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Abstract
Photo-based automatic snake species identification could assist in clinical management of snakebites.
LifeCLEF announced the SnakeCLEF 2021 challenge, which aimed attention on this task and provided
location metadata for most snake images. This paper describes the participation of the BME-TMIT
team in this challenge. In order to reduce clutter and drop the unnecessary background, we employed
the state-of-the-art EfficientDet object detector, which was fine-tuned on manually annotated images.
Detected snakes were then classified by EfficientNet weighted with the likelihood of location information.
Based on the official evaluation of SnakeCLEF 2021, our solution achieved an 𝐹1 country score of 0.903,
which placed our team at rank 1 position in the challenge.
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1. Introduction

Snakebite envenoming is a potentially life-threatening disease caused by toxins in the bite of a
venomous snake. Envenoming can also be caused by having venom sprayed into the eyes by
certain species of snakes that have the ability to spit venom as a defense measure [1]. Most of
these occur in Africa, Asia, and Latin America. In Asia, up to 2 million people are envenomed by
snakes each year, while in Africa, there are an estimated 435 000 to 580 000 snakebites annually
that need treatment. Identification of the snake is essential in planning treatment in certain
areas of the world, but it is a difficult task and not always possible [2]. Ideally the snake would
be brought in with the person, but attempting to catch or kill the offending snake also puts
one at risk for re-envenomation or creating a second person bitten. On the other hand, taking
a photo of the snake is much more feasible, less dangerous, and generally is recommended.
The three types of venomous snakes that cause the majority of injuries are vipers, kraits, and
cobras. Knowledge of what species are present locally can be crucial in searching for adequate
medicine [3].

Developing a robust system for identifying species of snakes from photographs and ge-
ographical information could significantly improve snakebite eco-epidemiological data and
correct antivenom administration [2, 4]. In 2021, the fifth round of SnakeCLEF [5] challenge
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was announced by the LifeCLEF [6] campaign, where the goal was to create a system that is
capable of automatically categorizing snakes on the species level. In this paper, we describe the
solution of our team (BME-TMIT) in detail, which achieved rank 1 in the challenge. We first
perform object detection on the images to separate the snake(s) from the background; then, the
next step is to classify each detected snake. Finally, classification data is fused with location
information using a likelihood weighting method. These steps are specified in Sections 4, 5,
and 6, respectively. Section 2 briefly outlines the corresponding literature in the field; lastly,
Section 7 summarizes our conclusion.

2. Related work

Common tasks in computer vision, and therefore in image-based snake species identification,
include object detection and object classification. The former aims to locate the region of
an image where the object of interest may appear [7], while the latter involves categorizing
an input image into several predefined classes [8]. In the past decade, Convolutional Neural
Networks (CNN) became the most popular approach for visual recognition due to their superior
performance. Architectures of CNN that are often used for classification in practice are among
others VGGNet [9], Inception [10], Residual Network (ResNet) [11], EfficientNet [12] and
MobileNet [13].

Regarding object detection, numerous deep learning frameworks have been proposed in
the literature, and they can be organized into two categories: (i) two-stage detectors and (ii)
one-stage detectors. Two-stage detection models first generate region proposals, and then
they are forwarded to a specific network for further classification. The most prominent two-
stage detectors are Region-based CNN (R-CNN) [14] and its’ successors: Fast R-CNN [15] ,
Faster R-CNN [16], Mask R-CNN [17]. Differently, there is no separate procedure for region
proposal in one-stage detection models, as they are designed to predict the bounding boxes
and the corresponding class probabilities at once [18]. Popular one-stage detectors include You
Only Look Once (YOLO) [19, 20, 21, 22], Single Shot Detector (SSD) [23], RetinaNet [24], and
EfficientDet [25].

Automated image-based snake species identification is challenging due to small inter-class
variance, high intra-class variance, and a large number of categories (species) [26]. Furthermore,
labeled snake image collections usually contain only several hundred images. 38 different
taxonomically relevant features were manually identified to categorize six snake species in [27],
while Amir et al. [28] used automated feature extraction to get texture features and distinguish
22 different snake species. Other researchers applied deep learning techniques. For example,
Faster R-CNN and ResNet were used to classify nine different snake species occurring on the
Galápagos Islands of Ecuador [29]; authors of [30] experimented with three different-sized CNN
architectures; recently, Yang and Sinnott classified Australian snakes using deep networks [31].
In cases when only a small amount of labeled snake images are available, it could be beneficial
to use a few-shot learning approach, such as the Siamese network [32], or the recently proposed
Double-View Matching Network (DVMN) [33], although, the latter was tested on X-ray images.
Abeysinghe et al. [34] performed single-shot learning by applying the Siamese network to
categorize 84 snake species, where only 3 to 16 training images were available per species. On



the other hand, Putra et al. [35] aimed to build a system to recognize the existing bite points
on the snake bite image and then classified to venomous snake bite or non-venomous using
Chain Code and K Nearest Neighbor (KNN) classification. Their bite mark recognition method
achieved 65% accuracy while distinguishing venomous from non-venomous bites was possible
with 80% accuracy.

For the SnakeCLEF 2020 challenge, 287 632 photographs were prepared that belong to 783
snake species and were taken in 145 countries [26]. The qualified teams used object detection
on the images as a preprocessing step. Gokula Krishnan used an object detection model with
ResNet-50 backbone [36], and team FHDO-BCSG utilized a Mask R-CNN model reaching 39.0
mAP (mean average precision) [37] on the COCO (Common Objects in Context) dataset1.

The dataset was expanded to a size of 414 424 images in SnakeCLEF 2021, which is ap-
proximately a 44% increase compared to the previous challange, while slightly lowering the
number of snake species to 772; however, the photographs were taken in 188 countries. The
full dataset was split into a training subset with 347 405 images, a validation subset with 38
601 images, and a test subset with 28 418 images. Each subset has the same class distribution,
while the minimum number of training, validation, and test images per class is nine, one, and
one, respectively. Furthermore, the test subset contains all 772 classes and observations from
almost all the countries presented in training and validation sets. Similarly to the teams of
SnakeCLEF 2020, we applied object detection and then object classification on the images. The
main contributions of our work are (i) training the EfficientDet-D1 for accurate snake detection,
(ii) using double thresholding to categorize the predicted bounding boxes, and (iii) the fusion of
class membership vectors with the likelihood of location data.

3. Evaluation metrics

Various metrics were used to measure the performance of classification. The 𝐹1 score is
computed for the 𝑖-th species as:

𝐹 𝑖
1 =

2 · precision𝑖 · recall𝑖
precision𝑖 + recall𝑖

(1)

The macro 𝐹1 is calculated by averaging the 𝐹1 values over all the species (𝑁 is the number of
species):

macro𝐹1 =
𝑁∑︁
𝑖=1

𝐹 𝑖
1

𝑁
(2)

Let 𝐻𝑖 be a set containing the indices of species that might appear in the 𝑖-th country (these
data were available, provided by the organizers). Then the country-averaged 𝐹𝑐 for the given
country is defined as:

𝐹 𝑖
𝑐 =

∑︁
𝑗∈𝐻𝑖

𝐹 𝑗
1

|𝐻𝑖|
(3)

1Datasets are available at: https://cocodataset.org/#download

https://cocodataset.org/#download


Table 1
Comparison of object detection models

Model
COCO SnakeCLEF
mAP mAP AP@0.5 AP@0.75

Mask R-CNN 39.0 N/A N/A N/A
SSD MobileNet v2 20.2 51.2 90.0 53.4
EfficientDet-D1 38.4 56.9 91.0 64.4

The 𝐹1 country score is the average of the 𝐹𝑐 values for all countries (let their number be 𝑀 ):

𝐹1 country =
𝑀∑︁
𝑖=1

𝐹 𝑖
𝑐

𝑀
(4)

The primary metric in the challenge is the 𝐹1 country score, and the secondary is the macro 𝐹1

value. For evaluating the models, we also use classification accuracy defined as:

Accuracy =
#correct predictions

#samples
(5)

Categorical cross entropy is used both as an evaluation metric and as the function to be optimized
during training the network (loss). If the output of the network for a sample is y and the ground
truth is ŷ, categorical cross entropy is calculated as:

Γ(ŷ,y) = −
𝑁∑︁
𝑖=1

ŷi · logyi (6)

When evaluating multiple samples, their losses are averaged.

4. Object detection

Object detection can improve snake classification accuracy as results from earlier rounds of the
SnakeCLEF competition show. As mentioned in Section 2, top-scoring teams applied ResNet-50
and Mask R-CNN in round 4 (SnakeCLEF 2020). We conducted experiments with a lightweight
SSD MobileNet v2 and a state-of-the-art EfficientDet-D1 model. More complex models (D2 to
D7) might improve the results in the presence of sufficient training data; however, they are
prone to overfitting. Table 1 shows the comparison of the described models. Both SSD and
EfficientDet-D1 are one-stage networks, which generally run faster than the two-stage Mask
R-CNN.

A subset of the train and val datasets consisting of 4700 images was annotated with the help
of the labelImg utility [38]. These samples were split in an 85% − 15% ratio to construct a
training and a validation input for the object detection models. The models were initialized with
weights pre-trained on the COCO 2017 dataset and then fine-tuned on the annotated part of the
SnakeCLEF dataset using the Tensorflow Object Detection API. Both models were trained to



Figure 1: Snakes detected by the EfficientDet model. ©Lili, iNaturalist, CC-BY-NC; ©Gerson Herrera,
iNaturalist, CC-BY-NC; ©oranglautan, iNaturalist, CC-BY-NC; ©Vipul Ramanuj, iNaturalist, CC-BY-
NC

detect two classes (snake and background) and used with mostly the default settings. For data
augmentation, only vertical flipping was used. The validation mAP’s plateaued before reaching
30000 steps in both cases. The best results are shown in Table 1. The EfficientDet recorded
higher mAP; however, the difference is not as big as in the case of the COCO dataset, possibly
because there are only two classes. Some examples of detected snakes are shown in Figure 1.

As the EfficientDet-D1 performed better, only this model was put to use in image classifica-
tion. After running the inference on a picture, the model’s output consists of the coordinates
of bounding boxes and the 𝑝0, 𝑝1 probabilities of the box containing background or snake,
respectively. One image could contain multiple snakes (most likely of the same species) or none
at all; therefore, our method of using the boxes (ordered descending by 𝑝1) is the following:

• If for the first box 𝑝1 ≥ 𝑝ℎ𝑖𝑔ℎ, then we take this, and the next boxes having 𝑝1 ≥ 𝑝ℎ𝑖𝑔ℎ
(up to a maximum of three boxes, although there was not a single image in the dataset
for which at least 3 boxes met this constraint for 𝑝ℎ𝑖𝑔ℎ = 0.75)2.

• If for the first box 𝑝𝑙𝑜𝑤 ≤ 𝑝1 < 𝑝ℎ𝑖𝑔ℎ we take only the first box.
• If 𝑝1 < 𝑝𝑙𝑜𝑤 for the first box, then we take the whole image. During training, we

experimented with dropping such images, but it is not possible in the case of validation
or testing.

2The reason for this is that one-phase object detection networks use non-max suppression to prevent overlapping
boxes containing the same class in the result.



Figure 2: Cumulative distribution functions of the 𝑝1 probabilities of the first boxes.

If multiple boxes are cropped from training or validation images, all of them are taken to the
dataset with the ground truth label. In the case of testing, the classifier is run for all boxes, and
the results are combined by first summing the prediction vectors and then normalizing it to a
unit vector. More accurately, if the prediction vectors for the 𝑛 different boxes are: y1, y2, . . . ,
yn, then the combined prediction is y (where || · || means the Euclidean norm):

y =

∑︀𝑛
𝑖=1 yi

||
∑︀𝑛

𝑖=1 yi||
(7)

The EfficientDet detector was run on the whole dataset after training. Figure 2 shows the
cumulative distribution functions (CDF) of the 𝑝1 probabilities of the first bounding boxes on
the test data and the combined training and validation datasets (trainval). The medians are
0.87 and 0.629, respectively. For the second bounding boxes, the medians are 0.068 and 0.146.
Comparing these numbers with the assumption that the vast majority of the images contain a
single snake, the network was more accurate on the test dataset.

Another conclusion is that the straightforward 𝑝𝑙𝑜𝑤 = 0.5 choice (i.e., only keeping boxes
for which the network predicts a higher probability of containing a snake than background) is
not necessarily the best. For this value, 30% of the training images would be preserved without
cropping, as the CDF shows. In most cases, these images contained a snake that is harder to
recognize or has a bounding box with an unusual aspect ratio (as the network was fitting boxes
with aspect ratios of 0.5, 1.0, and 2.0).

5. Classification

During classification, intermediate results were evaluated on the validation dataset, while scores
on the test set are only available for those attempts, which were submitted for the challenge



Table 2
Parameters (with 𝜂 meaning the learning rate) and properties of the trained EfficientNet-B0 models

𝜂𝑠𝑡𝑎𝑟𝑡 𝜂𝑒𝑛𝑑 batch size checkpoint frozen layers epochs

Baseline 0.01 1× 10−5 64 ImageNet-1k - 15

Min-train 0.01 1× 10−4 64 ImageNet-1k 5 epochs 15

Full-train 1 1× 10−4 8× 10−5 64 Min-train 4 epochs 12

Full-train 2 0.001 1× 10−4 64 Min-train only BatchNorm 15

Full-train 3 0.003 1× 10−4 128 Min-train only BatchNorm 10

Full-train 4 0.01 3.5× 10−5 128 Min-train only BatchNorm 14

and evaluated by the organizers. Accuracy, 𝐹1 country, and macro 𝐹1 scores were calculated in
both cases (as defined in Section 3), while loss values are only available on the validation data.

5.1. Preprocessing

The first preprocessing step in the case of Full-train networks (see Tables 2 and 3) was running
the EfficientDet object detector on the trainval dataset as described in Section 4, and saving the
results in the TFRecord format. For validation and test datasets, 𝑝𝑙𝑜𝑤 = 0.2 and 𝑝ℎ𝑖𝑔ℎ = 0.75
were used, while for training data, 𝑝𝑙𝑜𝑤 = 0.5 was the default.

Before running the network on a batch of images, some preprocessing steps were needed.
The following steps were executed3 each time an image was read into memory (the images in
the dataset were not modified/overwritten):

1. grayscale to RGB conversion, if needed
2. Rescaling to 224 * 224 * 3 (the standard input format for EfficientNet-B0)

†3. Vertical and horizontal flip with probabilities of 𝑝 = 0.5

†4. Brightness and contrast modification with 𝑝 = 0.2

5. Float conversion. (scaling from [0, 255] to [0.0, 1.0] and normalization were not executed,
as these are part of the EfficientNet model in Keras [39])

5.2. Models

The parameters used to train the different models are shown in Table 2 (note that EfficientNet-B0
networks were used in each case). The Baseline model, trained on a dataset of a reduced size,
was provided by the organizers. Min-train was trained with the Tensorflow library using
mostly the same parameters and the same dataset as the Baseline, without using object detection.
The Full-train networks were trained on the complete training dataset with object detection
included. The loss function was categorical cross entropy in all cases.

Adam optimizer was used for training all the models with a learning rate decay from 𝜂𝑠𝑡𝑎𝑟𝑡
to 𝜂𝑒𝑛𝑑. The 𝛽1 = 0.9 and 𝛽2 = 0.999 values were used as the exponential decay rate for the
first and second moment estimates, respectively. The parameter epochs shows the number of

3Items marked with a † symbol were only executed in the phase of training but not during validation or testing.



Table 3
Evaluation of the EfficientNet-B0 models on the validation and test datasets

validation test
accuracy macro 𝐹1 𝐹1 country loss accuracy macro 𝐹1 𝐹1 country

Baseline 44.7% 0.327 - 2.340 - - -
Min-train 42.8% 0.294 0.276 3.132 - - -
Full-train 1 69.5% 0.512 0.513 1.577 - - -
Full-train 2 70.0% 0.512 0.513 1.530 85.86% 0.738 0.773
Full-train 3 70.4% 0.515 0.496 1.253 92.13% 0.786 0.789
Full-train 4 68.3% 0.498 0.488 1.344 85.55% 0.737 0.752

epochs before the results on the validation data plateaued, and the training was terminated.
Some models started the training process with frozen layers, leaving only the classification head
trainable to prevent the big initial gradients from destroying the pre-trained weights. However,
all Batch Normalization layers were kept frozen in all the models even after unfreezing the
others. This is a common technique suggested by Keras developers, in order to prevent the
pre-trained weights from being destroyed [39, 40], which is not preferable with a dataset of this
size, due to the risk of overfitting.

As Table 3 shows, the Full-train networks performed quite similarly. Full-train 1 converged
to the worst optimum, possibly due to the low initial learning rate and the frozen layers in the
beginning. Interestingly, the 𝐹1 scores were not inferior to the other networks on the validation
data. This might be caused by some noise in the validation data, or another option is that
the loss does not correlate well with the 𝐹1 scores. However, the networks with lower loss
generally predict higher probability for the correct species4, thus, they are a better candidate
for reweighting using location data, as described in Section 6.

Submission 1 The first submission included the Full-train 2 network. The learning rate was
0.001 in the first 6 epochs, then multiplied by 0.5 or 0.75 in alteration. During object detection,
the parameters were 𝑝𝑙𝑜𝑤 = 0.5 and 𝑝ℎ𝑖𝑔ℎ = 0.75, and images having a best bounding box
under 𝑝𝑙𝑜𝑤 were preserved without cropping. Despite recording the highest 𝐹1 country score
on the validation data, the loss remained higher than in the next attempts.

Submission 3 The Full-train 3 model was trained with a similar approach as in the case of
Submission 1. A notable difference was that the batch size was increased to 128 and the initial
learning rate to 0.003. On the validation data, this resulted in a major difference in the loss
values, and a top 92.13% accuracy on the test data.

Submission 4 The fourth submission was the model Full-train 4. In this attempt, 𝑝𝑙𝑜𝑤 was
modified to 0.2 on the training data, and images falling below this value during object detection
(5008 altogether) were dropped. The learning rate schedule followed the same pattern as in

4Considering categorical cross entropy loss, the ŷ vector contains a single nonzero element referring to the
correct class, where the value is 1. Substituting into the formula, the loss is − logyi, if the ground truth class is 𝑖.
As yi ≤ 1, the − logyi loss value decreases, as the yi prediction increases.



Table 4
Comparison of the submissions not using location data, evaluated on the validation and test datasets

validation test
accuracy macro 𝐹1 𝐹1 country loss accuracy macro 𝐹1 𝐹1 country

Submission 1 70.0% 0.512 0.513 1.530 85.86% 0.738 0.773
Submission 3 70.4% 0.515 0.496 1.253 92.13% 0.786 0.789
Submission 4 68.3% 0.498 0.488 1.344 85.55% 0.737 0.752
Submission 5 60.6% 0.425 0.416 1.662 87.78% 0.705 0.727

Submission 1, but started from a higher value of 0.01. The results were lower on the validation
and the test set than those of the previous submission.

Submission 5 This submission included the Full-train 3 network (as Submission 3), but
during the evaluation of the test set, object detection was not used. This attempt performed
the worst in all metrics (see Table 4), except accuracy on the test set. The difference from other
submissions is higher on the validation set, which can be explained by the lower quality of the
images, where the object detection might greatly improve the visibility of the snake.

6. Use of location data

The models described in Section 5.2 did not utilize the location data provided with the images.
This information can be used to predict the class label independently, using frequentist statistics.
Let 𝑌 be the random variable of the image label (class) and 𝐶 of the country, then the probability
that a sample belongs to class 𝑖 can be approximated from 𝐶 as:

𝑃 (𝑌 = 𝑖 | 𝐶 = 𝑐) ≈ #images in the training set from class 𝑖 and country 𝑐
#images in the training set from country 𝑐

(8)

If the prediction of the neural network for the 𝑖-th class is 𝑦𝑖 and the image is from country 𝑐,
a new prediction can be created by multiplication with probabilities from the location data:

𝑦*𝑖 = 𝑦𝑖 · 𝑃 (𝑌 = 𝑖 | 𝐶 = 𝑐) (9)

Normalizing 𝑦* to unit length gives the new prediction vector. However, one could apply Bayes’
Theorem to split the probabilities in the following way:

𝑃 (𝑌 = 𝑖 | 𝐶 = 𝑐) =
𝑃 (𝐶 = 𝑐 | 𝑌 = 𝑖) · 𝑃 (𝑌 = 𝑖)

𝑃 (𝐶 = 𝑐)
(10)

As 𝑃 (𝐶 = 𝑐) is only a normalizing constant (the same for all 𝑖), and the prediction vectors are
normalized to unit length anyway, it can be omitted. The 𝑃 (𝑌 = 𝑖) factor is the prior probability
of the 𝑖-th class. It puts more weight on more frequent classes and less on the least frequent
ones, which might not harm classification accuracy, but is clearly not preferable for macro 𝐹1



Table 5
Evaluation of the predictions with location data for different 𝜀 values

validation test
accuracy macro 𝐹1 𝐹1 country loss accuracy macro 𝐹1 𝐹1 country

Full-train 3 70.40% 0.515 0.496 1.253 92.13% 0.786 0.789
𝜀 = 0 75.90% 0.652 0.680 0.951 94.39% 0.840 0.878
𝜀 = 7× 10−6 75.94% 0.654 0.685 0.930 94.82% 0.855 0.903
𝜀 = 7× 10−4 75.66% 0.644 0.669 0.941 94.94% 0.864 0.901

and country 𝐹1 scores, which put equal weights on classes. Therefore, the 𝑃 (𝐶 = 𝑐 | 𝑌 = 𝑖)
likelihood remains, which is approximated as:

𝑃 (𝐶 = 𝑐 | 𝑌 = 𝑖) ≈ #images in the training set from class 𝑖 and country 𝑐
#images in the training set from class 𝑖

(11)

The more training images are present for a class, the more accurate the approximation is.
However, multiplication by 0 is not preferred, as (i) a snake of a particular species might appear
anywhere with a small probability (e.g., a captive snake), (ii) for classes with only a few training
samples, there is a high chance that we do not have samples from each country where the
species is native. Therefore, a small 𝜀 constant is used:

𝑦*𝑖 = 𝑦𝑖 ·max {𝑃 (𝐶 = 𝑐 | 𝑌 = 𝑖), 𝜀} (12)

The method was tested for the prediction of the Full-train 3 network, as this model had the
lowest loss on the validation dataset. The predictions were evaluated for three different 𝜀 values:
𝜀 = 0 (submission 7), 𝜀 = 7×10−6 (submission 2) and 𝜀 = 7×10−4 (submission 6). The results
are shown in Table 5. Adding location data to the model increased all the metrics to a great
extent, affecting 𝐹1 country the most, which saw an increase of 0.089 on the test data.

On the test data, there was another major increase in the 𝐹1 country score when the 𝜀 was
not set to 0, while the macro 𝐹1 and accuracy scores also rose. The results did not differ much
between 𝜀 = 7× 10−4 and 𝜀 = 7× 10−6; however, 7× 10−6 seems to be better in general.

7. Conclusion

We elaborated an automated snake species identification system that first applies object detec-
tion to separate the snake(s) from the background then incorporates visual information and
location metadata into a classification algorithm to categorize the detected snakes. EfficientDet
and EfficientNet were used for object detection and classification, respectively. Based on our
experiments, we can conclude that object detection can positively influence snake identification;
moreover, the inclusion of geographical data showed further significant improvement. Our best
submission achieved an 𝐹1 country score of 0.903 and almost 95% classification accuracy in
the official evaluation of SnakeCLEF 2021.
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