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Abstract
Pretraining has sparked groundswell of interest in deep learning workflows to learn from limited data
and improve generalization. While this is common for 2D image classification tasks, its application
to 3D medical imaging tasks like chest CT interpretation is limited. We explore the idea of whether
pretraining a model on realistic videos could improve performance rather than training the model from
scratch, intended for tuberculosis type classification from chest CT scans. To incorporate both spatial
and temporal features, we develop a hybrid convolutional neural network (CNN) and recurrent neural
network (RNN) model, where the features are extracted from each axial slice of the CT scan by a CNN,
these sequences of image features are input to a RNN for classification of the CT scan. Our model termed
as ViPTT-Net, was trained on over 1300 video clips with labels of human activities, and then fine-tuned
on chest CT scans with labels of tuberculosis type. We find that pretraining the model on videos lead
to better representations and significantly improved model validation performance from a kappa score
of 0.17 to 0.35, especially for under-represented class samples. Our best method achieved 2nd place in
the ImageCLEF 2021 Tuberculosis - TBT classification task with a kappa score of 0.20 on the final test
set with only image information (without using clinical meta-data). All codes and models are made
available. 1
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1. Introduction

Tuberculosis (TB) is a potentially fatal disease that generally affects the lungs. The disease
spreads through cough, spit or sneeze and can remain latent within the human body. Although
X-rays and microscopic analysis of bodily fluid are generally used to diagnose the disease,
Computed Tomography (CT) provides detailed information about the infection. Deep learning
models demonstrate promising results in diagnosing TB from both X-rays and CT scans [1, 2, 3, 4].
These methods are also proven to be effective for severity scoring of the infection as well [5, 6, 7].
However, the types of TB can vary and that may require a different course of treatment, making
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the identification of TB type an important real-life problem. The deep learning models are yet
to provide high accuracy in this particular task.

The most challenging part of working with CT scan data is, it is three-dimensional (3D),
meaning along with height and width, each data point contains depth information. Processing
3D data can be very computationally expensive and may require pre-processing before training
a model. These pre-processing steps may include choosing selective slices or transforming slices
into uniform sizes. Both of these techniques may contribute to losing some depth information.
One of the most effective method of processing 3D data is to resize it into fixed dimension
using spline interpolation along x, y and z- axis which was demonstrated in [5]. Although the
method showed promising result in TB severity scoring, might not perform well on other more
sophisticated tasks such as classifying TB types.

An alternative to directly processing 3D data is to decompose each scan into individual slices
and afterward feeding them 2D CNN [8, 9, 10, 11]. The problem with this method is, as the slices
are considered independent to each other, the spatial information along the z-axis is missing
during training. Moreover, in this method, the label for the whole volume is assigned to each
individual slice, which might not be the case when it comes to CT scans. More specifically, a
CT scan of infected lungs may contain uninfected 2D slices.

In this work, we build a model to predict multiple tuberculosis types from chest CT scans.
We pretrain a hybrid convolutional neural network (CNN) and recurrent neural network (RNN)
model on human action recognition task, and then fine-tune the model for the tuberculosis
type classification task. Pretraining significantly improves performance, especially for minority
classes. The method is evaluated on the Image-CLEF 2021 Tuberculosis - TBT classification task
which achieves 2nd place 1 with a kappa score of 0.20 and accuracy of 0.42.

We summarize our contributions as follows:

1. We pretrain a hybrid CNN-RNN model, termed ViPTT-Net, on human action recognition
task, and fine-tune the model on a small dataset of CT scans with labels indicating
tuberculosis types.

2. We show pretraining ViPTT-Net on realistic videos improve performance for tuberculosis
type classification, especially for under-represented class samples.

3. We evaluate our best method on the Image-CLEF 2021 Tuberculosis - TBT classification
task which achieves 2nd place overall.

2. Methodology

We start by problem formulation followed by presenting the main building blocks of our
proposed method for multi-class CT image classification.

2.1. Problem Formulation

Given the labels of a set of CT scans, the objective is to predict the unknown labels of the new CT
scans 2. More specifically, our goal is to learn a discriminative function 𝑓(X) ∈ {1, 2, 3, 4, 5},

1imageclef-2021-tuberculosis-tbt-classification/leaderboards
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where the numbers represent the tuberculosis type: Infiltrative, Focal, Tuberculoma, Miliary and
Fibro-cavernous repsectively. X represents a CT scan volume of size 𝐷 ×𝑊 ×𝐻 , where D, W,
and H represent the depth, width, and height of the volume respectively. The task is considered
as a multi-class volumetric image classification problem. A 3D volumetric scan X can also be
viewed as a time-series of 2D slices {𝑋1, . . . , 𝑋𝐷}. Therefore, we can also frame the task as a
time-series sequence classification problem.

2.2. ViPTT-Net Model

While convolutional neural networks (CNNs) have shown promising results at processing image
data [12, 13, 14], the same can be said for recurrent neural networks (RNN) for sequential
data [15, 16, 17]. We developed a hybrid convolutional neural network (CNN) and recurrent
neural network (RNN) model termed ViPTT-Net which is capable of incorporating both spatial
and temporal features in the learning process. ViPTT-Net takes as input a CT scan and outputs
probability predictions which indicates the type of tuberculosis in that CT scan. To deal with
arbitrary volumes, we first resize the CT scan to a fixed size 70 × 224 × 224 using spline
interpolated zoom (SIZ) [5] which exploits the full geometry of the 3D volume by interpolating
over the z-axis.

Learning spatial features using CNN. To learn spatial features, ViPTT-Net consists of a
VGG-16 model as the feature extractor which is pretrained on ImageNet [18]. The VGG-16 model
has 16 layers with learnable weights: 13 convolutional layers, and 3 fully connected layers [19].
We extract features from the last convolutional layer which results in a 512 dimensional feature
vector for a 2D input image. Since a CT scan consists of multiple 2D axial slices (70 in our case),
we wrap the VGG-16 model in a time-distributed layer which is then applied to every axial slice
(temporal frame) of the CT scan independently. The final output is a sequence of image features
where the sequence length is 70 and each of the sequences are a 512 dimensional feature vector.

As the VGG-16 feature extractor accepts inputs of 3-channels, we map the 1-channel axial
slices of the CT scan slices to 3-channel using a convolutional layer with 3 filters and kernel
size of 1 × 1 × 1 before input to the feature extractor. We use this instead of converting to
pseudo-color image by just duplicating intensity to all channels to mimic 3-channel because it
become more computationally expensive to train.

Learning temporal features using RNN. Following the above, the sequence of image
features are aggregated using an RNN. RNNs are a type of neural network which transforms
a sequence of inputs into a sequence of outputs. Using an RNN, the temporal order of the
axial slices is preserved. We use the long short-term memory (LSTM) [20] with 256 units and
tanh activation. It is important to mention that since we are interested in classifying the full
sequence, the output from the LSTM results in a 256 dimensional aggregated feature vector
from the last time step coming from the full sequence of image features, rather than producing
sequences of outputs. We also experimented with gated recurrent unit (GRU) but did not get
good results on the validation set.

Finally, the aggregated 256 dimensional feature vector is passed to a dense layer with 1024
units with rectified linear hidden units (ReLUs) activation and a dense layer with a softmax
function (i.e. a dense softmax layer of 5 units for the multi-class classification case) that yields
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Figure 1: Schematic layout of the hybrid CNN-RNN model ViPTT-Net. Given a 3D CT scan of arbitrary
size, uniform resizing is performed across all dimensions using SIZ [5]. Features are extracted from all
the axial slices of the processed CT scan to output a sequence of image features using a VGG-16 model.
These sequence of image features are input to an LSTM layer followed by dense layers of 1024 neurons
and finally 5 with softmax activation for the multi-class classification problem.

the probabilities of predicted classes. While training on UCF50, instead of a softmax with 5
units, we use a softmax with 10 units for the 10 classes. An illustration of ViPTT-Net is shown
in Fig 1.

2.3. Pretraining on Human Action Recognition Task

ViPTT-Net was first pretrained on a subset of the UCF50 dataset [21]. UCF50 is human action
recognition dataset with 50 action categories, consisting of realistic videos taken from youtube.
The classes of different action are Baseball Pitch, Jumping Jack, Kayaking etc. Due to compute
constraints, we use 1366 videos from 10 classes selected randomly: Mixing, Tennis Swing, Horse
Riding, Jump Rope, Jumping Jack, Baseball Pitch, Rowing, SkateBoarding, Walking With Dog,
Skijet. Video clips are resized to 70× 224× 224, where 70 is the number of temporal frames
(image sequences), and 224 is width and height of the temporal frame. It is also important to
mention that each RGB frame of the video is converted to grayscale (single channel) since the
CT scans also have single channel values. An instance of an action video is shown in Fig 2a.

Similar to pretraining for 2D image problems [22, 23], after training ViPTT-Net on a subset
of UCF50 dataset, the network was fine-tuned on the tuberculosis type classification task by
replacing the final fully connected 10-way softmax layer with a 5-way softmax. During training
ViPTT-Net on UCF50, the weights of the VGG-16 feature extractor was frozen. And while
fine-tuning on the tuberculosis type classification task, all the network layers were trained.



(a) Sequence of images from a video of a man
playing Jumping Jack.

(b) Sequence of axial images from a CT scan
with the label Infiltrative.

Figure 2: Illustration of image sequences of a video and a CT scan from the UCF50 and ImageCLEF
2021 - TBT datasets. Both samples are resized to depth of 70.

2.4. Weighted Loss and Data Augmentation

Due to heavy class imbalance, we assign weights in the loss function for each tuberculosis type
with the goal to reduce biasness towards the over-represented class samples. Prior to training
using weighted loss, the weights are computed over the training set.

It is a standard practice to perform data augmentation to improve generalization, especially
when there are limited number of training data. Data augmentation basically creates modified
versions of the input data in a dataset through random transformations such as horizontal and
vertical flip, zoom augmentation, horizontal and vertical shift, etc. While training, the 3D CT
scans are rotated with degree of rotations picked randomly from [−20,−10,−5, 0, 5, 10, 20] as
a form of data augmentation. We use a wider range to cover a larger distribution of augmented
images. Notice that we added 0 in the range which means that the model looks at both augmented
and non-augmented data. We experimented without adding 0 in the range and led to poor
results on the validation set. We also tried blur and random shifts but did not get good results.

3. Experiment Setup

We describe experimental details, i.e., dataset, implementation details, evaluaton metrics, etc.,
and present quantitative results, comparing different training strategies using ViPTT-Net.

3.1. Datasets and Preprocessing

The dataset is provided by ImageCLEF Tuberculosis Type 2021 Challenge [24, 25]. It contains CT
scans of a total of 1338 TB patients, 917 of them have been used for training and 421 for the test
set. Each scan has a label that indicates one of the TB types - Infiltrative, Focal, Tuberculoma,
Miliary and Fibro-cavernous. Each CT scan belongs to only one patient. The images have
dimensions of 512 x 512 pixels with varying depth sizes. In addition to labels, some scans have
additional meta-data. All the scans have auto-generated lungs mask, although some of these



masks are missing in largely affected areas or have rough bounds, majority of the scans are quite
accuracte. The original data is in NIFTI format, storing the raw voxel intensity in Hounsfield
units (HU). An instance of a CT scan with Infiltrative tuberculosis type is shown in Fig 2b.

3.2. Implementation Details

All experiments are performed on a Linux workstation running 4.8Hz and 64GB RAM with
and RTX 3080 GPU. Experiments are conducted using Python programming language [26].
ViPTT-Net is implemented in Keras [27], with TensorFlow backend [28].

ViPTT-Net is trained end-to-end using stochastic gradient descent (SGD) optimization al-
gorithm to minimize the categorical cross-entropy loss function with an initial learning rate
of 0.001 and batch size of 2. A factor of 0.1 is used to reduce the learning rate once the loss
stagnates. Training is continued until the validation loss stagnates using an early stopping
mechanism, and then the best weights are retained. To keep data proportions same and ensure
reproducibility, we perform a stratified train and validation split with a ratio of 80/20 (732/184
CT scans) on the training data provided by ImageCLEF 2021 - TBT.

Similar steps are followed while training on a subset of the UCF50 dataset, except we do not
use any data augmentation in this case. Also, the pretrained VGG-16 feature extractor was kept
frozen during training since both ImageNet and UCF50 samples are natural images/videos.

3.3. Evaluation Metrics

According to challenge rules, the task is evaluated as a multi-class classification problem.
The main evaluation metric is the kappa score. Kappa measures the inter-rater reliability for
categorical items.

𝜅 ≡ 𝑝0 − 𝑝𝑒
1− 𝑝𝑒

(1)

Here, 𝑝0 indicates the relative observed agreement among raters and 𝑝𝑒 is the probability of
agreement by chance. If raters are in complete agreement then 𝜅 = 1 and no agreement
other than by chance will result in 𝜅 = 0. The value would be negative if there is no effective
agreement among the raters or the agreement is worse than random. Additionally we also show
accuracy (ACC) and per-class F1 scores. For all metrics, the higher the better.

3.4. Results

We study the effect of training ViPTT-Net for the task of tuberculosis type classification using
different training strategies:

No PT. ViPTT-Net is trained from scratch on the 732 CT scans annotated for tuberculosis
types

PT. ViPTT-Net is first pretrained on a subset of the UCF50 dataset which around 1300 video
clips annotated for human activities. Then the last layer is replaced with a five unit softmax
and fine-tuned on 732 CT scans annotated for tuberculosis types.



Table 1
Overall Kappa score and per-class F1 score achieved by different methods on the validation dataset of
tuberculosis type classification. FibC denotes Fibro-cavernous. For all methods, the ViPTT-Net model
is used.

Method Kappa Infiltrative Focal Tuberculoma Miliary FibC

No PT 0.17 0.61 0.46 0.0 0.2 0.14
PT 0.35 0.68 0.56 0.09 0.4 0.48
PT+CW 0.30 0.59 0.41 0.37 0.33 0.65
PT+CW+AUG 0.33 0.59 0.47 0.27 0.54 0.61

Table 2
Overall Kappa and Accuracy score achieved by different methods on the test set by ImageCLEF 2021
Tuberculosis - TBT classification.

Method Kappa Accuracy

PT 0.13 42.30
PT+CW 0.14 38.50
PT+CW+AUG 0.20 42.30

PT+CW. Same as PT, but additionally weighted loss is used with weights computed over the
training set of 732 CT scans annotated for tuberculosis types

PT+CW+AUG. Same as PT+CW, but additionally the 3D volumes are randomly rotated during
training.

Table 1 summarizes the results which show that pretraining ViPTT-Net on a subset of the
UCF50 dataset followed by fine-tuning for tuberculosis type classification (PT) improves kappa
score by 0.18 on the validation set compared to training ViPTT-Net from scratch (No PT). In
both configurations (No PT and PT), F1 score is the lowest for Tuberculoma class with scores of
0 and 0.09 for No PT and PT respectively. This is improved by using weighted loss (PT+CW),
where the model achieves Tuberculoma F1 score 0.37. The F1 score of PT+CW also improves
for FibC class by a large margin compared to No PT, although there is a slight drop in overall
kappa score. PT+CW with data augmentation (PT+CW+AUG) further improves performance,
more specifically for Miliary class by a large margin.

We also report results on the final test set by by ImageCLEF 2021 - TBT classification task in
Table 2. Using weighted loss results in similar performance improvements. Our best method
PT+CW+AUG in which ViPTT-Net is trained to minimize the weighted cross entropy loss and
data augmentation performs the best with a kappa score of 0.20 and accuracy of 42.30%.

4. Discussion and Conclusion

We address the problem of predicting tuberculosis types from 3D chest CT scans. We develop a
hybrid CNN-RNN model, termed ViPTT-Net, which is capable of learning both spatial and tem-
poral features of the CT scan. Our experiments demonstrate that pretraining on human action
recognition task significantly improves performance of tuberculosis type classification rather



than training the model from scratch. This is most significant for Miliary and Fibro-cavernous
types without specifically aiming to improve performance for those classes. Interestingly, these
classes along with Tuberculoma are the tuberculosis types which have the least amount of
samples in the dataset. To further deal with class imbalance, we use a weighted loss function
with weights computed over the training set that improves performance of under-represented
classes significantly. Data augmentation also improved performance for few tuberculosis types
on the validation set. On the test set, the highest kappa score was observed when pretrain-
ing ViPTT-Net on videos, using weighted loss function and data augmentation. This method
achieved 2nd place in the ImageCLEF 2021 Tuberculosis - TBT classification task which operates
on the CT image alone without using the additional patient meta-data and the lung segmentation
masks.
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