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Abstract

During medical check-ups, commonly a large variety of measurements, procedures and medica-
tion prescriptions is collected. The type of measurements and procedures, however, may differ
from patient to patient, hence a dataset can contain a large amount of incomplete samples with
respect to the full set of considered features. Common work either use imputation methods
(filling in the missing values with some default) or marginalization (ignoring samples with
missing entries), which can lead to significant bias or limit generalization. In this work, we
present a novel class of adaptive deep neural networks called AnyNets that can deal with
missing values by design without the need for imputation. We show the advantage of AnyNets
for both supervised and unsupervised learning on various medical datasets.
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1. Introduction

Learning from complex medical datasets is challenging due to their irregular, noisy and
incomplete nature. Deep learning methods have shown great potential in a number of
domains, however learning from incomplete data has been identified as very challenging [1].
Missing data can occur due to various reasons, e.g. because it got lost or it was never
collected in medical check-ups, as shown in Figure 1. Further possible reasons are human
errors or that they are difficult to collect, like measurements from biopsies [2]. In general,
missing values can be categorized into three subtypes [3]: (1) missing completely at
random (MCAR), if the absence is independent of the variables (2) missing at random
(MAR), if the data is missing depending on the observed variables, and (3) missing not
at random (MNAR), if missing values depend on observed and unobserved variables.
Classical imputation methods rely on filling missing values with defaults (e.g. zeros)
or values computed based on observable features, such as mean imputation (inserting
the mean value of a feature into missing entries) and k-NN imputation (substituting a
missing entry with its k-nearest neighbor) [4, 5]. Imputation of missing values, however,
inherently changes the nature of a sample due to the assumptions being made which
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Figure 1: Irregular and noisy data in electronic medical records and registries are not trivial to
handle with deep neural networks or classical machine learning methods due to a large number of
different features and missing values.

may lead to wrong generalization or bias increase, especially in the MNAR case. It is
therefore desirable to remove the necessity of imputation.

In this work, we focus on neural architectures which are able to process solely observed
features as input in order to avoid the need of imputing missing values explicitly. Therefore,
it is necessary to be able to deal with variable-sized lists of input features. Dealing with
variable-sized lists of inputs was already done in prior work, e.g. with long short-term
memorys (LSTMs) for time series [6] and in the medical field to deal with a variable
number of visit and medication feature vectors [7]. In these feature vectors, however,
missing values were still replaced by dummy values. In this paper, we aim at avoiding
imputation completely, due to the reasons described above.

We therefore build upon the Deep Sets architecture [8], that projects objects to a
latent space and pools the latent vectors via a permutation-invariant operator. In this
work, we propose a novel class of adaptive deep neural networks, AnyNets, that learns a
combined representation of all non-missing features and that is further able to account
for missing values in this combined representation implicitly from the data. AnyNets
project single non-missing features to a latent space using feature-specific encoders and
pool the resulting list of latent vectors, using the sum as pooling operator to create
a representation of the sample. This latent sample representation can then be used
by a fully-connected network for classification, called AnyNets-Classifier. Further, we
propose a novel adaptive deep neural autoencoder, adding feature-specific decoders for
unsupervised learning tasks such as clustering, called AnyNets-Autoencoder. The scheme
of AnyNets is shown in Figure 2.

2. Background

In this section, we fix notation and introduce the necessary theoretical background.



2.1. Missing Values and Imputation

We formally define the data as matrix X = (x,Xy,...X,), where x; € RP with D =
Dy + -+ D, comprises a sample of p features, each of dimensionality D; with 1 <j < p.
Missing values can be formalized as mask matrix S = (sq, 9, ..., s,,) € {0, 1}”*P with

1 if x;; observed

Sij = . -
0 if x;; missing

We then define observed data as X = X © S + (1 — S) © na, where O is the elementwise
multiplication and na identifies missing values. Imputation methods replace missing
values using projection functions p that impute default values. The projection functions
for zero, mean and k-NN imputations, as well as the projection function proposed in this
work, are defined as follows:

Zero imputation. This imputation method inserts zeros to represent missing values:
p(%)=%;0s8;+(1—35;)O0.

Mean imputation. This imputation method uses the mean X.; over non-missing entries

of feature 1 < j < p over all samples of the observed data X:
p(x,-) = X; ©} s; + (1 - Si) O] (X~.,1, X~,P)

k-NN imputation. This imputation method uses the mean value from k-nearest neighbors
in X, where two samples are close if the features that are not missing are close (measured
using the Euclidean distance in the subspace of non-missing features):

p(x;) = x; 0's; + (1 —s;) © knn(x;, X).

No imputation. In this work, we avoid to use any imputation by considering only the
set of non-missing features for every state x;:

p(x;) = {Fi(x)I1 < j < p and F(x;) observed},
where F(x;) € RP/ denotes the entries of sample x; corresponding to feature Fi().

Based on the projected data set p()? ) = (p(x1), ..., p(xy,)), a deep neural network can be
used to either:

1. Classify the input data based on a given label set Y = (yy, ..., y,), approximating a
function f(x;) = y; with x; € p(X) and y; € Y.

2. Cluster the samples in k groups in an unsupervised fashion using a clustering
algorithm.
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Figure 2: Architecture schemes of AnyNets-Classifier for the sample input x; = [0.26, (1,0), na, 0.4],
including numerical and categorical features, as well as a missing value (left) and AnyNets-
Autoencoder for the sample input x; = [0.12, na, 0.873,na], including two missing values and two
numerical features (right).

For the imputation methods, it is straightforward to input the set of samples to a deep
feed-forward neural network of input size Zf;l D;, where D; is the dimension of feature
i (D; =1 for numerical features and D; = m for categorical features with m categories).
Without imputation, a more sophisticated adaptive deep neural network architecture is
required that can deal with a variable-sized set of input features for a batch of samples,
which is explained in Section 3.

2.2. Deep Embedded Clustering

Deep Embedded Clustering (DEC) [9] performs clustering on the latent representation z
of some autoencoder A by optimizing the loss &£ = £, + yZ,, where:

& = Z ||xi,j—fi,j||§,
%,/€p(x;)
is the reconstruction loss and:
Dik
Z.=KLPIQ) = Y. > pulog —,
ik qik
the clustering loss. gy is the similarity between latent vector z; and cluster center p
measured by the Student’s t-distribution:

G = (1 + Iz — pellH?
N+l —

pir is the target distribution:
4/ Y

PCYDIT N
In a first step, DEC pretrains the autoencoder by optimizing only the reconstruction loss
(y = 0) to compute latent representations in order to initialize the cluster centers y; via
k-means [10]. Then, DEC jointly optimizes the clustering loss and reconstruction loss
using y > 0.

Pik
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3. AnyNets

To deal with the above defined non-imputated dataset p()&' ), we propose the deep neural
network architecture AnyNets, which can deal with a variable-sized set of input features
for a sample x; by using p feature-specific encoder networks ®!, ..., ®?. The output vectors
®/(-) € RF of the encoder networks & have the same length F. We additionally propose to
share the parameters of the last layer over all encoder networks as done in [7] to enforce
that all features are projected to the same encoded latent feature space. A combined
representation of the non-missing features can be computed as:

Ypax) = Y,  P(Fx))

Fi(x;)ep(x;)

using the sum as permutation-invariant pooling operator of all latent representations of
features. Intuitively, we create higher-dimensional encodings of length F for all non-missing
features and sum up all the encodings to gather information about all available features
in a single vector of length F, which can be used as a latent representation describing the
sample for classifier and autoencoder networks as described in the following. Thus, the
networks can deal with a variable-sized list of input features, which makes them very
suitable for data with many missing values.

3.1. AnyNets-Classifier

For classification tasks, an adaptive deep neural network architecture C can be defined, in
which the latent representation of ¥(p(x;)) is fed into a fully-connected network module
n to compute the final prediction of the network with:

C(x;) = n(¥(p(x;))).
We optimize the cross-entropy loss:

k

L) ==, Y e =ylog(C(x)c),

i=1c=1

where 1(c = y;) is the indicator function representing equality of ¢ and y; and C(x;)[c]
denotes the Softmax-probability of the network for the ¢*? class.
3.2. AnyNets-Autoencoder

For clustering, a deep autoencoder A can be defined by feeding the latent representation
¥(p(x;)) into a fully-connected network module  with hidden layer z € RY in the middle
layer. Introducing feature-specific decoder networks y!, ..., y?, the reconstructions of the
input features F(x;) can be computed as:

F(x)) = ) ((¥(p(x)), YF (%) € p(xy).

The latent vector z; for sample x; can then be used to cluster the samples into k groups
using clustering algorithms like DEC, explained in Section 2.2.
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4. Datasets

We evaluate the classification performance of AnyNets on real-world medical datasets
shown in Table 1 from the UCI repository’ [11]:

e Kidney Disease: Classify patients suffering and not suffering from chronic kidney
disease based on blood tests along with other measures.

e Diabetes: Classify patients with and without diabetes by diagnostic measurements.

o Mammographics: Predict the severity of a mammographic mass lesion (benign or
malignant) from BI-RADS attributes along with the age of the patient.

o Breast Cancer: Cluster according to the severity of the cancer (benign or malignant).
The dataset contains features characterizing the cell nuclei.

e Thyroid: Comprises demographic features, symptoms and laboratory tests, in order
to cluster in normal, subclinical hypothyroidism and hypothyroidism.

The datasets contain from 5 to 24 features and up to 12% missing values. We evaluate
the classification performance on Kidney Disease, Diabetes and Mammographics and
evaluate the clustering performance on Breast Cancer and Thyroid, where we insert from
10-70% missing values artificially.

Dataset ‘ #Samples ‘ #Features ‘ #Missing
Kidney Disease 400 24 10.54%
Diabetes 768 8 12.24%
Mammographics 961 5 3.37%

Breast Cancer 699 9 10 — 70%

Thyroid 214 5 10 — 70%

Table 1
Datasets for classification and clustering tasks.

5. Experimental Results

We evaluate the performance of AnyNets on three classification and two clustering tasks
using the datasets described above. For all datasets, we apply 5-fold cross-validation
to obtain mean accuracies and standard deviations over all folds. Hyperparameters are
tuned using Random Search over 15 runs for all architectures, including the baselines,
using the configuration spaces shown in Table 2. For preprocessing, all features are scaled
in the range [0,1]. As activation function, we use rectified linear units (ReLU) for all
hidden layers. For optimization we use Adam [12].

Thttps://archive.ics.uci.edu/ml/datasets.php



Model ‘ Parameter ‘ Config. Space

All iterations [4000, 8000]
batch size [8,16,32,64]
learning rate [17%,17°]
hidden dim** [16,32, 64, 128]
FC-C num layers [2,3,4]
FC-AE num layers* [2,3]
latent dim. [2,4,8,10]

n: hidden dim.*” [16,32,64,128,512]
AnyNet-C ®: hidden dim. [8,16,32,64,128]
®,n: num layers* [2,3]
AnyNet-AE dim. of z [2,4,8,10]

o: hidden dim™ | [16,32, 64, 128, 512]

Table 2

Configuration spaces of the different approaches. (*) The hidden dimension for all fully-connected
layers of all architectures. (**) If not denoted differently, for autoencoder networks, the hidden
dimension and number of layers is used for both encoder and decoder modules. For DEC,
y €10.1,0.5,1,10] was used.

5.1. Classification Tasks

The classification results are shown in Table 3. The AnyNets-Classifier is outperforming
the fully-connected neural networks in combination with mean, zero and k-NN imputation
for all data sets. The best accuracy of 1.0 is achieved for the Kidney Disease dataset,
where AnyNet is able to generalize perfectly to the test set. In Figure 3, we analyze the
influence of missing feature values on the combined latent representation ¥(p(x;)) for
samples x; in Kidney Disease with corresponding labels y; = 0 (no chronic kidney disease)
and y; = 1 (chronic kidney disease). Single missing values for most of the features do not
have a large impact on the latent representation, which means that they probably are
missing at random and can be imputed implicitly by the neural network. Some features
have a higher influence and change the meaning of the latent representation significantly.

Dataset ‘ Mean ‘ Zero ‘ k-NN ‘ AnyNets-Classifier
Kidney Disease | 0.988 (+£0.011) | 0.985 (+£0.015) | 0.988 (£0.016) 1.0 (£0.0)
Diabetes 0.767 (+£0.030) | 0.763 (+£0.027) | 0.763 (£0.027) |  0.772 (+0.038)

Mammographics | 0.821 (£0.037) | 0.822 (+0.040) | 0.819 (£0.032) 0.840 (+0.021)

Table 3
Mean accuracy and standard deviations for 5-fold cross validation over the medical datasets using
supervised learning.
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Figure 3: Visualization of the combined latent representations ¥(p(-)) for two samples x;, x; with
labels y = 1 (chronic kidney disease) and y; = 0 (no chronic kidney disease) in Kidney Disease.
The first row represents activations of the latent vector of size 64 for the sample x; (left) and x;
(right) without any missing values (the brighter, the higher the activations), the k-th row the
activations of the latent vector when setting the k-th feature as na. While a missing value for
feature 5 does not have an impact (the latent vector looks similar to the vector in the first row),

missing values for feature 16 and 20 change the feature representation significantly.

5.2. Clustering Tasks

To evaluate the clustering-performance of all approaches, we consider different percentages
of inserted missing values for Breast Cancer and Thyroid. For clustering, we compute
accuracies based on the predicted classes 3; (where all possible permutations of cluster
IDs are considered) and the given ground truth classes y; by:

n—1

N 1 N
accuracy(y;, 3;) = max —Zl(perm(y,-) =),
permeP n iz

where P is the set of all permutations and 1(3; = y;) = 1 if j; = y; and 0 else. The results
for the Breast Cancer data set are shown in Table 4. AnyNets-Autoencoder outperforms
all baselines, especially zero imputation by orders of magnitude for a high amount of
missing values.

Missing Values [%] | Mean ‘ Zero ‘ k-NN | AnyNets-Autoencoder
10% 0.967 (£0.016) | 0.963 (£0.012) | 0.966 (+0.014) 0.970 (+0.016)
30% 0.957 (£0.023) | 0.913 (£0.008) | 0.947 (:0.020) 0.964 (+0.008)
50% 0.940 (£0.025) | 0.707 (£0.119) | 0.937 (+0.028) 0.957 (+0.015)
70% 0.897 (£0.015) | 0.621 (+£0.089) | 0.906 (40.034) 0.913 (£0.036)
Table 4

Mean accuracy and standard deviations for 5-fold cross validation over the Breast Cancer dataset
with k=2 classes using DEC.

For Thyroid, shown in Table 5, the AnyNets-Autoencoder performs only slightly better
than the k-NN imputation baseline, which might be due to the very small set of 214
samples.



Missing Values [%] | Mean ‘ Zero ‘ k-NN | AnyNets-Autoencoder

10% 0.743 (£0.116) | 0.729 (£0.010) | 0.753 (£0.103) 0.771 (£0.106)
30% 0.711 (£0.123) | 0.460 (£0.044) | 0.750 (£0.131) 0.750 (+0.131)
50% 0.559 (£0.139) | 0.452 (£0.066) | 0.706 (£0.067) 0.686 (£0.065)
70% 0.534 (£0.075) | 0.432 (£0.046) | 0.657 (£0.041) 0.666 (+0.111)

Table 5
Mean accuracy and standard deviations for 5-fold cross validation over the Thyroid dataset with
k=3 classes using DEC.

6. Discussion

The combined representation ¥(p(x;)) of all observed features learned in AnyNets contains
information of all the available features and implicitly is able to learn that certain features
are missing. This stands in contrast to deep neural networks in combination with mean
imputation or k-NN imputation and is of advantage if the absent values are related
to the response data and not missing at random. For zero imputation, missing values
can be represented as zeros, which is equivalent to setting the weights of the respective
input neurons to zero; the bias, however, remains. The feature will thus still have an
influence on the outcome, but possibly with an increased importance of the non-missing
features. This effect can especially be seen in the results of unsupervised clustering. The
remaining influence of the zero-imputed values changes the structure of the samples (also
for MCAR and MAR variables) which leads to performance decrease in the unsupervised
case for increasing amounts of missing values. The presence of labels in the supervised
case alleviates this issue, hence the performance decrease is smaller.

7. Conclusion

In this paper, we introduced a novel class of adaptive neural networks called AnyNets
which is capable of processing a set of variable input features. We showed the efficacy
of AnyNets in the supervised and unsupervised case for various medical data sets and
highlighted their advantages in their application to electronic medical records or registries
which can contain many data types, ranging from continuous and categorical values to
images, and commonly suffer from a significant amount of missing entries.
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