-1 and type-2 fuzzy sets, hidden knowledge that can 

be extracted, tensor decompositions and the formation of the nearest fuzzy sets, the solution of fuzzy 

equations based on the concept of the nearest fuzzy sets. 

The purpose of the work is to expand the class of solvable problems under conditions of uncertainty 

by extracting hidden knowledge by using tensor models, in particular, the concepts of nearest fuzzy sets 

and properties of Kronecker algebra, tensor decompositions 

The tasks that need to be solved to achieve the goal of the work are the following: 

   substantiate the necessity and expediency of representing type-1 FS and type-2 FS by tensor 

models, which are based on the use of tensor products of FS components in modeling uncertainty; 

 show the equivalence of tensor models FS-1 and -2 type with SOP, obtained by singular 

decomposition of the tensor model FS; 

   identify the possibility of 3D tensor representation of uncertainty and identify areas of rational 

application of 3D models; 

  identify hidden knowledge that can be used in tensor modeling of uncertainty; 

  to develop methods for solving fuzzy equations at the level of matrix equations by using 

Kronecker algebra. 

2. Problem statement 

2.1 List of main symbols and abbreviations 

In table 1 are presented the main abbreviations, that are used in the article. 

 
Table 1 
Abbreviations 

Abbreviation  Explanation of the meaning of abbreviations 

ЕЕG Electroencephalo graphics 
US Universal set 
TRS Type Reduced System 
TS Time series 

T2FS Type-2 fuzzy set  
SOS A subset of ordered sequences 



SOP A subset of ordered pairs 
NKP The nearest Kronecker product 
MF Membership  function 
KP  Kronecker product 
TP Tensor product 

KMIP Iteration procedure Karnik - Mendel 
IT2 FS  Interval type-2 fuzzy set  

ISD an initial set of data 
HOSVD High-order singular decomposition 

FV Fuzzy variable 
FST Fuzzy set theory 
FIS fuzzy interval systems  
FS Fuzzy set 

 

In table 2 are presented the main nomenclatures that is used in the article. 

 

Table 2 
Nomenclature  

Symbol Definition 

A, A, a, a Tensor, matrix, (column) vector, scalar 

 The set of real numbers 

 Outer product 
Vec( ) Vectorization operator 

 Kronecker product 

n


  
n-mode product 

 n
A  n-mode matricization of tensor A 

A-1 Inverse of A 

or


A A
†   Moore-Penrose Pseudoinverse of A 

F
A  

Frobenius norm - 

1 2

Ttrace
 
 
 
 

A A

/

 

A(:,i) Spans the entire i th column of A (same for tensors) 

A(i,:) Spans the entire i th row of A (same for tensors) 
reshape ( ) Rearrange the entries of a given matrix or tensor to a given set of dimensions 

a  Type-1 fuzzy set:  

       
 21 0 1

1

aaa anna a a a a A
n

   

 
           

 

/ or ; ; , , ,  

  

2.2 Main statement 

Recently, a number of uncertainty problems have emerged, the solution of which by TFS methods, 

in particular, by fuzzy mathematics methods, is either extremely difficult or the result is not 

constructive. This is especially true for data processing, which belongs to the category of BIG DATA, 

where ultra-high dimensionality is combined with a large amount of data and thus necessitates working 



with 3D data, membership functions for which are not tabulated, defining these functions is also 

extremely difficult. 

Problems related to decision-making based on fuzzy equations and systems of fuzzy equations with 

general data (the parameters of the equations can be set in the form of both type-1 FS and type-2 require 

the use of new methods and algorithms. Note that modern methods focused on this class of problems, 

usually work with fuzzy numbers and contain a large number of assumptions. On the basis of the stated 

requirements, the tasks are formulated as follows:  representation of type-1 FS in the form of a 2D 

tensor (matrix) and, accordingly, the tensor product: 
   x x

n nx T x 
 

    
 
 

; singular 

decomposition 
 x

u s v svd T
 
     
 

 allows you to calculate a subset of ordered pairs of sigmoid-

like shape 
 

y
y

y x X
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 
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  
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T T
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   x y

def T def T
   
   
   
   

.              (1) 

This allows you to implement mathematical operations on fuzzy variables yx z, , ...,  at the level of 

tensor variables: 
 x

x T ,  
   

y
y z

T z T , ...,    with the subsequent transformation of the 

result into the SOP. A similar algorithm with Kronecker products is implemented for type-2 FS, defined 

on US X and presented as 
  

   
 

     
0 1

z z z x z
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 for a given FS 
   

 0 1
xx

x x x X 
 
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/ , , ,  find a subset of ordered pairs 
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/ , , ,  , obtained as a result of tensor decompositions, called 

the fuzzy nearest set (with respect to FS) x ; in turn the tensor model of type-1 FS x  has the 

appearance 
 x

x 
 
  
 
 

X ,  nearest is determined by the principle of the nearest Kronecker 

product 
 

2

min;
y

y

F

  X .  

 type-1 FS  presented as a tensor  product  of components 
 2n n nx

x T
 

   , by 

implementing the procedure  
   x x
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T -

3D tensor (Fig. 1), and high-order singular decomposition which allows you to obtain a subset of 

order sequences 
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multy
T x x x

x
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T

x
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Figure 1: The sequence of conversion from standard  FS x   at 2D   and 3D tensor models 

 

 Formation of 2D tensor model type-2 FS:  
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method of forming a 2D tensor model - double kroneker product of type-2 FS  

     
, ,

x x
n k ky

x T x y T
    
     

  
  

.                         (5) 

Separately, we pay attention to the possibility of presenting the type-1 FS in the form as 

proposed in [5] -  
  1n n n nx

x or
  

  x . 

3. Review of the literature    

One of the directions of expanding the use of FS is granular computing, in [6] it was shown that 

granular computing is a new computational theory and paradigm that deals with the processing of 

information granules, which are defined as a set of information entities grouped together by their 

similarity, physical adjacency or indistinguishable ability. In most aspects of human reasoning, these 

granules have an uncertain formation, so the concept of detailing fuzzy information (and revealing 

hidden information) may be of particular interest for applications where FSs must be converted to crisp 

sets to avoid uncertainty. 

In [7] a tensor granule formed as a tensor product of FS components is proposed, which allows to 

significantly expand the possibilities of FST and, accordingly, to expand the range of solvable problems 

under conditions of uncertainty. According to [8], the theory of rough sets is an important approach to 

granular calculations.  

Tensor models of type-1 and type-2 fuzzy sets (the concept of tensorization) not only significantly 

strengthen the arsenal of methods of fuzzy mathematics but also be an additional channel for comparing 

the quality of the obtained solutions. The concept of tensorization, as shown in [9], refers to procedures 

for generating structured tensors of higher-order from lower-order data formats (vectors, matrices, or 

even low-order tensors) or representing very large system parameters in low-order tensor formats. 

For any given source data format, the tensor procedure can affect the choice and efficiency of tensor 

decomposition in the next step. Records of such a tensor can be obtained using: 

 a certain permutation, for example, the transformation of the original data into a tensor, 

 alignment of data blocks or epochs, for example, slices of the third-order tensor are epochs of 

multichannel EEG signals, or 



 increasing the data using, for example, Toeplitz matrices / tensors and G (H)ankel. 

Let's pay attention to the last thesis. Procedures for the formation and subsequent deposition of 

Toeplitz or Hankel matrices (tensors) formed on universal sets allow us to solve problems under 

uncertainty by FST methods under limited conditions of MF assignment, proposed by the authors in 

[33]. Recall that the tensor in the general case can be represented by fibers or slices [30, 33]. 

Note the following. First, the theory of rough sets as a new mathematical tool for the implementation 

of procedures (fuzzy) data conclusions is proposed in [10]. In this regard, we note that the vast majority 

of works concerning the type-2 FS and their extensions, consider the procedures of fuzzy conclusions, 

ie the implementation of fuzzy rules "if A, then B otherwise C", although the number of problems under 

uncertainty, where required type-2 FS and their extensions, much larger, especially for fuzzy 

mathematics with type-2 FS. 

 Secondly, as shown in the paper [11]: “Information granules are intuitively attractive constructions 

that play a key role in human cognitive activity and decision-making. We perceive complex phenomena 

by organizing existing knowledge together with existing experimental evidence and structuring it in the 

form of some meaningful, semantically sound entities that are central to all subsequent processes of 

world description, environmental reasoning, and decision support.” 

According to [12], type-1 FS can directly and effectively model certain types of uncertainty 

(according to [1], these are fuzzy and inaccurate), because their MFs are absolutely crisp. On the other 

hand, type-2 FS, having fuzzy MF, can model wider classes of uncertainty. The membership functions 

of type-1 FS are two-dimensional, while the membership functions of the type-2 FS are three-

dimensional. It is the new third dimension of the type-2 FS that provides additional degrees of freedom, 

which allows you to directly model the uncertainties. In type-1 FS membership values are between zero 

and one, while the values of fuzzy membership type-2 are considered as the value of type-1 fuzzy 

membership, A  as a total type-2 FS, is described as follows: 

   / [ / ] / ,A x x f u u x
x

uAX X J
x
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A

u
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                                
 

   
 

 
min max

, .x x x xAA A A
                                (7) 

In [13], the possibility of decomposing an interval type-2 fuzzy logic system into two parallel type-

1 fuzzy systems was considered. This decomposition avoids the problems associated with type 

reduction methods, which are usually required in type-2 fuzzy systems. Type-2 fuzzy set (T2 FS) - is a 

three-dimensional fuzzy set, in which the primary fuzzy set is characterized by classes of membership, 

which are not crisp numbers, and actually fuzzy sets - the so-called. secondary membership functions. 

In works [14,15] tensor models of type-1 FS are offered, which allow to apply matrix-tensor methods, 

to use tensor-matrix analysis for problems of fuzzy mathematics and if necessary to receive the result 

in the form standard for FST. Since type-2 FS is an extension of type-1 FS and this object has an 

effective representation in the matrix (tensor) basis, there is a logical desire to expand the application 

of tensor methods and models directly for type-2 FS, especially since type-2 FS - 3D measurable object, 

i.e. tensor. 

Moreover, in [16] it was shown that the use of type-1 fuzzy sets for modeling words is scientifically 

incorrect. However, as shown in [30], most likely the reason lies in the fact that insufficient resources 

were spent by researchers to develop the actual theory of type-2 FS, as evidenced by the fact that the 

proposed operation for type-2 FS is not as effective and understandable as they need to be to satisfy real 

application developers, and the lack of real compelling examples of type-2 FS applications 

It is known that FS A  on the universal set U is characterized by the membership function 

 : 0,1U

A

   and is recorded as  A u u
A

u U

 


 or  A u u
A

u U

 


, when  U  is discrete 

or continuous respectively, abbreviated record   / , ,
A

A u u u U


      0,1u
A

  . One of the 

greatest results of FST is the principle of fuzzy expansion, which allows to fuzzify any mathematical 

theory.  



Recall the following:  

  type-1 fuzzy sets  are a special case of type-2 fuzzy sets, where for all u ∈ U the set of 

degrees of primary membership, namely 
 

 u
J

i u

u

i






  is a singleton (with a maximum value equal to 

one); 

 type-2 FS in the future will be denoted as follows:   / ,
x X

A x x
A




     /
x X

B x x
B




  ,  

where      /
Au J
u

x f u u
A




  ,   ( ) /
Bu J
u

x g u u
B




  . 

Type-2 FS has features that not only complicate its use but do not positively affect its prevalence, 

especially in the problems of fuzzy mathematics, in particular fuzzy equations and fuzzy equation 

systems, because the fuzzy mathematics apparatus designed mainly for type-1 FS and common to type-

2 FS, was unable to solve such problems under uncertainty. This is especially true for the presentation 

of type-2 FS in a form suitable for computer implementation, and defuzzification procedures. One of 

the ways to solve these and other issues related to the use of FS-2 is to find new forms of representation, 

granular form of representation (discussed by the authors earlier) and the geometric approach, which is 

considered in [17, 18]. Note that the practical majority of algorithms designed to represent and defuzzify 

type-2 FS, developed by J. Mendel. 

The authors believe that the uncertainty simulated by the type-2 FS can be more effectively 

represented, in particular for the implementation of mathematical operations, by a tensor granule. For 

the generalized case of type-2 FS, when the functions of the secondary membership - the third 

dimension is of any type, there is a significant computational complexity that has limited their 

deployment. The complexity of the calculations in the general case of type-2 FS prevents their 

deployment. 

Of course, type-2 fuzzy sets exist in three-dimensional environments, this additional dimension 

requires the introduction of additional notations. In particular, like type-1 FS, type-2 FS has a domain, 

in this case X. The membership level at one point in the domain is a type-1 fuzzy number, known as the 

secondary membership function. The domain of the secondary membership function in x, denoted by 

Jx, is known as the secondary domain or shared domain. Estimation of membership at point u in the 

function of secondary membership in x, denoted   ,x u
A

 , is known as the average level of 

membership. In works [2, 3] the way of representation of type-2 FS under the name is resulted 

.Moderate   

It is important to note that the use of type-2 FS requires a preliminary assessment of the quality of 

the solution obtained when using type-1 FS. In all cases, the type-2 FS is generated by the type-1 FS, 

MF which is called primary. The following questions arise: 

 if based on IDS for modeling of uncertainty type-1 FS was offered 

 
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 / ( ) , , 0,1 ,
x

x x x x X     type-2 FS is formed by the erosion of the primary MF 

 
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 
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u u u

x x u x X x u x X u  
   

       
   

 the output of the FLS is 

a reduced type FS 
   

 / , 0,1 , y ,
y y

y y X 
 

   
 

 and defuzzyfied value  y def y , then 

how the quantities are related  y def y  and  x def x ;  

 if the quality criteria of FS of all types are not defined, deffuzyfied values, for example, type-2 

FS and type-1 FS, if they affect one object of uncertainty, are not considered criteria. 

On this basis, we can assume that the task of finding type-1 FS, obtained as a result of the 

transformation of some type-2 FS, which have close (or coinciding) defuzzyfied values, is relevant. In 

addition, many researchers consider an important problem of accuracy in the application of FST 

methods, although accuracy under uncertainty is a conditional concept. The possibility of replacing the 

type-2 FS with an equivalent (from the point of view of defaced value) type-1 FS is relevant. 



It should be added that this problem is not fundamentally new for the theory and practice of the type-

2 FS. The above cited article [19] proposes ... a new approach to the defuzzification of interval fuzzy 

sets of type-2 based on the convolution method, which converts the interval type- 2 FS into an embedded 

representative set of type- 1 (RES), the defuzzyfied value of which approaches the corresponding the 

value of the type-2 set, it is known that RES as a type-1 set, can be defuzzyfied quite easily.  

Available methods of defuzzyfication for discrete type-2 sets, first of all, provide the so-called 

comprehensive defuzzyfication. For example, for fuzzy interval type-2 systems (FIS), the 

defuzzification stage consists of two parts - the actual type reduction and defuzzification. This type 

reduction algorithm was proposed by J. Mendel: 

1. All possible built-in type-2 sets must be considered; 

2. Minimum average membership found for each built-in set;  

3.  For each embedded set, the value of the domain of the centroid of type-1 of the embedded set 

of type-2 is calculated; 

4.  For each embedded set, the value of the domain of the centroid of type-1 of the embedded set 

of type-2 is calculated (x, z), it is possible that for some values x will be more than one corresponding 

value z; 
5.  For each value of the domain the maximum average estimation is chosen, it creates a subset of 

ordered pairs (x, zmax), such that between x and zmax there is an unambiguous correspondence. This 

completes the reduction of the type-2 set to (Type Reduced Type) type-1. 

The obtained TRS - as a type-1 fuzzy set, is easily defuzzyfied by finding its centroid value. Thus, 

the reduction of the type involves the processing of all embedded sets in the type-2 FS, which is what 

makes the algorithm to be called "exhaustive defuzzification ". Naturally, there are a lot of built-in sets. 

For example, when in the above example type-2 FIS implemented inference using sets that were 

sampled on 51 slices on the x and y axes, the number of embedded  sets in the aggregate set was 

calculated as a value of the order of 2.91063 

Although embedded sets are generally easy to process, they create a bottleneck during processing 

due to their high dimensionality. As a result, exhaustive defuzzification is an impractical method to use, 

the most common method of reducing the type of fuzzy set interval – type-2 is the iterative procedure 

Karnik - Mendel (KMIP). The result of reducing the type of the interval of fuzzy sets - type 2 is the 

interval - type 1, where the centroid lies between two endpoints. An iterative procedure is an effective 

method of finding these endpoints. The center of this set – type-1 (i.e. defuzzyfied value of the set – 

type-2) is the center of this interval. Note that this procedure is extended to generalized fuzzy sets - 2 

types [19]. 

In [19] T1 MF between the upper and lower uncertainty bands was found as a representative 

embedded set, but the method and concept used are not based entirely on the concept of the influence 

of uncertainty on certain data and degrees of affiliation. In [20] is proposed methods of overcoming 

difficulties in understanding and interpreting type-2 FS for FLC. 

4. Materials and method.   

Historically, FST has formed the main object of the theory - a subset of ordered pairs (type-1 FS) as 

a procedure for a heuristic blurring of a universal set and its representation as a set of  -levels. Further 

logic of development of the accepted concept naturally led to type-2 FS, formed as a procedure of 

blurring crisp values of membership function type-1 FS. Assuming that the number of -levels in the 

representation of uncertainty using FS is large enough (the concept of BIG DATA provides for the use 

of FS as one of the possible models), we can show that initially selected by the expert FS (with heuristic 

FN) can be simultaneously represented as multi fuzzy set [21] or as type-2 FS  in 3D space. The fuzzy 

set generalizes FS-1, -2 types, and intuitive sets. 

Nearest FS. The ability to represent SOP as 2D and 3D objects requires an assessment of their 

proximity. Recall that the problem of finding the nearest (farthest) element, neighbor, etc. is not new to 

mathematics. In the last 20 years, it has been replenished with the so-called problem of the nearest 

Kronecker product, the solution of which is extremely important for modern mathematics, in particular, 

tensor (matrix) analysis. Unfortunately, the use of this powerful device to solve problems under 

uncertainty began only in the last 5-7 years [ 22]. 



Tensor models FS were first proposed in [23], we recall that the main apparatus TFS - a subset of 

ordered pairs - is a  matrix in  
2n 

, which can be represented as a tensor y (n-number -levels FS). 

In turn, the procedure   reshape m, p,qA,  allows to represent the initial FS A  in space 
m p q 

and get a subset of ordered sequences (triplets), which allows fundamentally from new positions to 

implement the analysis of uncertainty in 3D space, in particular, this applies to type-2 FS and so on. 

We present the problem of the nearest Kronecker product (NKP) using the paper [24]. It was shown 

in [24] that the solution of the NKP problem is associated with the procedure of singular decomposition 

of the permutation (vectorized) version of the matrix A. This leads to the problem  

  TR vec vec
F

   B, C A B C( ) ( ) ( ) ,  and the fact of  minimization   is the search for the 

nearest rank-1 matrix to  AR . The nearest rank-1 matrix is a well-known problem of singular 

decomposition. In particular, if   T  U A VR   - singular decomposition, the optimum is defined 

as: 

       
1 2 1 2

1 1
1 1

vec vec
opt opt

           
   
B U C V

/ /
:, , :,   (8) 

It is important to note that in this case the scaling is arbitrary. Indeed, if 
opt

B  and 
opt

C   is the 

solution of the NKP problem, and given  0, then  
opt

  B  and   1
opt

 C/    1
opt

 C/   , 

then and are also optimal. It is accepted that  =    max 1abs V :, , it allows to consider 
opt

B  and 

opt
C   as SOP, where one of components  0 1

opt
C , ,  - that gives the chance to apply the TFS device 

to the optimum decisions calculated as a result of singular decompositions. 

Considering [31, 34] , the ordinary set A  nearest  to the fuzzy A  one is located at the smallest 

distance from the given fuzzy set, or in other words has the smallest norm. It is shown that this will be 

an ordinary set endowed with the following properties 

  

 

 

 

 

 
   

In turn, if FS is represented as a tensor model, as shown below, 

     
    1 1 2

1

aaa n nnA a a a A A
n

  

 
            

 

/ ; ; :, :,A =    (9) 

then the search for the nearest fuzzy set should be implemented by entering 2 prerequisites: 

 fuzzy set is used to represent uncertainty, all subsequent mathematical procedures are 

performed on tensor models, the final result (if necessary) is converted into a subset of ordered pairs, 

which is analogous to fuzzy set, always has a sigmoid-like shape and is calculated as a result of 

tensor decompositions. 

The main advantage of the concept of nearest fuzzy sets (or subsets of ordered sequences) is that: 

 it is possible to use hidden knowledge, which is contained in the set of initial data (SID) and 

accumulated in the FS; 

 there is an additional channel to obtain information for the formation of MF; 

  there is a possibility of processing 3D data under conditions of uncertainty and the possibility 

of simplified analysis using type-2 FS; 

 

 
 
 

0  0 5

1  0 5

0  0 5

if x
iA

x if x
iA A

if x
iA



 



 



 

 


, . ;

, . ;

, . .



 additional possibilities of expanding the classes of solvable problems under conditions of 

uncertainty, in particular, the solution of fuzzy equations and systems of fuzzy equations of type-2 

FS and multi-fuzzy equations by using the methods of Kronecker algebra. 

The specified model can be transformed into the following models: 

   SOP, calculated on the basis of singular decomposition 
 x

T ; 

  3D tensor 
   

 
 

 [ :,:,1 ,..., :,:,k ]
0 0 0

x x x
T T T , presented in the form of frontal slices  

 
 :,:, j , 1, ;

0

x
T j k  

 

     

   

, , 0,1

,

reshape , , , ,
0

x z zsvd T z z Z

x
T

x x
T T f f f n k k f f f


  
    

   
 

 
      

   

   (13) 

   
 

 
 :,:,1 ,..., :,:,k

x x x
T T T

 
  
  

       (14) 

 The hidden knowledge that can be "extracted" from the tensor models of FS, includes the following, 

primarily matrix and tensor invariants. For 2D  tensor  
3 3

А  main invariants can be de-fined as  

  ;
1 11 22 33 1 2 3

I tr A A A         A     1 2 2
2 2

I tr tr    
 

A A
1 3
    +

;
1 2 2 3
        det

3 1 2 3
I    A .  

Another possibility for obtaining new knowledge is that FS-1 and 2 types have fundamentally 

equivalent 2D tensor models (obtained on the basis of the tensor product of components), which allows 

solving fuzzy equations and systems of fuzzy equations, where all variables and coefficients are fuzzy 

sets (1 or 2 types) almost one algorithm, the concept of which is given below.  

Solution of fuzzy equations axb c , where  a x b c, , ,  - fuzzy variables, 
 a

a a 
  
  
 

/ ,  a A ,

 
 0 1

b
  , ;  

 
 

0 1
a x

x x 
  

   
 

, ; / ,  
 0 1

x
x X  , , ;  b

b b b B
  
  
 

/ , ,   

   
 0 1

c c
c c C 
  
   
 

/ ,c , ,  based on 2 main principles: 

 conversion of  FV  into 2D tensor (matrix) 

     
 

   
 

   1 2 1 2
a x

a a a x x x     T T:, :, , :, :, ,                        (15) 

 
   

 
   1 2 1 2

b c
b b b c c c     T T:, :, , :, :, ;    (16) 

 

 formation of a matrix equation 
       a x b c


CAXB

T T T T ,  its solution based on the vectorization 

procedure (Kronecker algebra) described in [26]. 



 If we limit the case when all  FV  have the same number of (n) - -levels, then the solution has the 

form X ∈
n n

, using the procedure of singular decomposition  u s v svd    X  we can obtain 

SOP  
   

 0 1
x x

x x x X 
  
   
 

/ , , , , which is a concrete solution of the fuzzy equation. 

The following fuzzy equation ,ax xb c    where  , , ,a x b c   - fuzzy variables is solved similarly. 

By converting the FV into a tensor variable, we obtain a matrix equation   

 

         a x x b c
 



T T T T T

CAX XB

,    (17) 

To solve this problem, we apply the operator vec to the left and right sides of the above equation. 

Thus, the equation can be written in the form (Im ⊗ A + BT ⊗ In) vec (X) =vec (C)  vec (X)= vec 

(C) (Im ⊗ A + BT ⊗ In)
-1. Next steps: conversion vec (X) into a matrix Х , singular decomposition of 

the matrix X, and determination of a subset of ordered pair 
 x

x x 
  
  
 

/ , 
 

 0 1
x

x X  , , .  

The computer experiment contained specific tasks (algorithms, programs, interpretation of results) 

that must be implemented to achieve the goal: realize mathematical support using MatLab to represent 

FS-1 and 2 types of tensor models based on the use of tensor products of these components FS in order 

to justify the need and feasibility of the proposed approaches:        

In fig. 2 presents a general scheme of a computer experiment: initial FS 2D tensor model 3D 

tensor model  tensor  analysis. 

 

 
Figure 2: General scheme of computer simulation implementation main tasks. 

 

1. Standard FS with triangular (or Gaussian) MF 
2

trimf

n

a


 , which is presented in matrix 

form, is transformed into a 2D tensor 
 trimf

trimf

n n
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comp FS

a
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

 T

.

 , singular decomposition of 

which 
 trimfa

svd
 
 
 
 

T  allows you to get SOP 
  2

trimf

nnev
a


 , whose properties:  

     trimf trimf trimf trimf
def def

nev nev

FF

a a a a
 
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 , ;   

2. Transformation of a 2D tensor model 
 trimf

n na 

T  standard FS 
trimf

a  in the 3D tensor 

model: 
     trimf trimf

p q mn na anew

reshape
p q m n n

    
   
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   

     T T , , high-order 



singular decomposition 
   trimfHOSVD

anew 
 
 
 

T  allows you to get SOP 

   

1 2

bb

b b  
  
 
 
 

, ,

3m
 , which in terms of the criteria of claim 1 is equivalent to SOP 

  2

trimf

nnev
a


 .   

3. Given  FS 
   

 
 

0 1
trimf trapmf

a a b
a a a A b b  
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   

/ , , , ; / ,  ,b B  

 b
  0 1 , ;  defined results 

   
 0 1 ,

c c
c a b c c C

f
 

 
    

 
/ , , ,  where f



  , ,*, ,/ , calculated tensor models  FS 
   a b

a T b T ,  accordingly, the calculated 

values 
     c a b

T T T
f

 , which by means of singular decomposition are transformed into 

SOP:  

 
         c new new new c

T c c 
  

   
 

/ , 
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 0 1
new new c

c C  , , .  

Confirm equivalence 
   

def def
new new

c c c c
F

F

  
        

, .   

4. Modeling of 3D data processing using matrix algebra. Given a set of 3D unstructured data, the 

procedure reshape () allows you to structure a given set in the form of a 3D tensor - reshape (S, m, 

p, n)  {A (:,:, 1), A (:,:, 2) ,…, A (:,:, n)}, represented in the form of a set of frontal  slices; in the 

following figure. this procedure is applied to a separate time series window. 

According to Theorem 2.4.1 [27], blkdiag (A) is a block diagonal matrix, which is defined as 

follows: 

 

 

 

 

1

2

blkdiag

n

 
 
 
 
 
 
 
 
 



A

A

A

A    (18) 

 

where A(i) – і-th  frontal slice A , i = 1, 2, ..., n3. 

Separately, we note that the proposed approach to the analysis of 3D data under uncertainty is 

applied to the analysis of 3D fuzzy time series 

The next step is a singular decomposition of a block   svd blkdiag A  diagonal matrix, which 

makes it possible to obtain a set of ordered pairs and process the resulting object by TFS methods. Note 

that the proposed procedure for converting 3D data to SOP can be used for fuzzy logic systems with 

3D data. 

 
    a     b 

Figure 3: a-Example [28-29] representation of a separate window of a 3D time series in the form 
of a tensor model (a) - 3-time series, (b) - a tensor model of a window of the TS 



5. Modeling the solution of fuzzy equations and systems of fuzzy equations under conditions of 

uncertainty, if all parameters of the equation are type-1 FS or type-2 FS. 

In [25, 29,32] an example of a real type-2 FS is given, the general form of which is presented in 

several formats, some of which are given below (Fig. 4): 

Consider this example in order to compare the proximity of defuzzyfied values and F-norms of type-

1 FS and type-2 FS created from the initial FS by the fuzziness of MF. In addition, this example is 

important for 2 reasons: 1 - in [29] an example of type-2 FLS is given and it is shown that the yield of 

FLS-2 type has a defuzzyfied value ( )def y  for type-1 FS obtained as a reduction of the initial FS type 

obtained at the stage of the fuzzification. 

According to the notation introduced in [30-33], this FS is also representative; 2 - tensor model type-

2 FS allows you to calculate a subset of ordered pairs or a subset of ordered sequences (analogs), which 

allows you to have alternative solutions. For the purpose of transparency of calculations type-2 FS A

is transformed into a set of objects: matrices (secondary FN -
 2

 ), vectors (primary FN -
 1

  and US 

x respectively) are shown in Fig. 4 above.   

Recall that the type-2 FS ,A B  are considered as defined on U in the form   / ,
x X

A x x
A




   

  /
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B x x
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


  , where     / ,
Au J
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A



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Bw J
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

  . 

 
                           a                                                                     b 

Figure 4: a - example type-2 FS  is presented in the format Moderate [30],  
b - 3D form of presentation type-2 FS in Moderate format [30] 

 

In the [29] it is shown that FS   /
B

x X

B x x


   can be represented as a subset of ordered pairs  

 
2n

B
B x x

 
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 

     and can in turn be converted to a 2D tensor   
n n

B
x x


  , singular 

decomposition of which allows obtaining a new SOP (or SOS if necessary), endowed with the property 

of proximity to the original SOP. 

5. Results 

Below are FS with a triangular MF, which simulates the statement of approximately 9.5, and the 

nearest crisp set, their F-norms and defuzzyfied. 

 



 
                         a  b   c 

Figure 5.: a - the initial FS of approximately 9.5 with a triangular MF,  
b, c - SOP, formed as a result of singular decomposition of the tensor model FS. 

 

In fig.5. are shown the initial FS of approximately 9.5 with a triangular MF: 
 x

x x 
 

  
 

/ ,  

 
 0 1

x
  ,     X=[5:9/8:14];  

 x



 y=trimf(x, [5   9  14]); b, c - SOP, formed as a result of sin-

gular decomposition of the tensor model FS - 
 

    
9 9

1 2
x

x x


  T :, :,   

FS 9.5 trimf 

5.00             0 

6.13          0.28 

7.25          0.56 

8.38          0.84 

9.50          0.90 

10.63        0.68 

11.75        0.55 

12.88        0. 23 

14.00            0 

crisp set 

5.00         0 

6.13         0 

7.25         1 

8.38         1 

9.50         1 

10.63       1 

11.75       1 

12.88       0 

14.00       0 

                                      F-norm and defuzzyfied  value 

29.85    9.34 29.85    9.44 

Tensor model FS 9.5 trimf 

0  1.41    2.81        4.22       4.50 

0    1.72    3.45      5.17       5.51 

0    2.04    4.08      6.12       6.53 

0    2.36    4.71      7.07       7.54 

0    2.67    5.34      8.02       8.55 

0    2.99    5.98      8.96       9.56 

0    3.30    6.61      9.91    10.58 

0    3.62    7.24    10.86    11.59 

0    3.94    7.88    11.81    12.60 

3.38    2.25    1.13      0 

4.13    2.76    1.38      0 

4.89    3.26    1.63      0 

5.65    3.77    1.88      0 

6.41    4.28    2.14      0 

7.17    4.78    2.39      0 

7.93    5.29    2.64      0 

8.69    5.79    2.90      0 

9.45    6.30    3.15      0 

Subset of ordered pairs 

   porp1 = 

 

4.50         0 

5.51      0.31 

6.52      0.63 

7.54      0.94 

8.55      1.00 

9.56      0.75 

10.58    0.50 

11.59    0.25 

12.60       0 

with sort  

porp = 

4.50          0 

5.51          0 

6.52       0.25 

7.54       0.31 

8.55       0.50 

9.56       0.63 

10.58     0.75 

11.59     0.94 

12.60     1.00 



F-norm and defuzzyfied  value 

26.88                           8.41 26.88         10.43 

For comparison, we give similar parameters of the initial FS and SOP: F-norm: 29.85  26.88;  

defuzzyfied  value: 8.41  (9.34 9.44)  10.43 

Norm"s  kron prod. of Subset of ordered pairs and Tensor model 

           1 1 1 1 1 1 1 1 48 30:, :, :, :, :, :, .
F F F

x x porp porp porp porp       

This example confirms the main thesis - a subset of ordered pairs, the result obtained by the singular 

decomposition of the tensor model of the initial FS, adequately represents the initial FS. 

Type-2 FS. Initial data - an object under uncertainty is represented as a data matrix 

disp ('Initial data - object under uncertainty is represented as a data matrix') 

 

            % Presented secondary FS – type-2 FS 

mu2= 

     [   0         0        0           0             1.00    1.00    1.00           0             0              0             0; 

         0         0         0          0             0.20    0.60    0.80           0             0              0             0; 

         0         0         0          0.30        0.60    0.20    0.60           0.30        0              0             0; 

         0         0         0          0.60        0.40         0     0.40          0.60         0              0             0; 

         0         0         0          0.80        0.20         0        0             1.00        0              0             0; 

         0         0    0.20          0.80         0             0        0             0.80        0.20         0             0; 

         0         0    0.40          0.60         0             0        0             0.60        0.30         0             0; 

         0       .80    0.60         0.30         0             0        0             0.30        0.60     0.80            0; 

         0       .90    0.80        0               0             0        0             0.80        0.90         0             0; 

    1.00     1.00    1.00        0               0             0        0             0             1.00      1.00     1.00]; 

      

disp ('The specified object is approximated by a standard FS with a triangular MF') 

disp ('Comparative evaluation - standard FS with triangular MF') 

  

 

X = [0:10]; 

mf = [0:0.1:1]; 

y = trimf(X, [0 mean(X) 10]); 

v = [X'  y']; 

 

 

Universal set 

Primary MF 

standard triangular MF 

Standard FS with a triangular MF  for comparison is presented 

as a matrix в 11 2  

disp ('NORM and Defuzzyfied value of standard type-1 FS') 

 [norm(v,'fro')                 sum(v(:, 1).*v(:, 2))/sum(v(:, 2))]     

         19.71                              5.00 

 

n_kr_v = norm(kron(v(:,1),v(:,2)'),'fro')   -norm of the Kron product of the standard FS component 

                                                                                                              36.18 

 

disp('Implementation of the NORM calculation procedure and defuzzyfied value of type-2 FS') 

used calculation formulas given in the work 

 

for i=1:11 

[b(:,i)]=mu2(:,i).*mf'; 

end 

b; 

bs=sum(b(:,1:11)); 

s=sum(mu2(:,1:11)); 

bss=bs./s; 

vnew=[X'  (1-bss)']; 

%************************************************************************ 



disp('NORM and Defuzzyfied value of FS-2type(type reduction)') 

[norm(vnew,'fro')sum(vnew(:,1).*vnew(:,2))/sum(vnew(:,2))] 

 

Implementation of the NORM calculation procedure and defuzzyfied value of type-2 FS 

F-NORM and Defuzzyfied value of FS-2 type (type reduction)         19.77          5.02 

 

Universal 

set 

Membership functions 

Type-2 FS 

trimf( ) 

Standard 

Type-1 FS  

1 2 3 

0 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

10.00 

0.00 

0.09 

0.13 

0.50 

0.86 

0.94 

0.87 

0.44 

0.13 

0.09 

0.00 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

         

Note: 1. Universal set common to FS-1 and FS-2 type. 

                2.Col.2 –type-2 FS with triangular MF, blurring of MF forms type-1 FS. 

                3.Col.3 – type-1 FS, obtained as a result of the procedure  reduced  type: 

                                  type-2 FS  type-1 FS. 

 

Note that the established criteria are -F-norm FS, presented in the form of a matrix with 2n ,   and 

the defuzzyfied  value for both cases of uncertainty representation practically coincide: (19.71, 5.00) 

and (19.77, 5.02), although the use of accuracy criteria in modeling uncertainty is a rather contradictory 

approach. 

The tensor model FS-2 type in MatLab notation has the form: 

fs1=[0:0.1:1]; 

z=kron(X, kron(fs1,mu2(:,1:11)));     Tensor (Kroneker-product) model type-2 FS from 121 121   

size(z)       11x11x121 – irrational form of representation 

 

z1=reshape(z,121,121);                    Transformation of the initial KP model into a square matrix 

n_kr_Ta                                            183.79 

 

Formation of a subset of ordered pairs 

 [u s v]=svd(z1); 

disp('1 variant -> Singular decomposition of the type-2 FS tensor model') 

disp('Subset of ordered pairs -sort') 

Tab_pup_x=sort([abs(u(:,1)*s(1,1))*max(abs(v(:,1))),abs(v(:,1))/max(abs(v(:,1)))]); 

disp('F-norm and Defuzzyfied value of SOP') 

[norm(Tab_pup_x,'fro')  sum(Tab_pup_x(:,1).*Tab_pup_x(:,2))/sum(Tab_pup_x(:,2))] 

singular decomposition of the type-2 FS tensor model 

The subset of ordered pairs -sort 

            F-norm and Defuzzyfied value of SOP         47.89          5.75                                  (*) 

NORM of kron product of SOP   components 

Comparison of norms        183.79        183.79 

sparse SOP:  NORM and Defazzifited value of sparse SOP   13.60          5.36                        (**) 

note that the case (*) concerns  SOP from 121 2  , the case (**)SOP from  11 2 (sparced set) 



z3=reshape(z1,11,11,11,11);                           Transformation of the initial CD model into a tensor 

CP4_ALSLS [32]   CANDECOMP/PARAFAC  decomposition  of a fourth-order tensor(CP4). 

 [A1,A2,A3,A4]=cp4_alsls(X,R)  computes a  CANDECOMP/PARAFAC decomposition of a 

fourth-order tensor  X in  Rank-one terms, stored in the factor matrices  A1, A2, A3, A4, belonging  to 

the  first, second, third and fourth  mode, respectively. 

[A1,A2,A3,A4] = cp4_alsls(z3,1) 

СР (CANDECOMP/PARAFAC  ) decomposition (factorization) of the tensor Y 1 2
I I I

N
  

  

can be defined as  
     1 2

1

J N

j j j j
j

Y  


a a a E  . 

Recall that the matrix Y is a rank-1 matrix, if and only if   Y = uvT, where u and v are nonzero 

vectors.  

Factor matrices 
       

1 2
, , , , 1,

I J
nn n n n

j
n N


 
  

  A a a a  contain latent components 
 n
j

a   as 

columns 

The first columns of factor matrices 

c=abs([A1  A2  A3  A4])=  

          0.17          0.66             0             0 

          0.09          1.44          0.17          0.17  

          0.31          1.44          0.34          0.34 

          0.50          0.97          0.51          0.51 

          0.61          0.22          0.68          0.68 

          0.73          0.09          0.85          0.85 

          0.77          0.24          1.02          1.02 

          0.76          1.36          1.19          1.19 

          1.38          1.47          1.36          1.36 

          1.52          1.00          1.53          1.53 

          2.09          0.66          1.70          1.70 

Normalized factor matrices 

 c1=[c(:,1)*max(c(:,2))*max(c(:,3))*max(c(:,4)) c(:,2)/max(c(:,2)) c(:,3)/max(c(:,3))    

       c(:,4)/max(c(:,4))] 

c1 = 

          0.72          0.45             0             0 

          0.38          0.98          0.10          0.10 

          1.31          0.98          0.20          0.20 

          2.09          0.66          0.30          0.30 

          2.59          0.15          0.40          0.40 

          3.09          0.06          0.50          0.50 

          3.24          0.16          0.60          0.60 

          3.20          0.92          0.70          0.70 

          5.83          1.00          0.80          0.80 

          6.44          0.68          0.90          0.90 

          8.84          0.45          1.00          1.00 

F-norm  of the result norm(c1,'fro')        14.50 

Reduced  type: matrix reduction с1 11 4  to  SOP с2 11 2 (min(c(1:11,2:4)) 

c2=[c1(:,1) [ 0 0.1 0.2 0.3 0.15 0.06 0.16 0.7 0.8  0.68 0.45]'] 

c2 =[0.72          0;  0.38       0.10;1.31       0.20; 2.09       0.30;2.59       0.15;  3.09      0.06;  

        3.24     0.16;  3.20       0.70; 5.83      0.80; 6.44       0.68; 8.84       0.45] 

 

Calculation of defuzzyfied  value and F-norm of SOP  

sum(c2(:,1).*c2(:,2))/sum(c2(:,2))                                          4.90               14.50 

The given object is approximated by standard FS with triangular FN 

Comparative evaluation - standard FS with triangular FN 



NORM and Defuzzyfied  value of standard type-1 FS                      19.71          5.00 

Implementation of the procedure for calculating the NORM and Defuzzyfied value of type-2 FS 

NORM and Defaulted value of type-2 FS (type reduction) 

19.77          5.02 

Sparsed  SOP 

NORM and Defuzzyfied value of Sparsed SOP          13.60          5.36 

6. Conclusions  

1. The theory of FS is now a practically universal apparatus, which is used in almost all cases 

where there may be uncertainty. However, the emergence of new problems requires continuous 

expansion of the standard theory of fuzzy sets, which is reproduced in the creation of new types of 

FS (rough FS, hesitate FS, multiFS, etc.), automation of FS formation processes, including MF, 

contradicts the ideology of TFS. However, the main object of TFS is the fuzzy set, which has not 

been studied to provide adequate answers to modern requirements, in particular, the urgent need to 

process BIG DATA. 

2. One of the areas of possible research is tensor modeling of uncertainty, the basis of which is 

embedded in the nature of FS - a subset of ordered pairs. Objects that can represent tensors include 

vectors and scalars, as well as other tensors. Tensors can take several different forms, such as scalars 

and vectors (which are the simplest tensors), double vectors, multiline maps between vector spaces, 

and even some operations such as a point product. Tensors are defined independently of any basis, 

although their components are often called bases based on a particular coordinate system. 

3. The representation of type-1 FS or type-2 FS as a tensor product of components is offered, the 

result is a 2D tensor (or 3D tensor in case of large dimension). This approach allows to use of the 

possibilities of tensor-matrix analysis to solve problems under uncertainty, along with the TFS 

apparatus, realizing the extraction of new knowledge (matrix-tensor invariants, matrix-tensor 

decompositions), which significantly expands the range of problems under uncertainty. 

4. Based on the concept of extracting hidden knowledge, a method of automatically creating FS 

by structuring the initial data set with subsequent tensor decomposition is proposed, the obtained 

SOP is endowed with all the properties of MF. If it is impossible to implement the procedure of 

structuring IDS, it is proposed on the basis of calculating   the values of creating the US vector in 

the form   and blurring the latter by using special matrices (Toeplitz, Hankel, etc.), matrix (tensor) 

decomposition of which will create SOP - analog FS.   

5. It is shown that tensor models of standard type-1 FS allow representing this object 

simultaneously as a 2D tensor, 3D tensor, type-2 FS with  sparse US, and multiFS; in addition, the 

standard type-2 FS can be represented as type-1 FS, preserving the properties of the original object 

(F-norm, defuzzyfied value). This conclusion allows us to solve fuzzy equations in which the 

coefficients and the unknown are fuzzy variables of types 1 and/or 2, at the level of standard matrix 

equations, followed by the transformation of the matrix solution into the SOP.  
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