
Knowledge Representation and Automated Formal Reasoning in
Description Logic ALC

Vasyl Lenko
1, Volodymyr Pasichnyk

1, Natalia Kunanets
1 and Yurii Shcherbyna

2

1 Lviv Polytechnic National University, 12 S. Bandery str., Lviv, 79013, Ukraine
2 Ivan Franko National University of Lviv, 1 Universytetska str., Lviv, 79000, Ukraine

Abstract
The paper presents a systematic analysis of the description logic formalism that has proved to

be the distinguished approach for automated formal reasoning. The focus is on the principles

of knowledge representation and reasoning within the framework of basic description logic

ALC. An application of the specified formalism towards the domain of mass media reveals the

benefits of automated reasoning for decision making.

Keywords 1
Description logic, automated formal reasoning, tableaux algorithm, ALC

1. Introduction

Description logics (DLs) play a fundamental role in modern ontologies that are based on OWL 2.

They form the basis of direct model-theoretic semantics [1] for OWL 2 ontologies, which are de facto

the standard in knowledge bases engineering. The historical evolution of ontologies from a frame model

towards logic-based knowledge representation models is explained by the issues of an ambiguous

interpretation of syntactic constructions in frames and limited generality of the associated reasoning

methods [2]. Description logics, as decidable fragments of first-order logic, provide formal model-

theoretic semantics and sound methods (forms) of reasoning over syntactic expressions.

For OWL 2, the most appropriate semantics among description logics is SROIQ, while for OWL it

is description logic SHOIN. Description logics are named using abbreviations of sets of constructors

(axioms), which form the basis for their grammar. For instance, SROIQ consists of the following

constructors: S – denotes the set of constructors of the basic description logic ALC, extended with the

transitive roles; R – denotes an extended set of role axioms, also called RBox; O – denotes nominals; I

– denotes the inverse roles; Q – denotes qualified cardinality restrictions. The variety of description

logics is explained by the combinatorial possibilities of the constructors’ set selection but obtaining the

description logic with attractive expressiveness and computability is a difficult research task. The

reason is a fundamental trade-off between expressiveness and decidability of formal language – higher

expressiveness leads to a higher probability of undecidability of reasoning problems. Adoption of a new

description logic requires formal proofs of its properties as a decision procedure, as well as careful

selection of a set of constructors.

We will conduct a systematic analysis of 1) the structure of description logics, based on the example

of the description logic ALC; 2) the main reasoning problems that can be stated and solved in ALC; 3)

the concept of a knowledge base in the context of description logics; 4) fundamental properties of

description logics; 5) model-theoretic semantics and tableaux-based method for the inference of logical

conclusion.

MoMLeT+DS 2021: 3rd International Workshop on Modern Machine Learning Technologies and Data Science, June 5, 2021, Lviv-Shatsk,

Ukraine

EMAIL: vs.lenko@gmail.com (V. Lenko); vpasichnyk@gmail.com (V. Pasichnyk); nek.lviv@gmail.com (N. Kunanets);

yshcherbyna@yahoo.com (Y. Shcherbyna)

ORCID: 0000-0002-3109-480X (V. Lenko); 0000-0002-5231-6395 (V. Pasichnyk); 0000-0003-3007-2462 (N. Kunanets); 0000-0002-4942-
2787 (Y. Shcherbyna)

©️ 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

2. Description logics

Description logics are a family of logic-based formal languages for knowledge representation and

reasoning that date back to the late 1980s. The notion “description logic” corresponds to the ontological

commitments of this formalism: the main aspects of the domain of interest are presented in the form of

a “description” of its entities (concepts) and relationships (roles), which are created by the constructors

(axioms) of the selected description logic. For the sake of knowledge reuse, syntactic expressions are

classified by their generality and divided into two parts – a set of terminological axioms, TBox, and a

set of statements about individuals, ABox, which together form the knowledge base, KB, also known

as an ontology.

Table 1
Correspondence between the elements of formal logic and OWL 2

Predicate logic Description logic OWL 2

Unary predicate Concept Class
Binary predicate Role Property

Constant Individual Instance

A fundamental property of description logics is the presence of formal semantics, which allows to

interpret correctly syntactic expressions, axioms, and operators, thus creating an unambiguous, shared

understanding of when the statement itself is a logical consequence from the knowledge base. Since

description logics are decidable fragments of predicate logic, the logical inference is executed using

automated reasoning methods, which are based on the principles of semantic admissibility and

deductive derivability of a statement. The peculiarity of reasoning in descriptive logics is that

computation is always carried out over the entire knowledge base. The conceptual trade-off between

the expressiveness of the representation language and the computational complexity of reasoning

problems, as well as the number of statements in the knowledge base, give rise to the need for a variety

of description logics. In particular, the family of description logics EL is characterized by limited

expressiveness of the representation language but guarantees a polynomial time solution for some

reasoning problems in large ontologies.

The expressiveness of description logics is always limited. This property is forced by the need to

ensure the decidability of reasoning problems and can be tightened to ensure the decidability of

reasoning problems in polynomial time with regards to the size of the knowledge base. Decidability,

especially in polynomial time, is a major factor that promotes the use of description logics in knowledge

base engineering, therefore the design of varieties of specialized description logics requires careful

analysis and formal proofs of their properties. This need is caused by the fact that a synthesis of

decidable description logic extensions can lead to undecidability. If the expressiveness of description

logic is insufficient to represent the domain of interest, then instead of using undecidable description

logics, it is better to build a custom application around the decidable DL or use alternative knowledge

representation models. The definition of semantic structures that can be represented in description logic

is carried out within the framework of formal model theory, which in particular defines the semantics

of first-order logic.

Some kinds of description logics go beyond first-order logic and can use operators of modality, the

concepts from fuzzy logic, or probability theory. Syntactically, the statements of description logics are

similar by form to the expressions of modal logics, but their truth values are established according to

A. Tarski’s semantic truth theory [3], which is the paradigm of truth definition in model theory. Despite

the differences that are present in the varieties of description logics, the process of ontology engineering

is mostly the same. At first, we define the dictionary of the domain of interest, which is later formalized

into the TBox statements. Some applications may use only TBox, while others may the whole ontology

and even databases. The logical consistency of an ontology structure, as well as processing of user

queries to a knowledge base, are ensured by a module of automatic or semi-automatic logical reasoning,

which is usually provided as part of an ontology development environment (i.e., HermiT reasoner [4]

in Protégé IDE [5]).

3. Description logic ALC

The use of description logics for the conceptual modeling of the domain of interest involves the

description of important abstractions that are inherent to it, as well as the individuals who are the

instances of these abstractions. Description logics have four major components that participate in the

process of creating a formal representation of the domain [2]:

1. Concepts are abstractions that are built from the concept names and role names using

constructors of description logic. In model theory, the concept is interpreted as a set of elements,

and it corresponds to a unary predicate in first-order logic.

2. Roles (role names) are the relationships between two concepts or individuals. In model theory,

the role is interpreted as a set of pairs of elements that belong to the appropriate concept extensions,

and it corresponds to a binary predicate in first-order logic.

3. Individuals (instances) are the embodiments of concept abstractions in the form of objects and

are designed to name the object of a particular abstraction. In model theory, the individual is

interpreted as an element of a concept’s extension set, and it corresponds to a constant in first-order

logic.

4. Concept language is a formal language that creates concepts and roles descriptions from

primitives like concept names and role names, by the means of description logic operators. An

interpretation of the concept language operators in a model theory puts them in line with the

operators on sets, while in first-order logic they are compared with the operators on logical

statements.

An attributive language with complements, ALC, belongs to the family of description logics AL –

attributive languages that provide operators of atomic negation, concepts intersection, universal and

existential quantifiers. Unlike the AL family, where only the complements of atomic concepts are

available, the ALC language allows the complement of any well-formed concept [3]. The set of atomic

concepts consists of the concept names, “top” ⊤ and “bottom” ⊥ concepts; the rest are compound

(complex) concepts because they are formed using the concept language operators. Thus, a set of ALC

concept descriptions consists of concept names, role names, individual names, ⊤ and ⊥, concepts

intersection and union, concept negation (complement), existential and value restrictions. The syntax

of a formal language allows distinguishing well-formed expressions from arbitrary ones. An inductive

definition of ALC concepts’ syntax is as follows [2]:

• Every concept name is an ALC concept description;

• ⊤ and ⊥ are ALC concepts descriptions;

• If C and D are ALC concept descriptions and r is a role name, then the following are also

ALC concept descriptions:

o C ⊓ D (conjunction or intersection of concepts);

o C ⊔ D (disjunction or union of concepts);

o ¬C (negation or complement of concept);

o ∃r.C (existential restriction);

o ∀r.C (values restriction).
The formal semantics of a language allows to establish unambiguously the meaning of its well-

formed expressions and is also required for the introduction of a truth predicate, which assigns a truth

value to the logical expressions in the language. Semantics can be considered as a metalanguage, which

contains the structures that are described by the syntax of the corresponding formal language. Since

metalanguage is also a language, it is possible to construct its own semantics, and so on. A. Tarski’s

semantic truth theory [3] states: to avoid the Russell’s or liar’s paradoxes in a formal language, the truth

predicate must be defined exclusively in a metalanguage. This paradigm preserves the consistency of

the logical systems, which allow forming the statements like “This sentence is a lie”; the truth value of

this statement is determined outside the language that was used for its formulation.

The semantics of description logics is an “interpretation” – a structure that is characterized by the

following properties: 1) consists of a non-empty set of elements, which is called interpretation domain;

2) for each concept name defines its extension, i.e., a subset of elements from the interpretation domain;

3) for each role name defines a set of pairs of elements from the interpretation domain, which are related

to each other by this role. Formally, an interpretation 𝐼 = (∆𝐼 , ·𝐼) consists of a non-empty set ∆𝐼, which

is called the interpretation domain, and a mapping ·𝐼, which maps each concept name 𝐴 ∈ 𝑪 to a set

𝐴𝐼 ⊆ ∆𝐼 , and each role name 𝑟 ∈ 𝑹 to a binary relation 𝑟𝐼 ⊆ ∆𝐼 × ∆𝐼. Interpretation of the other concept

descriptions is carried out by extending the mapping ·𝐼 with the following rules [2]:

• ⊤𝐼 = ∆𝐼 (entire interpretation domain),

• ⊥𝐼= ∅ (empty set);

• (𝐶 ⊓ 𝐷)𝐼 = C𝐼 ∩ 𝐷𝐼 (intersection of concepts extensions);

• (𝐶 ⊔ 𝐷)𝐼 = C𝐼 ∪ 𝐷𝐼 (union of concepts extensions);

• (¬С)𝐼 = ∆𝐼\C𝐼 (interpretation domain without concept extension);

• (∃𝑟. 𝐶)𝐼 = {𝑑 ∈ ∆𝐼 | exists 𝑒 ∈ ∆𝐼 with (𝑑, 𝑒) ∈ 𝑟𝐼 and 𝑒 ∈ С𝐼 };
• (∀𝑟. 𝐶)𝐼 = {𝑑 ∈ ∆𝐼 | for all 𝑒 ∈ ∆𝐼 , if (𝑑, 𝑒) ∈ 𝑟𝐼 , then 𝑒 ∈ С𝐼 }.
The properties of an interpretation are limited only by the rules that are explicitly specified in its

definition, namely: the interpretation domain should not be empty, but can be of arbitrary power, even

infinite; concept extension may contain any number of elements, from zero to the entire interpretation

domain; the role name extension may contain any number of pairs of elements, from zero to all possible

pairs. Modification of the interpretation 𝐼, by adding or removing elements from interpretation domain,

concepts extensions, or roles extensions, gives rise to the alternative interpretations. For the sake of

interpretation structure analysis, it is convenient to visualize it in the form of an oriented graph, where

the arcs and vertices are labeled. In this graph, a vertex represents an element from the interpretation

domain, while its labels denote the concepts that contain the specified element in their extensions; an

arc represents a pair of elements contained in the extension of some role r, and the arc label corresponds

to the name of that role.

Example 1. Create a model of the domain “IT project structure” using the description logic ALC and

define its interpretation in the context of the “Smart City” project.

Solution. The first step of modeling is to determine the concept and role names that are important

for us in the domain of interest. Let the set of concept names 𝑪 = {Engineer, Technology, Project}, the

set of role names 𝑹 = {is_part_of, has}. The second step of modeling is to define an interpretation for

the elements of these sets. Concepts and roles extensions usually adhere to the desired context and

purposes of modeling:

∆𝐼= {Andy, Mary, Javascript, UML, Smart_City};

Engineer𝐼 = {Andy, Mary};

Technology𝐼 = {JavaScript, UML, Smart_City};

Project𝐼 = {Smart_City};

is_part_of 𝐼 = {(Andy, Smart_City), (UML, Smart_City)};

has𝐼 = {(Mary, UML), (Andy, Javascript)}.

The third step of modeling consists in the formalization of interpretation elements using the syntax

of description logic ALC. It should be noted that there might be multiple options for interpretation

elements representation and each of them might be valid, but their efficiency for achieving the goals of

modeling might vary. For example, the instance “Smart_city” belongs to the extensions of the atomic

concept Project and the compound concept Project ⊓ Technology, as well as the extensions of the

concepts like ¬Engineer and ⊤. The instance “Andy” belongs to the extensions of the concepts

Engineer, ∀has. Technology, ∃is_part_of.Project and many others. Moreover, all elements of the

interpretation domain always belong to the extension of the top concept “⊤” and at the same time, none

of them belong to the extension of the bottom concept “⊥”, which corresponds to the state of absurdity

in the systems of logic.

The specified interpretation of the conceptual model of the domain of interest can be visualized in

the form of a directed graph, which facilitates the analysis of the relationships between the elements of

concepts extensions and simplifies the task of clusters identification:

Figure 1: Visual representation of the interpretation in the form of a graph

The definition of the semantics of description logic ALC contains rules that allow to state some

useful lemmas for the effective implementation of the reasoning process. Their syntax is very similar

to the deductive forms of first-order logic arguments, namely, the law of double negation, de Morgan’s

laws, etc. Following are the lemmas of description logic ALC and their proofs can be obtained from the

properties of interpretation 𝐼 [2]:

• ⊤𝐼 = (𝐶 ⊔ ¬С)𝐼 (the law of excluded middle, LEM);

• ⊥𝐼= (𝐶 ⊓ ¬С)𝐼 (absurdity);

• (¬¬С)𝐼 = C𝐼 (double negation elimination);

• ¬(𝐶 ⊓ 𝐷)𝐼 = (¬𝐶 ⊔ ¬𝐷)𝐼 (de Morgan’s law);

• ¬(𝐶 ⊔ 𝐷)𝐼 = (¬𝐶 ⊓ ¬𝐷)𝐼 (de Morgan’s law);

• (¬(∃𝑟. 𝐶))𝐼 = (∀𝑟. ¬𝐶)𝐼 (variation of de Morgan’s law);

• (¬(∀𝑟. 𝐶))𝐼 = (∃𝑟. ¬𝐶)𝐼 (variation of de Morgan’s law).

4. Knowledge bases in ALC

The ability to construct formal descriptions of the domain concepts and to combine them using

concept language operators is an important, but not sufficient achievement. The sequences of syntactic

transformations and combinations of formal descriptions can be infinite, so having limited time and

memory resources, it makes sense to remember useful (by naming) and connected (by relations)

descriptions, to avoid repetitive calculations. As a result, the following syntactic constructions are

introduced to ALC description logic:

• 𝐶 ⊑ 𝐷 = C𝐼 ⊆ 𝐷𝐼 (concept inclusion);

• 𝐶 ≡ 𝐷 = C𝐼 ⊆ 𝐷𝐼 and 𝐷𝐼 ⊆ C𝐼 (concepts equivalence);

• 𝑎: 𝐶 = 𝑎𝐼 ∈ С𝐼 (concept assertion);

• (𝑎, 𝑏): 𝑟 = (𝑎𝐼 , 𝑏𝐼) ∈ 𝑟𝐼 (role assertion).

These relations allow structuring the elements of the knowledge base in accordance with the classical

approaches to systematization and reuse of concepts and their properties. For example, the equivalence

operator ≡ establishes the meaning of the concept 𝐶 through the description of the concept 𝐷, which

corresponds to the encyclopedic format of the concept’s definition. The representation of background

knowledge is conveniently carried out through the operator of concept inclusion ⊑, which marks that

concept 𝐶 belongs to the more general concept 𝐷, and thus implicitly inherits from 𝐷 some properties

and operational restrictions. Representation of concrete contexts requires the specification of concept

and role instances in the form of assumptions. The operator “:” establishes the affiliation of individual 𝑎

to the concept 𝐶 and a pair of individuals (𝑎, 𝑏) to the role 𝑟, respectively. The usage of the specified

operators is presented in the following examples:

Technology ⊑ Methods ⊔ Tools

Engineer ≡ Human ⊓ ∃has. Technology

Mary ∶ Engineer

UML ∶ Technology

(Mary, UML) ∶ has

In description logics, the knowledge base is usually divided into two structural parts: terminological,

TBox, and declarative, ABox. In general-purpose knowledge bases or terminologies, the declarative part

may be missing. The terminological part contains statements that describe the concepts and

relationships between them (⊑, ≡), while declarative consists of statements that describe individuals of

concepts and relationships between them in the form of roles (:). Comparing the structure of the

knowledge base and the database, it is possible to establish a significant similarity between the TBox

and the database schema, as both contain general limitations: the form of the conceptual model of the

domain and the form of the data, respectively. The ABox is similar to the database content because it

contains expressions related to the concrete instances of concepts and roles.

Formally, TBox consists of a finite set of statements of the form 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 can be

descriptions of both atomic and compound concepts. If 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶, the notation 𝐶 ≡ 𝐷 is used

for the ease of operating. Each of these statements is called a general concept inclusion (GCI) or an

axiom [2]. An interpretation 𝐼 satisfies GCI if C𝐼 ⊆ 𝐷𝐼 is satisfied. If interpretation 𝐼 satisfies every GCI

containing TBox 𝑇, then it is called a model of 𝑇. The larger number of GCI TBox contains, the fewer

models exist for it, because for two 𝑇𝐵𝑜𝑥 𝑇, 𝑇′, if 𝑇 ⊆ 𝑇′ then each model 𝑇′ is a model 𝑇. TBox 𝑇

divides a set of interpretations into two parts: a set of 𝑇 models and a set of interpretations that do not

satisfy all GCIs in 𝑇. Thus, 𝑇𝐵𝑜𝑥 focuses the modeling efforts exclusively on interpretations that meet

the designer’s intuitive expectations about the structure of the domain.

The declarative part of the knowledge base, ABox, consists of a finite set of assertions, which are

represented in the form 𝑎: 𝐶, the concept assertion, or (𝑎, 𝑏): 𝑟, the role assertion. It is assumed that an

interpretation mapping ·𝐼 maps every instance 𝑎 to the element 𝑎𝐼 ∈ ∆𝐼. An interpretation 𝐼 satisfies the

concept assertion 𝑎: 𝐶, if 𝑎𝐼 ∈ С𝐼, and satisfies the role assertion (𝑎, 𝑏): 𝑟, if (𝑎𝐼 , 𝑏𝐼) ∈ 𝑟𝐼. If

interpretation 𝐼 satisfies all concept and role assertions contained in the ABox 𝐴, then it is called a

model of 𝐴.

The combination of TBox 𝑇 and ABox 𝐴 forms an ALC knowledge base 𝐾 = (𝑇, 𝐴), in which

concepts and their definitions are specified in the terminological part, and then used in the declarative

part. An interpretation 𝐼, which is both a model of 𝑇 and a model of 𝐴, is called a model of 𝐾. A

knowledge base is similar to a database by structure, but they significantly differ in the approach of
ensuring data consistency. If the data is not present in the database, then its validity is considered as

“false” and can be interpreted as a violation of data integrity. For the knowledge base, it is quite
acceptable to have a description of a concept in TBox without a description of the concept instances in

ABox. This paradigm is called the “open world assumption” [6].

The syntax of description logic ALC allows the creation of cyclic concept descriptions. For instance,

the concept 𝑂𝑝𝑒𝑛𝑆𝑜𝑢𝑟𝑐𝑒 ≡ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 ⊓ ∀𝑢𝑠𝑒. 𝑂𝑝𝑒𝑛𝑆𝑜𝑢𝑟𝑐𝑒 is cyclic since the concept name

𝑂𝑝𝑒𝑛𝑆𝑜𝑢𝑟𝑐𝑒 appears in the description of its own definition. Such expressions can be satisfied by

multiple interpretations and can lead to ambiguity of solutions for some reasoning problems. This issue

can be mitigated by the introduction of a syntactic restriction, which increases the defining power of

TBox and introduces the notion of acyclic TBox. It is worth noting that the form of cyclicity of the

𝑂𝑝𝑒𝑛𝑆𝑜𝑢𝑟𝑐𝑒 concept is simple and obvious, but there are hidden forms of cyclicity that arise due to

the nesting of concept descriptions.

Let the expression 𝐴 ≡ 𝐶 be a definition of the concept 𝐴, where 𝐶 is a possibly compound concept,

and 𝑇 is a finite set of concept descriptions. If 𝐴 ≡ 𝐶 ∈ 𝑇 and the concept name 𝐵 appears in 𝐶, then 𝐴

directly uses 𝐵. The concept 𝐴 uses 𝐵 if 𝐴 directly uses 𝐵, or there is a concept name 𝐵′, such that 𝐴

uses 𝐵′, and 𝐵′directly uses 𝐵. A finite set of concepts descriptions 𝑇 is called an acyclic TBox, if: 1)

there are no concept names in 𝑇 that use themselves; 2) there are no concept names that appear more

than once in the left part of the definition of the concept in 𝑇. If 𝑇 is an acyclic TBox with 𝐴 ≡ 𝐶 ∈ 𝑇,

then 𝐴 is called strictly defined in 𝑇, and 𝐶 is called the definition of 𝐴 in 𝑇.

The importance of an acyclic TBox is that it can be unfolded into ABox by interpreting concept

descriptions as macros. The mechanism of the process is to recursively replace all concept names in

ABox with their definitions from TBox. Let 𝐾 = (𝑇, 𝐴) be a knowledge base with acyclic TBox, which

has the form 𝑇 = {𝐴𝑖 ≡ 𝐶𝑖 | 1 ≤ 𝑖 ≤ 𝑚}. Let 𝐴0 = 𝐴 and 𝐴𝑗+1 be the result of the following

substitutions: 1) find some 𝑎: 𝐷 ∈ 𝐴𝑗, in which 𝐷 directly uses 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑚; 2) replace in 𝐷 all 𝐴𝑖

with 𝐶𝑖 . If no more substitutions can be applied in 𝐴𝑘, then 𝐴𝑘is the result of unfolding 𝑇 into 𝐴.
Unfolding is an important step in the process of solving many reasoning problems, but it can cause an

exponential explosion of ABox size. Therefore, it is important to remember the strategies of the lazy

and greedy concept descriptions unfolding.

5. Reasoning problems in ALC

The structure of a knowledge base in description logics allows to model concepts, roles, individuals,

and relations between them. The number of statements in the knowledge base, the nesting of concept

descriptions, model discovery, establish the need for reliable and effective methods of logical reasoning,

which would allow obtaining answers about the important properties of a knowledge base. Let 𝐾 =
(𝑇, 𝐴) is an ALC knowledge base, 𝐶 and 𝐷 are possibly compound ALC concepts, and 𝑏 is an individual

name. Then, the basic reasoning problems inherent to the ALC knowledge base can be defined as

follows [2]:

• 𝐶 is satisfied with respect to 𝑇 if there exists a model 𝐼 of 𝑇 and some element 𝑑 ∈ ∆𝐼 such that

𝑑 ∈ 𝐶𝐼;

• 𝐶 is included in 𝐷 with respect to 𝑇, and is written as 𝑇 ⊨ 𝐶 ⊑ 𝐷 if C𝐼 ⊆ 𝐷𝐼 in all models 𝐼 of

𝑇;

• 𝐶 is equivalent to 𝐷 with respect to 𝑇, and is written as 𝑇 ⊨ 𝐶 ≡ 𝐷 if C𝐼 = 𝐷𝐼 in all models 𝐼

of 𝑇;

• 𝐾 is consistent if there is a model of 𝐾;

• 𝑏 is an instance of 𝐶 with respect to 𝐾, and is written as 𝐾 ⊨ 𝑏: 𝐶 if 𝑏𝐼 ∈ С𝐼 in all models 𝐼 of

𝐾.

The sign of the semantic logical consequence ⊨, in contrast to the sign of the deductive logical

consequence ⊢, is based on the inclusion of models of statements that it connects. When 𝑇 is fixed,

inclusion and equivalence with respect to 𝑇 are binary relations of possibly compound concepts, so to

denote this fact, the notations 𝐶 ⊑𝑇 𝐷 and 𝐶 ≡𝑇 𝐷 are used, respectively. The problems of satisfaction,

inclusion and equivalence are defined with respect to TBox only, but the problems of consistency

between the knowledge base and concept’s instance are defined with respect to both, TBox and ABox.

The consistency property of TBox only, or ABox only, is considered as a case of consistency of the

knowledge base of the specific form: 𝐾 = (𝑇, ∅) for TBox and 𝐾 = (∅, 𝐴) for ABox.

The relation of concept inclusion ⊑ is transitive, and the ALC description logic is monotonic, i.e.,

the more statements the knowledge base contains, the more logical consequences it allows.

Equivalences that can be derived from every TBox are called tautologies, for example, 𝑇 ⊨ 𝐶 ⊑ 𝐷 if

and only if 𝑇 ⊨ ⊤ ⊑ (¬𝐶 ⊔ 𝐷). It is important to note that there are also hidden relationships between

the basic problems of reasoning, which contribute to the process of their solution. Let 𝐾 = (𝑇, 𝐴) is an

ALC knowledge base, 𝐶 and 𝐷 are possibly compound ALC concepts, and 𝑏 is an individual name.

Then the following statements hold:

• C ≡T D if and only if C ⊑T D and D ⊑T C;

• C ⊑T D if and only if C ⊓ ¬D is not satisfied with respect to T;

• C is satisfied with respect to 𝑇 if and only if C ⋢ ⊥;

• C is satisfied with respect to 𝑇 if and only if (T, {b: C}) is consistent;

• (T, A) ⊨ b: C if and only if (T, A ∪ {b: ¬C}) is inconsistent;

• If T is acyclic and A′ is the result of the unfolding of T into A, then K is consistent if and only

if (∅, A′) is consistent.

The outcome of the specified relationships between the reasoning problems is the fact that all the

basic problems can be reduced to a common one – the consistency of a knowledge base. Thus, the

presence of an efficient algorithm for calculating the consistency property of a knowledge base allows

solving the other basic reasoning problems. It is worth noting that there are also reasoning problems

that can’t be reduced to the problem of knowledge base consistency or cause an exponential increase of

the problem size during the reduction, i.e., query answering using conjunction.

Knowledge base engineering usually involves gradual filling of the TBox and ABox with statements

about the domain of interest. Since the formal syntax, and concepts nesting, introduce some complexity

for an engineer on establishing the properties of a knowledge base, there is a need for the auxiliary tools

that will evaluate the consequences of knowledge base extension or modification. In description logics,

this task is performed by the reasoning services, which injectively correspond to the basic problems of

reasoning:

• Given a TBox 𝑇 and a concept 𝐶, determine whether 𝐶 is satisfied with respect to 𝑇;

• Given a TBox 𝑇 and the concepts 𝐶 and D, determine whether 𝐶 is included in 𝐷 with respect

to 𝑇;

• Given a TBox 𝑇 and the concepts 𝐶 and 𝐷, determine whether 𝐶 is equivalent to 𝐷 with respect

to 𝑇;

• Given a knowledge base K = (𝑇, 𝐴), determine whether 𝐾 is consistent;

• Given a knowledge base K = (𝑇, 𝐴), a concept 𝐶, and an individual name 𝑏, determine whether

𝑏 is an instance of 𝐶 with respect to 𝐾.

These descriptions are specifications of the reasoning services, which might be implemented in

multiple ways. Additionally, the basic reasoning services can be reused to create more intelligent

services that reveal the potential of an automated retrieval of a set of homogeneous objects and solving

reasoning problems about them. The “generalized” reasoning services include the following ones [2]:

• Classification of a TBox: given a TBox 𝑇, determine the hierarchy of inclusions of all concept

names that are present in 𝑇 with respect to 𝑇. That is, for each pair of concept names 𝐴 and 𝐵

that are defined in 𝑇, determine whether 𝐴 ⊑𝑇 𝐵 and whether 𝐵 ⊑𝑇 𝐴. The result of the service

is an inclusion hierarchy, which can be conveniently presented in the form of a graph or Hesse

diagram for partial order;

• Checking the satisfiability of concepts in T: given a TBox 𝑇, for each concept name 𝐴,

determine whether 𝐴 is satisfied with respect to 𝑇. The dissatisfaction of a concept is the sign

of a modeling error;

• Instance retrieval: given a concept 𝐶 and a knowledge base 𝐾, determine all the individual

names 𝑏 such that 𝑏 is an instance of 𝐶 with respect to 𝐾. The result of the service is a set of

individual names that affiliates with the concept 𝐶;

• Realisation of an individual name: given an individual name 𝑏 and a knowledge base 𝐾,

determine all the concept names 𝐴 that are defined in 𝑇, for which 𝑏 is an instance of 𝐴 with

respect to 𝐾. The result of the service is a set of concept names that are the realisation of an

individual name.

6. Reasoning in ALC with tableaux algorithm

Reasoning over the statements in a knowledge base is a process that facilitates the achievement of

several goals: 1) substantiation or refutation of the existing knowledge; 2) generation of the new

knowledge; 3) finding solutions to decision-making problems; 4) shared ontologies engineering [7]. In

logic, the reasoning process is considered as a “mechanized” syntactic calculus over the statements of

a formal system and consists in the application of deductive derivation rules or constructive properties

of the associated semantics. A reasoning method should possess three qualitative properties,

decidability, completeness, and soundness, to be considered a decision-making procedure in a system

of formal logic. Decidability requires the presence of proof that a reasoning method terminates for all

admissible kinds of input data, and potentially proof of the existence of an “effective” algorithm, which

is characterized by acceptable time complexity. The completeness requires proof that a “valid” result

will be returned for all admissible input data with the desired property, while soundness requires proof

that a “valid” result will be returned only for the admissible input data with the desired property.

There are a variety of reasoning methods associated with the description logic ALC, which are based

on different calculus approaches. The most widespread reasoning methods are the resolution method,

sequent calculus, automata-based calculus, tableaux methods, query rewriting [8]. For the expressive

description logics, the tableaux methods are a default choice, i.e., the hyper-tableaux method is a core

of HermiT reasoner, which integrates as a module into the Protégé ontology development environment.

Since most of the basic reasoning problems in the description logic ALC can be reduced to the problem

of knowledge base consistency, the properties of the tableaux method as a decision-making procedure

will be formulated relative to the input data of the knowledge base consistency problem. The proofs of

the tableaux method properties are based mainly on the semantics of the description logic ALC, namely

the structural features of those models that can be expressed in the ALC concept language.

By definition, a knowledge base 𝐾 is consistent if there is a model 𝐼 of 𝐾; this model is called a

witness to the consistency of K and is denoted by 𝐼 ⊨ 𝐾. The core idea of tableaux methods is to prove

the consistency of a knowledge base 𝐾 = (𝑇, 𝐴) by constructing a model 𝐼 of 𝐾. A knowledge base 𝐾

is inconsistent, if during the construction of a witness to the consistency of 𝐾 some obvious

contradictions are revealed that refute the possibility of the existence of model 𝐼 of 𝐾. The process of

witness construction starts with an 𝐴 and, if necessary, extends it with the outcomes of restrictions that

are imposed by the semantics and the axioms contained in 𝐴 or 𝑇. The efficiency and validity of tableaux

methods are ensured by the structure of a witness they are designed to build, namely the tree model.

The tree model significantly limits the number of potential witnesses (efficiency), facilitates detection

of structural loops in tree branches (decidability), and allows proving the existence of possibly infinite

models using the method of structural induction (soundness). Moreover, the proof of absence of a tree

model for a knowledge base 𝐾 indicates the absence of any model for 𝐾 (completeness).

Tableaux method’s principles can be conveniently analyzed in the context of three situations: for

𝐾 = (∅, 𝐴), for 𝐾 = (𝑇, 𝐴), where 𝑇 is acyclic, and in the general case for 𝐾 = (𝑇, 𝐴). Since all the

concepts contained in 𝑇 or 𝐴 can be transformed to a negated normal form using de Morgan’s laws or

duality between the quantifiers of existence and universality, the expression ¬̇ С will correspond to the

negated normal form of ¬𝐶. An ABox 𝐴 is considered normalized if the following conditions are met:

• all concepts contained in 𝑇 or 𝐴 are in the negated normal form, so the negation operator is

applied only to the concept names and is not preceded by parentheses, quantifiers, or operators;

• each individual name contained in 𝐴 is present in at least one statement of the form 𝑎: 𝐶;

• 𝐴 is not empty, thus contains statements.

For the case 𝐾 = (∅, 𝐴), when TBox is empty, the expansion rules mirror the semantics of

compound concepts and apply it to the statements in 𝐴. Since the main principle of the tableaux method

is to decompose compound concepts into sub-concepts, there always exists an iteration, where all

compound concepts are completely decomposed into atomic ones, and the algorithm terminates. Each

satisfied ALC concept has a tree-like model, and since the concept instances can be related by roles, a

consistent ALC knowledge base 𝐾 has a forest-like model. If 𝐾 is consistent, then it has a model that

consists of a nonempty set of disjointed trees, where the root of a tree represents some individual name

in 𝐴 and can be connected by edges with the roots of other trees. The tableaux method builds a forest-

like model of an ABox 𝐴 using syntactic expansion rules, which extend 𝐴 with the new statements only

if their conditions are met.

Table 2
Syntactic expansion rules for ALC ABox consistency

Name Condition 1 Condition 2 Action

⊓-rule 𝑎: 𝐶 ⊓ 𝐷 {𝑎: 𝐶, 𝑎: 𝐷} ⊈ 𝐴 𝐴 ∪ {𝑎: 𝐶, 𝑎: 𝐷}

⊔-rule 𝑎: 𝐶 ⊔ 𝐷 {𝑎: 𝐶, 𝑎: 𝐷} ∩ 𝐴 = ∅ 𝐴 ∪ {𝑎: 𝑋}, 𝑋 ∈ {𝐶, 𝐷}

∃-rule

∀-rule

𝑎: ∃𝑟. 𝐶 ∈ 𝐴

{𝑎: ∀𝑟. 𝐶, (𝑎, 𝑏): 𝑟} ⊆ 𝐴

∄𝑏, {(𝑎, 𝑏): 𝑟, 𝑏: 𝐶} ⊆ 𝐴

𝑏: 𝐶 ∉ 𝐴

𝐴 ∪ {(𝑎, 𝑑): 𝑟, 𝑑: 𝐶}, 𝑑 is new

𝐴 ∪ {𝑏: 𝐶}

The tableaux method applies the expansion rules to the ABox statements until 𝐴 is complete because

it is easier to detect logical contradictions or clashes in the complete ABox. An ABox 𝐴 contains a clash

if for some individual name 𝑎 and for some concept 𝐶, {𝑎: 𝐶, 𝑎: ¬𝐶} ⊆ 𝐴; if 𝐴 does not contain a clash,

then 𝐴 is called clash-free. 𝐴 is called complete if it contains a clash or none of the expansion rules can

be applied due to unmet conditions.

Since any ALC ABox can be transformed to a normalized form, without reducing the generality, the

algorithm for determining the consistency of an ABox will take as an input a normalized ABox. Then,

the tableaux algorithm for ALC ABox consistency can be presented via the following pseudo-code [2]:

Algorithm 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝐴):

If 𝐸𝑥𝑝𝑎𝑛𝑑(𝐴) ≠ ∅

Then return «consistent»
Else return «inconsistent»

Procedure 𝐸𝑥𝑝𝑎𝑛𝑑(𝐴):

If 𝐴 is not complete

Then select expansion rule 𝑅, whose conditions are satisfied in 𝐴, and select few

statements 𝛼 from 𝐴, which are eligible for 𝑅 application

If exists 𝐴′ ∈ exp(𝐴, 𝑅, 𝛼), such that 𝐸𝑥𝑝𝑎𝑛𝑑(𝐴′) ≠ ∅

Then return 𝐸𝑥𝑝𝑎𝑛𝑑(𝐴′)

Else return ∅

Else

If 𝐴 contains a clash

Then return ∅

Else return 𝐴

Here, the auxiliary function exp(𝐴, 𝑅, 𝛼) returns a set of ABox, which are formed by the application

of rule 𝑅 to the statement 𝛼 in 𝐴. All the expansion rules, except the ⊔-rule, are deterministic and return

a set with one ABox. Depending on the way of its application, the ⊔-rule can generate two different

ABox, and it is mandatory to verify their consistency. The way of selecting the sequence of expansion

rules 𝑅 and statements 𝛼 does not affect the result of the tableaux method but can drastically affect its

performance.

The tableaux method for establishing the consistency of a knowledge base 𝐾 = (𝑇, 𝐴), where 𝑇 is

an acyclic TBox, is largely based on the expansion rules and procedures used for 𝐾 = (∅, 𝐴). This

property is due to the fact that an acyclic TBox can be entirely unfolded into ABox 𝐴, and it actually

reduces the current consistency problem to the previous case. The greedy strategies of unfolding 𝑇 into

𝐴 can lead to an exponential increase of the knowledge base size, so it is recommended to use the “lazy”

unfolding strategies, which unfold concept descriptions only when necessary [9]. Below are the lazy

unfolding rules, which together with the previous expansion rules form the basis of a tableaux method

for establishing the consistency of a knowledge base with an acyclic TBox.

Table 3
Syntactic rules for expanding the axioms of an acyclic ALC TBox

Name Condition 1 Condition 2 Action

⊑-rule 𝐴 ⊑ 𝐶 ∈ 𝑇, 𝑎: 𝐴 ∈ 𝐴 𝑎: 𝐶 ∉ 𝐴 𝐴 ∪ {𝑎: 𝐶}

≡1-rule 𝐴 ≡ 𝐶 ∈ 𝑇, 𝑎: 𝐴 ∈ 𝐴 𝑎: 𝐶 ∉ 𝐴 𝐴 ∪ {𝑎: 𝐶}

≡2-rule 𝐴 ≡ 𝐶 ∈ 𝑇, 𝑎: ¬𝐴 ∈ 𝐴 𝑎: ¬̇𝐶 ∉ 𝐴 𝐴 ∪ {𝑎: ¬̇𝐶}

Establishing the consistency in the general case of a knowledge base 𝐾 = (𝑇, 𝐴), where 𝑇 may

contain cyclic concept descriptions, requires some auxiliary constructions that will ensure decidability.

Without reducing the generality, the input parameter of a tableaux algorithm is a normalized knowledge

base 𝐾 = (𝑇, 𝐴) that consists of a normalized TBox 𝑇 and a normalized ABox 𝐴. A TBox 𝑇 is called

normalized if all its axioms have the form ⊤ ⊑ 𝐸, where 𝐸 is reduced to the negated normal form.

Reduction of axioms to the expected form can be carried out using the following properties:

• 𝐼 satisfies 𝐶 ⊑ 𝐷 ⟺ 𝐼 satisfies ⊤ ⊑ 𝐷 ⊔ ¬С;

• 𝐼 satisfies 𝐶 ≡ 𝐷 ⟺ 𝐼 satisfies ⊤ ⊑ (𝐷 ⊔ ¬С) ⊓ (𝐶 ⊔ ¬𝐷).

The set of expansion rules for a knowledge base consistency consists of five elements, and three of

them, namely ⊓-rule, ⊔-rule, ∀-rule, are completely identical to the ABox expansion rules. The other

two rules are also similar to their counterparts but have some important changes: ⊑-rule uses a

normalized form of TBox axioms, while ∃-rule contains an additional requirement for a “non-blocking”

individual, which is a property that ensures decidability or algorithm termination.

Table 4
Modified syntactic rules for expanding a general ALC knowledge base

Name Condition 1 Condition 2 Action

⊑-rule ⊤ ⊑ 𝐷 ⊔ ¬С ∈ 𝑇,

𝑎: 𝐶 ∈ 𝐴

𝑎: 𝐷 ∉ 𝐴 𝐴 ∪ {𝑎: 𝐷}

∃-rule

𝑎: ∃𝑟. 𝐶 ∈ 𝐴,

𝑎 is not blocked

∄𝑏, {(𝑎, 𝑏): 𝑟, 𝑏: 𝐶} ⊆ 𝐴 𝐴 ∪ {(𝑎, 𝑑): 𝑟, 𝑑: 𝐶},

𝑑 is new in 𝐴

A termination problem of the tableaux algorithm for general knowledge base consistency is caused

by the possibility to combine ⊑-rule and ∃-rule, which without the blocking mechanism can generate

the infinite repetitive sequences of individuals [10]. If an ABox does not contain clashes, then its model

can describe the infinite sequences using loops. During the execution of the tableaux algorithm, only

the ∃-rule adds new vertices (individuals) and edges (roles) to the ABox tree model. If the ∃-rule adds

a new individual 𝑏 and a new role assertion (𝑎, 𝑏): 𝑟, then 𝑏 is the successor of 𝑎 and 𝑎 is the predecessor

of 𝑏. The transitive closure of roles between successor and predecessor creates the notions of descendant

and ancestor, respectively. Let 𝑐𝑜𝑛𝐴(𝑎) = { 𝐶 | 𝑎: 𝐶 ∈ 𝐴 } is a set of concept names that are present in

the concept assertions of the form 𝑎: 𝐶. The individual name 𝑏 is blocked in ALC ABox 𝐴 if the

following conditions are met: 1) 𝑎 is the ancestor of 𝑏; 2) 𝑐𝑜𝑛𝐴(𝑎) ⊇ 𝑐𝑜𝑛𝐴(𝑏). Thus, if an individual

name is blocked, then all its descendants are also blocked. Since root individuals don’t have ancestors,

they are never blocked.

Example 2. Verify the consistency of an ALC knowledge base 𝐾 = (𝑇, 𝐴) of the “Mass media”

domain using the tableaux method. The structure of the knowledge base is as follows:

𝑇 = {

 News ⊑ ∀has. Author;
 Author ≡ Human ⊔ Organization ⊔ Bot;
 Bot ⊑ ¬Human ⊓ ∀has. Author;
 Organization ⊑ ∃has. Human;
};

𝐴 = {

 a: News;
 (a, b): has;
 b: Bot;
 (b, c): has;
 c: Organization;
}.

Solution. The first step consists in a normalization of the knowledge base, which serves as an input

argument to the tableaux method. Note that the ABox is already normalized, but the statements from

TBox still require normalization, which can be performed using the properties stated above and de

Morgan’s laws:

𝑇 = {

 ⊤ ⊑ ∀has. Author ⊔ ¬News;

 ⊤ ⊑ (Human ⊔ Organization ⊔ Bot) ⊔ ¬Author;

 ⊤ ⊑ (¬Human ⊓ ∀has. Author) ⊔ ¬Bot;

 ⊤ ⊑ ∃has. Human ⊔ ¬Organization;

};

Upon providing the normalized knowledge base to the tableaux algorithm, its execution begins. At

each iteration, the algorithm selects an expanding rule and a statement (or a set of statements) that

satisfy its conditions. Let’s select ⊑-rule and apply it to the statement ⊤ ⊑ ∀has. Author ⊔ ¬News.

The specified statement belongs to T, a: News ∈ A, and a: ∀has. Author ∉ A, thus a new concept

assertion is added to ABox A = A ∪ {a: ∀has. Author}.
Let’s apply the ⊑-rule to the rest of the statements contained in the TBox. The statement ⊤ ⊑

(Human ⊔ Organization ⊔ Bot) ⊔ ¬Author does not satisfy all conditions of the ⊑-rule, namely

d: Author ∉ A. The other statements do satisfy the rule conditions, so they can be expanded. After an

application of the ⊑-rule to the statements in T, the ABox A is as follows:

𝐴 = {

 a: News; a: ∀has. Author;

 (a, b): has; b: ¬Human ⊓ ∀has. Author;

 b: Bot; c: ∃has. Human;

 (b, c): has;

 c: Organization;

}.

Next, let’s apply the ∃-rule to the statement c: ∃has. Human. Since the individual name c ∈ A and

corresponds to the root in a tree model, then c is not blocked. Because ∄d, {(c, d): has, d: Human} ⊆ A,

the statement c: ∃has. Human can be expanded by ∃-rule. As a result, the following statements are

added to A: (c, d): has and d: Human, where 𝑑 is the new individual name in A.

𝐴 = {

 a: News; a: ∀has. Author;

 (a, b): has; b: ¬Human ⊓ ∀has. Author;

 b: Bot; c: ∃has. Human;

 (b, c): has; (c, d): has;

 c: Organization; d: Human;

}.

At the next iteration, let’s select the ⊓-rule and apply it to the statement b: ¬Human ⊓
∀has. Author. Both conditions of the ⊓-rule are satisfied, b: ¬Human ∉ A and b: ∀has. Author ∉ A,

therefore A = A ∪ {b: ¬Human, b: ∀has. Author}. Then, let’s apply the ∀-rule to the statements

a: ∀has. Author and b: ∀has. Author. Both of them satisfy the conditions of ∀-rule, (a, b): has ∈ A,

b: Author ∉ A and (b, c): has ∈ A, c: Author ∉ A, thus A = A ∪ {b: Author; c: Author}. After the

application of ⊓-rule and ∀-rule, the ABox A is as follows:

𝐴 = {

 a: News; a: ∀has. Author; b: ¬Human;

 (a, b): has; b: ¬Human ⊓ ∀has. Author; b: ∀has. Author;

 b: Bot; c: ∃has. Human; b: Author;

 (b, c): has; (c, d): has; c: Author;

 c: Organization; d: Human;

}.

Now let’s apply the ⊑-rule to the statement ⊤ ⊑ (Human ⊔ Organization ⊔ Bot) ⊔ ¬Author

twice, considering that {b: Author; c: Author} ∈ A. Therefore, A = A ∪ {b: Human ⊔ Organization ⊔

Bot; c: Human ⊔ Organization ⊔ Bot}. Conditions of the ⊔-rule are not satisfied because b: Bot ∈ A

and c: Organization ∈ A. The other rules are not applicable to the statements in A or T, so A is complete.

Moreover, A does not have any explicit clashes of the form {x: D; x: ¬D} ⊆ A, so A is clash-free.

Figure 2: Visual representation of the found model

Answer. The ALC knowledge base 𝐾 = (𝑇, 𝐴) of the “Mass media” domain is consistent. The

tableaux method has created a witness to the consistency of the knowledge base 𝐾, namely a model 𝐼

of 𝐾. Its visual representation contains all individuals and the atomic concepts that they belong to, as

well as the roles that connect them.

7. Conclusion

System analysis of the description logic ALC, which acts as a basis for more expressive description

logics like SROIQ(D), identified the main principles of knowledge representation in the description

logics, their model-theoretic semantics, the notion and structure of knowledge bases, core reasoning

problems and reasoning over them with the tableaux method. An application of the ALC formalism to

the representation of the “Mass media” domain highlighted the peculiarities of knowledge specification

and the inference of implicit knowledge from the existing one. The benefits of automated reasoning are

especially noticeable in large and complex knowledge bases.

8. Acknowledgements

The authors would like to thank Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler for writing

“An Introduction to Description Logic” [2]. Many of the formal definitions and notations associated

with the described logic are given in this excellent textbook.

9. References

[1] W3C, OWL 2 Web Ontology Language Direct Semantics (Second Edition), 2012. URL:

https://www.w3.org/TR/owl2-direct-semantics.

[2] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An introduction to description logic, Cambridge

University Press, Cambridge, 2017. doi:10.1017/9781139025355.

[3] A. Tarski, Pojęcie prawdy w językach nauk dedukcyjnych, Prace Towarzystwa Naukowego

Warszawskiego, Wydział III Nauk Matematyczno-Fizycznych, volume 34, 1933.

[4] The Data and Knowledge Group at the Oxford University, HermiT OWL Reasoner. URL:

http://www.hermit-reasoner.com.

[5] Stanford Center for Biomedical Informatics Research at the Stanford University School of

Medicine, Protégé: a free, open-source ontology editor & framework for building intelligent

systems. URL: https://protege.stanford.edu.

[6] C. M. Keet, Open World Assumption, in: W. Dubitzky, O. Wolkenhauer, K. H. Cho, H. Yokota

(Eds.), Encyclopedia of Systems Biology, Springer, New York, NY, 2013, p. 1567.

doi:10.1007/978-1-4419-9863-7_734.

[7] R. Brachman, H. Levesque, Knowledge Representation and Reasoning, Morgan Kaufmann

Publishers Inc, San Francisco, CA, 2004.

[8] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider, The description logic

handbook: theory, implementation, and applications, 2nd. ed., Cambridge University Press,

Cambridge, 2007. doi:10.1017/CBO9780511711787.

[9] D. Scott, The lattice of flow diagrams, in: E. Engeler (Ed.), Symposium on Semantics of

Algorithmic Languages, volume 188 of Lecture Notes in Mathematics, Springer, Berlin,

Heidelberg, 1971, pp. 311–366. doi:10.1007/BFb0059703.

[10] H. Levesque, R. Brachman, Expressiveness and tractability in knowledge representation and

reasoning, Computational Intelligence, volume 3, issue 1, (1987) 78–93. doi:10.1111/j.1467-

8640.1987.tb00176.x.

	1. Introduction
	2. Description logics
	3. Description logic ALC
	4. Knowledge bases in ALC
	5. Reasoning problems in ALC
	6. Reasoning in ALC with tableaux algorithm
	7. Conclusion
	8. Acknowledgements
	9. References

